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Abs t rac t 

This paper presents the Expected Solution 
Quality (ESQ) method for statistically char­
acterizing scheduling problems and the per­
formance of schedulers The ESQ method is 
demonstrated by applying it to a practical tele­
scope scheduling problem The method ad­
dresses the important and difficult issue of how 
to meaningfully evaluate the performance of a 
scheduler on a constrained optimization prob­
lem for which an optimal solution is not known 
At the heart of ESQ is a Monte Carlo algo-
r i thm that estimates a problem's probability 
density function with respect to solution qual­
ity This "quality density function" provides 
a useful characterization of a scheduling prob­
lem, and it also provides a background against 
which (scheduler performance can be meaning­
fully evaluated ESQ provides a unitless mea­
sure that combines both schedule quality and 
the amount of t ime to generate a schedule 

1 I n t r o d u c t i o n 

This paper presents a method for statistically character­
izing both scheduling problems and the performance of 
scheduling techniques The method provides a measure 
of the expected distr ibution of schedule scores in a given 
search space We refer to it as the Expected Solution 
Quality (ESQ) method This paper provides an overview 
of the ESQ method and demonstrates its application to 
a practical telescope scheduling problem 

We are concerned wi th a scheduling problem which in­
volves sequencing and executing command packets that 
control the behavior of ground based remotely located 
fully automatic telescopes Such telescopes have been 
in operation for almost a decade, and some time ago 
the astronomy community developed a technique for au­
tomatically scheduling command packets Their tech­
nique is a form of heuristic dispatch at any point in 
time, some command packet is dispatched for imme-
diate execution, the selection is determined purely lo­
cally, wi thout lookahead, by the application of domain-
specific heuristics This heuristic dispatch scheme has 
been used wi th reasonable results, however, we thought 

that it should be possible to achieve better performance 
by using lookahead search In order to compare sched­
ulers, we required a mathematical statement of a "good 
schedule" In collaboration with astronomers, we defined 
some attributes of good schedules and encoded them into 
a mult i -attr ibute objective function 

As a starting point, we used simple greed} search wi th 
one-step lookahead (more on this below) In so doing, 
our goal was not to design a new way of doing search, 
but simply to establish a starting point for compari­
son Our first experiment was the obvious one We ran 
the heuristic dispatch scheduler and the one-step looka­
head scheduler on a real problem instance and scored the 
schedules they found according to the objective function 
(For this objective function, lower scores indicate better 
schedules ) The dispatch scheduler obtained a score of 
+0 14 and the lookahead scheduler obtained a score of 
— 11 56 While the scores clearly indicate that the looka­
head scheduler performed better than the dispatcher, we 
did not have a way to evaluate the significance of the dif-
ference Also, we did not know how well the lookahead 
algorithm was performing in absolute terms Specifically, 
we wanted to know how close to optimal the lookahead 
scheduler performed The problem was not a "bench­
mark", so we did not have a catalog of scores obtained 
by different algorithms We looked in detail at the objec­
tive function, but it was difficult to say anything precise 
about the range of values it could return 

We developed the ESQ method as a solution to this 
evaluation problem In this paper, we present an applica­
tion of the ESQ method to the above-mentioned telescope 
scheduling domain Though this scheduler comparison 
served as motivation for the work presented here, this 
paper does not make any specific claims regarding the su­
periority of lookahead scheduling over dispatch schedul­
ing Rather, the comparison serves as an i l lustration of 
the method itsell, which is the focus of the paper 

In the ESQ method, random feasible solutions are gen­
erated via a Monte Carlo algorithm and are used to es-
timate a probability density function with respect to so­
lution quality This quality density Junction provides a 
background against which scheduler performance on a 
given problem can be meaningfully evaluated 

The rest of the paper is organized as follows First, 
we present necessary background regarding the telescope 
domain and the ESQ method We then apply ESQ to char-
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actenie a problem's search space, to evaluate scheduler 
performance, and to support the construction of search 
heuristics Finally, we discuss applying ESQ in more gen­
eral contexts and make some concluding remarks 

