
Comparison of Methods for Improv ing Search Efficiency in a
Part ial-Order Planner *

R a g h a v a n S n n i v a s a n A d e l e E H o w e

C o m p u t e r Science D e p a r t m e n t
Co lo rado S ta te U n i v e r s i t y

Fo r t C o l l i n s , C O 80523
Ne t {s r in ivas ,howe}@cs co los ta te e d u

A b s t r a c t

The search space in partial-order planning
grows quickly wi th the number of subgoals and
ini t ia l conditions, as well as less countable fac­
tors such as operator ordering and subgoal in
teractions For partial-order planners to solve
more than simple problems, the expansion of
the search space wil l need to be controlled
This paper presents four new approaches to
controlling search space expansion by exploit­
ing commonalities in emerging plans These
approaches are described in terms of their al­
gorithms, their effect on the completeness and
correctness of the underlying planner and their
expected performance The four new and two
existing approaches are compared on several
metrics of search space and planning overhead

1 I m p r o v i n g S e a r c h E f f i c i e n c y i n
P l a n n e r s

Partial order planning is becoming a common method of
planning Unfortunately but hardly unexpectedly, the
search space in partial order planning expands quickly
as the problem size increases Unfortunately but less
expectedly search space expansion is dependent on a
\anety of factors some of which are difficult to predict
A problem that was solved in short order may be made
impossible to solve in reasonable time simply by adding
an innocuous looking new goal, by changing the ordering
of goals or even by adding a few more objects to the
problem init ial state

More graceful degradation of performance can be
achieved by identifying aspects of the planner most sus-
ceptible to the problem changes and developing methods
to ameliorate the search space expansion This paper

This research was supported by a National Science Foun­
dation Research Initiation Award #RIA IRI-9308573 and
ARPA-AFOSR contract F30602 93-C-010O We also wish to
thank the anonymous reviewers for their suggestions for im
proving content and clarity

presents four new approaches for improving efficiency
in a partial order planner by exploiting commonalities
between proposed plane during two phases of planning
flaw selection and plan refinement These approaches are
described in terms of their algorithms, their effect on the
completeness and correctness of the underlying planner
and their expected performance when compared to two
existing approaches Finally the new and existing ap-
proaches are compared on several metrics of search space
and planning overhead

The goal of this project was to determine why it could
be so hard to design efficient problem descriptions [or
UCPOP, a partial order planner We found that what
seemed like tr iv ial problems could not be solved in rea­
sonable time Indeed minor variations on the same
problem led to UCPOP's being unable to solve the new
problem Using a variety of analysis methods we deter
mined that the primary fault lay in UCPOP's selection
of flaws to repair and additions to the plan to repair
the flaws Three approaches have been used to enhance
search in planning more sophisticated plan representa­
tions and reasoning (e g hierarchical planning and re
source reasoning as in [Tate et at , 1994 Wilk ins, 1988])
domain specific control knowledge (through programmer
intervention or machine learning) and improved search
methods WE focused on the third approach because jt
requires the least change to the underlying planner

We used UCPOP because it is an easily available, do­
main independent partial order planner [Penberthy and
Weld, 1992] UCPOP plans by iteratively selecting and
repairing flaws in the current plan A flaw is repaired
by adding steps and constraints to the plan The search
control strategy decides which partial plan to select for
expansion In general, U(POP gives good results on
small domains and problems in which subgoals are in
dependent For problems with interrelated subgoals or
those requiring arithmetic, UCPOP often does not hnd
a solution even with very large search l imits

The Least Cost Flaw Repair (LCFR) strategy [Joslin
and Pollack, 1994] improved search control in UCPOP
by selecting the flaw with the min imum repair cost The
repair cost of a flaw is defined as the number of plans

1620 PLANNING

generated to repair it Open conditions and threats
are treated alike The main drawback of LCFR is the
overhead incurred for flaw selection The total time
spent in planning with LCFR can be more than that
for UCPOP, even though UCPOP examines far more
plans than LCFR However, LCFR reduces the search
space more than other flaw selection strategies [Peot and
Smith 1993]

A variant on LCFR, QLCFR [Joslin and Pollack,
1994], assumes the cost of un-repaired flaws to be con­
stant over time it caches the results of estimating flaw