2 B a c k g r o u n d 

In this section, we briefly describe a particular telescope 
scheduling domain (see [Bresina et al, 1994] for more 
details), describe our mult i -at t r ibute objective function, 
define our formulat ion of the search space, define a sta­
tistical sampling technique, and define our two sched­
ulers This background is employed in Section 3, where 
we demonstrate the application of the ESQ method 

2 1 S c h e d u l i n g f o r A u t o m a t i c T e l e s c o p e s 
Our domain involves the management and scheduling 
of ground-based, remotely located, fully automatic tele­
scopes W i t h ful ly automatic telescopes, the astronomer 
does not have to be at the observatory and, further­
more, does not have to engage in teleoperation Fully 
automatic telescopes (see [Genet & Hayes, 1989]) can 
operate unattended for weeks or months 

The Automatic Telescope Instruction Set, or ATIS, 
[Boyd tt al, 1993] is used to define observation requests 
In ATIS, a group is a command packet containing a se­
quence of telescope movement commands and instru­
ment commands A group is the primit ive unit to be 
scheduled and executed A group can be thought of 
as similar to a STRIPS macro operator [Fikes, Hart, k. 
Hayes, 1972] Groups specify "hard" constraints, defined 
by basic physics, and "soft" preferences The primary 
hard constraint is that each group can be executed only 
wi th in a specific time window (typically between one and 
eight hours wide) An example of a soft preference is the 
relative pr ior i ty that an astronomer assigns to each sub­
mitted group 

A scheduler's task is to find a sequence of groups that 
achieves a good score according to a domain-specific 
mult i -at tr ibute objective function The scheduling prob­
lem does not involve assigning an amount of execution 
time to each group, since each group executes unt i l it 
aborts or successfully completes Each group typically 
takes on the order of ten minutes to execute 

2 2 A n O b j e c t i v e F u n c t i o n 
The experiments presented in this paper used the objec­
tive function (mentioned in the introduction) that was 
derived in collaboration wi th astronomers The objective 
function is a weighted summation of three attributes 
priority, fairness, and atrmasa When constructing such 
a mult i -at t r ibute objective function, the scores of the 
different attributes need to be Bcaled BO that they are 
comparable We return to this topic below, first, we 
define the three objective function attributes 

For a given schedule, the priority attr ibute is com­
puted as the average prior i ty of the groups in that sched­
ule In AT IS , a higher prior i ty is indicated by a lower 
number, thus, a schedule that has a lower average prior­
ity includes more high priority observations 

The second attr ibute attempts to measure how fair 
a schedule is in terms of the time allocated to each 

astronomer The fairness measure for a particular as­
tronomer is the difference between the fraction of the 
total requested time in the ATIS input file that the as­
tronomer requested and the fraction of the total allo­
cated time in a given schedule that was allocated to the 
astronomer The fairness measure for a given schedule 
is then the sum of the fairness measures for each of the 
astronomers Smaller fairness scores are better 

The th i rd attr ibute attempts to improve observation 
quality by reducing the airmass (i e , amount of atmo­
sphere) through which observations are made For a ce­
lestial object of a given declination, airmass is maximal 
when the telescope is point ing at the object on the hori­
zon, and min imal when point ing at that object on the 
meridian1 We approximate the airmass measure as the 
average deviation from the meridian thus smaller air­
mass scores are better 

2 3 S e a r c h Space F o r m u l a t i o n 
We have formulated the search space as a tree where 
each node corresponds to a world model state, the most 
important element of which is the "clock" t ime at the 
telescope The alternative arcs out of a given node rep­
resent the groups that are "enabled" in the node's state 
We say that a group is tnabled in a state if and only if all 
of its hard constraints (r e , preconditions) are satisfied 
in that state An arc connecting two nodes represents 
the simulated execution of an ATIS group 

The search tree is organized chronologically, where the 
root node of the tree contains the state describing the 
t ime at which the observing night begins Schedules 
that are identical up to a given branching point share 
a common prefix Each path through the tree defines 
a unique feasible schedule and every feasible schedule is 
represented by a path in the tree Since groups cannot 
be executed after the observation night ends, each sched­
ule has finite length The number of schedules is finite 
and is exponential in the number of AXIS groups 

2 4 I t e r a t i v e S a m p l i n g 
The construction of the quality density function is car­
ried out by an algorithm called iterative sampling [Chen, 
1989, Langley, 1992, Minton, Bresina, k, Drummond, 
1994] Iterative sampling is a type of Monte Carlo algo­
r i thm that generates random paths in a search tree The 
algorithm starts at the root node and randomly chooses 
one of the arcs leading from that node The arc is fol­
lowed and the process of random selection continues un 
t i l a leaf node is reached (i c , unt i l no more groups are 
enabled in that path) 

We mentioned above that the various attributes in the 
mult i -at t r ibute objective function must be scaled so that 
they are comparable This scaling was achieved via the 
iterative sampling algorithm We scored each randomly 
selected path (or schedule) according to each of the three 
individual attr ibutes, and we experimentally determined 
that the distr ibution of scores for each attr ibute was ap-
proximately normal The mean and standard deviation 
were calculated for each attr ibute and used to transform 

'The mendian is an imaginary line running North-South 
through a point directly overhead 
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each of these normal distributions into a standard nor­
mal distr ibution (i e,a norma] distribution with a mean 
of zero and a standard deviation of one) Ae a result of 
this transformation, all the attributes in the compos­
ite objective function were directly comparable (I t is 
worth noting that if the attr ibute distributions are not 
normal, then some other transformation is required to 
appropriately scale the attr ibute scores ) For these ex­
periments, we wanted an objective function that placed 
equal importance on each attr ibute, so each transformed 
attr ibute was simply added (without weights) to form 
the composite objective function score Hence, the com 
posite objective function has a normal distribution (but 
not a standard normal) 

2 5 T w o S c h e d u l e r s 

As mentioned previously, the existing telescope control 
software selects groups for execution via heuristic dis­
patch The heuristics used are the group selection rales 
defined by the ATIS standard [Boyd tt al, 1993] The 
ATIS group selection rules reduce the set of currently en­
abled groups to a single group to be executed next 

There are four heuristic group selection rules specified 
in the AT IS standard priority, number-of-observations-
remaining, nearest- to-end-window, and file-position 
The rules are applied in the sequence given, and each 
rule is used to break ties that remain from the applica­
tion of those that preceded it If the result of applying 
any rule is that there is only one group remaining, that 
group is selected for execution and no further rules are 
applied Since there can be no file-position ties, applica­
tion of the group selection rules deterministically makes 
a unique selection at every choice point, i c , the dispatch 
scheduler admits a single solution 

Our second search technique performs greedy search 
with one-step lookahead At each node visited, all the 
enabled groups are applied to generate a set of new 
nodes, each of which is scored by a heuristic evalua 
tion function The heuristic evaluation function is ap­
plied to the part ial schedule that starts in the root node 
and terminates in the node undergoing evaluation The 
best-scoring node is then selected, and the process re-
peats from that node Our greedy search implementation 
breaks ties randomly and, hence, is nondetermimstic 
Our algorithm performs the greedy search ten times and 
returns the best-scoring of the ten resulting (not nec­
essarily unique) schedules In our experiments compar­
ing greedy lookahead and heuristic dispatch, the greedy 
search uses the composite objective function as its eval­
uation function (i t , local search heuristic) 

3 Apphcation of the ESQ Method 
This section demonstrates an application of the ESQ 
method for a real problem instance from our telescope 
scheduling domain The problem's input consists of 194 
ATIS groups which represent the combined observation 
requests of three astronomers We show how the ESQ 
method can be employed to characterize a problem's 
search space in terms of size, shape, and solution qual­
ity, to evaluate scheduler performance, and to construct 
local search heuristics for effective greedy search 

3 1 S e a r c h Space S ize a n d S h a p e 

One of the primary determinants of problem difficulty 
is the size of the search space While it is not practi­
cal to enumerate all states in the space, the overall size 
can be estimated using iterative sampling Knuth [1975] 
was the first to use an iterative sampling approach to 
estimate the size of a search space Knuth's algorithm 
was later extended by Purdom [1978] and Chen [1989] 
In Knuth's original algorithm, each sample produced an 
estimate of the tree size under the assumption that all 
sibling nodes had the same number of nodes in their 
subtrees The subtree size for a given node was esti­
mated by mult iplying the number of child nodes by the 
subtree size estimate for a randomly chosen child A 
number of iterations of this procedure were performed 
and the resulting size estimates were then averaged to 
yield the final size estimate Though we too used itera­
tive sampling, our estimation calculation differs slightly 
from Knuth's Based on the iterative samples, we derive 
the average branching factor for each depth, these aver­
age branching factors are then mult ipl ied to produce the 
final size estimate 

Figure 1 shows the results of 1000 samples wi th error 
bars representing the 97% confidence interval (Except 
for the rightmost points, the error bars are too small 
to distinguish m the figure ) The branching factor is 
time-dependent, where the number of enabled groups 
decreases through the night The primary reason for 
a decreasing branching factor is that as groups are se­
lected for execution, the number of unscheduled groups 
decreases Leaf nodes occur at approximately the same 
depth for a couple of reasons First, the estimated du­
ration of all schedules is about the same Second, the 
group durations in this particular scheduling problem 
do not vary much The 1000 samples had a mean depth 
of 62 6 and a standard deviation of 0 8 The size of the 
search space is estimated by the product of the average 
branching factors, this data suggests that the number of 
schedules in the search space is on the order of 10 61 
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3 2 S e a r c h S p a c e Q u a l i t y 
A schedule produced should not only satisfy all hard con­
straints but, ideally, should also achieve an optimal ob­
jective function score 2 Hence, it is not solely the size of 
the search space that determines the difficulty of finding 
a good schedule, the dtnstty of quality schedules is also 
important The same sampling method used to estimate 
search space size and shape can also be used to charac­
terize schedule quality density Evaluating the schedules 
generated via iterative sampling yields a frequency dis­
tr ibut ion of scores which estimates the expected density 
of each score obtainable in the search space We refer 
to this statistical estimate as a quality density function, 
and it 16 the basis for our Esq method 

In determining the quality density function, it is im­
portant, yet often non-tr ivial , to obtain an unbiased sam­
ple from the solution space, i e , to sample the possible 
schedules uniformly If the tree has a constant branching 
factor at every (internal) node and if all paths have the 
same length (i t , if the search tree is balanced n-ary), 
then iterative sampling produces an unbiased, uniform 
sample However, constant branching is not a necessary 
condition for uniform sampling, and it can be weakened 
as follows If, for every depth, all nodes at that depth 
have the same branching factor, then iterative sampling 
will be uniform (assuming equal-length paths) As can 
be seen in Figure 1, the branching factor changes from 
depth to depth, however, the minuscule 97% confidence 
intervals indicate that the branching factor is nearly con­
stant for nodes at the same depth (And, as argued 
above, the paths have approximately the same length ) 

We performed 1000 iterative samples, and each sched­
ule generated was scored in terms of the composite ob­
jective function as well as in terms of each individual 
attr ibute (priori ty, fairness, and airmass) From these 
scores we constructed a quality density function for the 
composite objective and for each individual attr ibute 
The resulting four density functions are shown in Fig­
ures 2-5 (The two dashed lines in each figure are dis-

2Another important consideration is schedule execution 
robustness, see [Drummond, Bresina, & Swanson, 1994] 

cussed below ) The scores have been quantized into 100 
"score buckets" of equal size For each solid line, the 
r-coordinate is the mid-point of a score interval and the 
line's height indicates the number of samples that ob­
tained a score in that interval 

3 3 E v a l u a t i n g S c h e d u l e r P e r f o r m a n c e 
We next describe how to evaluate scheduler performance 
using the quality density function, and we compare out 
two scheduling techniques wi th respect to quality deh 
sity In each of the four plots (Figures 2-5), in addi 
tion to the quality density functions, we also indicate 
the performance of the two scheduling techniques The 
single schedule generated by each technique was scorec 
in terms of the composite objective function and in term 
of each individual attr ibute In each of the figures, the 
score obtained by a scheduler is shown by a dashed line 
(the height of the line is immaterial , it simply points to 
an x axis value) Note that the composite score (showr 
in Figure 2) obtained by each scheduler is the sum of the 
three attr ibute scores (shown in Figures 3, 4, and 5) 

As shown in Figure 2, greedy lookahead obtained 
composite score of — 11 56 and heuristic dispatch ob 
tained a composite score of +0 14 The difference be 
tween these scores is 11 70, without knowledge of the dis-
tr ibut ion of scores, we do not know how significant thi 
difference is However, the quality density function en 
ables this difference to be interpreted more meaningfull 
One such interpretation is in terms of the standard de­
viation from the mean The quality density function for 
the composite scores (Figure 2) had an estimated mear 
of 0 and an estimated standard deviation of 1 30 Basec 
on these estimated statistics, the lookahead score is 8 8C 

standard deviations better than the mean, while the dis-
patch score is 0 11 standard deviations worse than the 
mean Interpreting the schedulers1 performance against 
the background of the quality density function provide 
much more insight into just how much better greed 
lookahead performed 

It is interesting that, wi th respect to the objective 
function, heuristic dispatch was no better than the mear 
value obtained by iterative (random) sampling In con 
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trast, the score obtained by greedy lookahead is better 
than all of the 1000 scores obtained by iterative sampling 
(Figure 2) Notice that heuristic dispatch outperforms 
greedy lookahead wi th respect to the priority attribute 
(Figure 3) This is to be expected since group priority 
is the pr imary determinant of which group gets selected 
by the dispatcher, whereas, in the greedy search, priority 
has the same importance as the other two attributes 

When comparing scheduling techniques, in addition 
to schedule quality, it is also important to take into ac­
count the amount of time to generate a schedule A nat­
ural performance measure that combines both of these 
scheduler performance factors is schedule quality divided 
by generation time In order to make these two factors 
easier to combine, we can express schedule quality in 
units of t ime as well (hence, obtaining a unitless perfor­
mance measure) This can be accomplished by comput­
ing the expected amount of time for iterative sampling 
to generate a schedule that scores at least as well as 
a given schedule Let p be the probability that a ran­
domly generated schedule scores at least as well as some 
given schedule This probability is determined by the 
(cumulative) distribution function for schedule qual i ty3 

The expected number of iterative samples to generate 
such a schedule is then 1/p Mult ip ly ing this expected 
number of samples by the computation time to perform 
one sample yields the expected sampling time measure 
of schedule quality W i t h this quality measure, a higher 
measure indicates better quality, and since lower sched­
ule generation time is preferred, a higher qual i ty/ t ime 
measure indicates superior performance 

This expected sampling time measure for schedule 
quality is based on more information about the quality 
density function than just its mean and standard de-
viation (i c , it also takes into account the shape of the 
density function) Hence, if the distribution function can 
be estimated accurately enough, this quality measure not 

only makes it easier to combine with generation time, but 
also yields a more discriminatory schedule quality com­
parison than the previously described metric of standard 
deviations from the mean 

We determined the schedule generation time for our 
two techniques, as well as for iterative sampling, this 
was done by averaging over 100 runs The following are 
the results we obtained4 dispatch took 3 89 seconds, 
greedy lookahead took 98 75 seconds for ten iterations, 
and iterative sampling took 3 76 seconds per sample 

Assuming a normal distribution function, we can com­
pute the probability that a random sample wil l obtain a 
schedule score at least as good as some given score This 
probability is 0 54 for +0 11 standard deviations, and 
it is 3 06 x 10" 1 9 for -8 89 standard deviations 8 For 
the score obtained by dispatch, the expected number of 
samples is 1 /0 54 or 1 85, and for the score obtained 
by lookahead, the expected number is 1 /3 06 x 10 - 1 9 or 
3 27 x 101§ Mul t ip ly ing by the time to perform one sam­
ple yields expected computation times of 6 96 seconds for 
dispatch and 1 23 X 1019 seconds for lookahead For dis­
patch, the qual i ty / t ime measure is 6 96 secs/3 89 sees or 
1 79, and for lookahead, it is 1 23 x 1019sees/98 75sees 
or 1 25x 1017 Hence, greedy lookahead far outperformed 
heuristic dispatch on this problem, the ratio of the looka­
head measure to the dispatch measure is 7 0 x 1016 

In summary, we started with the scores obtained by 
our two techniques, which had a difference of 11 70 
This information told us that the lookahead scheduler 
achieved a better score, but there was no well-founded 
interpretation of how much better it was Based on the 
results of statistical sampling, the qual i ty / t ime measure 
yielded an interpretation of the lookahead score as being 
16 orders of magnitude better than the dispatch score 

3The distribution function for schedule quality, F(x), 
equals f f(p)dy, where f(v)is the quality density function 
Since smaller scores we better, the probability of randomly 
obtaining a score at least aa good as x equal to F(x) 

*The results are CPU time for non-gc, user tasks from the 
Common Lisp t ime macro 

* There may be some error between our sample distribu­
tion and the true distribution furthermore, since the range 
of the objective function is bounded (within some unknown 
interval), the distribution is actually a truncated normal 
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3 4 Search Heuristics 
In tradit ional mathematical programming, the objective 
function is used to directly guide the construction of a 
solution Certain assumptions are made about the form 
and behavior of the objective function that allow for the 
application of closed-form techniques to find optimal so­
lutions AI approaches to constrained optimization typ­
ically assume that the objective function is so complex 
that closed-form solutions cannot be found Typically, 
these approaches employ state-space search For a par­
ticular problem instance (or class), heuristics are de­
signed that can help guide search toward a solution that 
scores well according to the objective function How­
ever, it is often very difficult to design efficient search 
heuristics that effectively capture the information in the 
objective function When the heuristic and the objective 
become too "decoupled", the heuristic can end up hav­
ing a different bias than that encoded in the objective 
and, hence, can fail to find high quality solutions 

One indicator of a bias discrepancy is when a signif­
icant portion of the quality density function is better 
than the heuristically selected solution's score This is 
the case wi th the dispatch heuristic - its solution scored 
no better than the quality density function's mean value 
(Figure 2) Though this information indicates a bias 
discrepancy, it does not reveal the discrepancy's source, 
i t , what information in the objective is not effectively 
encoded in the heuristic This can be revealed by ex­
amining the heuristic's performance wi th respect to the 
individual objective function attributes As seen in Fig­
ures 4 and 5, it is obvious that the dispatch heuristic is 
not taking into account fairness and air mass since its so­
lution scores worse, with respect to these two attributes, 
than almost all of the randomly found solutions 

After identifying some aspect of the objective function 
that is being ignored by the heuristic, one sti l l has to de-
termine how to repair the heuristic In general, this is 
a non-tr ivial problem, its difficulty depends on the com­
plexity of the objective function (i e , how the attributes 
are combined) and on the form of the heuristic 

Since the solution found wi th the greedy heuristic 
scored better than all of the randomly generated solu­
tions, there is no obvious indication of a bias discrepancy 
- not surprising, since the greedy heuristic was identical 
to the objective function However, we can sti l l f ind such 
a discrepancy by looking at the quality density functions 
of the individual attributes Recall that the objective 
function was designed to give equal importance to all 
three attributes A solution which achieved a balanced 
tradeoff among the attributes should score equally well 
with respect to each attr ibute, that is, each attr ibute 
score of the solution should be the same number of stan­
dard deviations from the mean of the attribute's quality 
density function However, as can be seen in Figures 3, 
4, and 5, the solution found w i th the greedy heuristic 
does not score the same wi th respect to the attributes, 
rather it scores best on airmass, second best on priority, 
and worst on fairness This imbalance can be corrected 
by adjusting the weighting factors on the attributes in 
the greedy search heuristic Though the direction of the 
adjustment is obvious, finding appropriate weighting fac-

tors may take some experimentation (either manually or 
using machine learning techniques) 

Though we used the objective function as a greedy 
search heuristic this is not always best, e g the objec­
tive function may be too expensive to evaluate or some 
attributes may not be effective search heuristics (i e , an 
attribute's scores with respect to a partial solution may 
not be predictive of the scores of its completions) The 
ESQ method can support the decision of which subset of 
the attributes to include in the search heuristic Using 
the scheduler comparative analysis method illustrated 
in the previous section, we earned out the following em 
pineal evaluation For each attr ibute, a greedy looka­
head search was performed using a heuristic based only 
on that single attr ibute (which is equivalent to zeroing 
the weight* of the other two attributes in the compos­
ite search heuristic) For each single-attribute greedy 
search, the best schedule found was evaluated in terms 
of the (original) composite objective function 

Figure 6 shows the three composite scores obtained by 
each single-attribute search heuristic against the back­
ground of the same composite quality density function 
as in Figure 2 These results indicate that airmass is the 
best single-attribute local heuristic, i e , partial sched­
ules that score well w i th respect to airmass are likely to 
be prefixes of complete schedules that score well wi th 
respect to the composite objective function The re­
sults also indicate that fairness is the worst local pre-
dictor, which makes sense since it is the "most global" 
attr ibute in the objective function That is, there are 
schedules that, while rated highly (perhaps even opti­
mal ly) wi th respect to fairness, have prefixes that score 
poorly For example, consider a schedule that assigns 
each user's groups fairly, but gives each user a contigu­
ous interval of t ime While the final schedule scores well, 
its prefixes score poorly, and would not be found during 
search The fairness heuristic prefers schedules that fre-
quently alternate between users Prior i ty turned out not 
to be a very good local heuristic either, which explains 
why ATIS dispatch did not perform well with respect to 
the composite objective function 
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4 Genera] App l i ca t i on of ESQ 
In this section we discuss how the ESQ method can be 
applied in more general contexts Our ESQ character­
ization was done under the assumption that iterative 
sampling in the search tree produces a uniform sample 
from the space of possible solutions Our formulation 
of the scheduling problem has two beneficial characteris­
tics that make it easy to satisfy this assumption Firstly, 
nodes at the same depth in the search tree have nearly 
the same branching factor and the lengths of paths are 
approximately the same length Because of this, sam­
pling uni formly at each branch point implies that the 
leaf nodes i re uniformly sampled Secondly, the search 
tree includes only feasible schedules, i e , schedules that 
satisfy all the hard constraints Hence, uniformly sam 
pling the search tree leaf nodes implies a uniform sam­
pling of the solution space In our case, the search tree is 
chronologically organized, however, as long as there is a 
one-to-one correspondence wi th leaf nodes and solutions, 
then the ESQ method as described directly applies 

Due to the shape of the search tree for our telescope 
scheduling problem, it was easy to uniformly sample the 
leaf nodes, however, in general, this is not tr ivial To 
guarantee uniform sampling of the leaf nodes, the ran­
dom selection at each branch point must be biased by the 
size of the subtree below each choice That is, the prob-
abil i ty of selecting a particular child node must be equal 
to the proportion of leaf nodes in the child's subtree (rel 
ative to the total in the current node's subtree) Wi th in 
the field of randomized algorithms, theoretical and prac­
tical results have been obtained for randomized approx­
imate counting and almost uniform generation of com­
binatorial structures, For example, see [Sinclair, 1993, 
Jerum, Valiant, it Vaziram, 1986] These results can 
help in the construction of algorithms that almost (i e , 
with small bias) uniformly sample a tree's leaf nodes 

There is another potential problem with general appli­
cation of the ESQ method In many search formulations, 
not all leaf nodes correspond to solutions - some are fail­
ure nodes These failures are incorporated into the ESQ 
method as follows As before, the leaf nodes are uni 
formly sampled, however, the quality density function 
for solutions is computed based only on the non-failure 
leaf nodes The probabil i ty of failure, pj, is estimated by 
the number of failure leaf nodes encountered during the 
sampling divided by the number of samples As before, 
we compute the probabil i ty, p*, that a randomly gener­
ated schedule would score at least as well as some given 
schedule The probabil i ty, p, that a random sample pro-
duces a schedule that scores at least as well as some given 
schedule is then the product pb (1 - pj) Using p, the 
qual i ty / t ime measure is computed as before 

In our telescope domain, we have all day to schedule, 
hence, whenever the scheduling problem changes (due to 
modified or new observation requests), we can afford to 
carry out a new set of ESQ experiments in order to re-
tune our search heuristics However, in other domains, 
this may not be feasible In such cases, it may be possible 
to select a representative suite of problem instances and 
base the ESQ statistical evaluation and search heuristic 
tuning on the combined samples of these problems 

5 Summary and Conclus ion 
This paper's main contributions are the ESQ method 
for characterizing scheduling problems and evaluating 
scheduler performance and the demonstration of this 
method in a practical telescope scheduling domain We 
demonstrated how the ESQ method can provide an es-
timate of the site and shape of the search tree and 
can provide a qual i ty / t ime measure of scheduler per­
formance In addit ion, we illustrated how the method 
can support the construction of more effective search 
heuristics While we have been concerned with schedul­
ing techniques and scheduling problems, the ESQ method 
should apply more generally wi thin the larger class of 
constrained optimization problems 

The ESQ method is statistical, employing a Monte 
Carlo algorithm called iterative sampling In summary, 
the complete ESQ method involves the following steps 

1 Based on the shape and size of the search tree, uni­
formly sample the tree, from this sample, compute 
the frequency distribution of schedule quality and 
the failure probability, pj 

2 From the frequency distr ibution, characterize the 
quality density function That is, compute the sam­
ple mean and standard deviation of the schedule 
scores, and determine the distribution type (In the 
example presented, the distribution was normal ) 

3 Express the scheduler's score in terms of standard 
deviations from the quality density function's mean 

4 Using the distribution function, determine the prob­
ability, pi, that a randomly generated schedule wil l 
score at least as good as the scheduler's score Then 
compute the probability, p, that a random sample 
wi l l produce such a schedule as pi (1 — pj) 

5 Compute the expected t ime for iterative sampling 
Lo obtain a score at least as good as the given score 
by mult iplying the expected number of samples re­
quired, 1/p, by the time to perform one sample 

6 Compute the qual i ty / t ime measure as the expected 
iterative sampling time (computed in previous Btep) 
divided by the scheduler's computation time 

In some sense, our qual i ty / t ime measure is a "com­
mon currency" for expressing scheduler performance on 
a given problem In addition to comparing the perfor­
mance of different schedulers, the ESQ method can also 
be employed for the following purposes (i) to compare 
the difficulty of different problems wi th respect to a given 
scheduler, (n) to evaluate the impact of different search 
formulations wi th respect to scheduler performance, ( in) 
to evaluate the impact of different objective functions 
wi th respect to problem difficulty for a given scheduler 

Recall that our nondetermimstic greedy lookahead 
chose the best schedule after ten iterations, this number 
of iterations was chosen arbitrari ly Wi th more itera 
tions, the algorithm might find a better schedule - al­
though at a higher computational cost Using our qual 
i t y / t ime measure, we could empirically determine the 
number of iterations that yields the most cost-effective 
performance This type of algorithm tuning could be 
applied to any scheduler whose performance behavior 
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varies depending on the amount of computation time al­
located Similarly, we could empirically determine the 
amount of lookahead that is moat cost-effective (recall 
that our greedy algorithm used one-step lookahead) We 
intend to carry out such experiments in the future 

In addition to the reported uses of the quality den­
sity function, we speculate that ( in some cases) it can be 
useful in characterizing the difficulty of a problem For 
example, consider the hypothetical quality density func­
tion in Figure 7 One might conclude that this problem 
is intrinsically easy since there are so many high quality 
solutions and not many low quality ones Even an unin­
formed search (like iterative sampling) can quickly find 
a high quality solution for such a problem In cases that 
are not so extreme, it is less obvious how to relate shape 
of quality density and problem difficulty This topic re­
quires further research 

The experiments reported in this paper used a Lisp-
based scheduling engine However, in order to make 
the system useful to astronomers, we have had to re­
implement it in C so that they themselves can extend 
and support it This new system wi l l provide a self eval 
uation facil ity which w i l l automatically perform the ESQ 
characterization experiments upon request The final 
version of the system wi l l be accessible to users via the 
Internet and wi l l accept new ATIS groups on a daily ba­
sis Thus, the definition of the scheduling problem wi l l 
change frequently We expect that a telescope manager 
wil l be able to use the Belf evaluation facil ity to track the 
changing characterization of the search space Based on 
the current characterization, a telescope manager could 
choose the best scheduling method and search heuristic 
for the current mix of ATIS groups It would be useful if 
the system itself were able to make these choices Work 
along these lines is reported by Greenwald and Dean 
(1994), where Monte Carlo simulation builds a picture 
of the search space that can be used to detect and avoid 
potential schedule bottlenecks Exploring the use of ESQ 
in this context is a topic for future work 
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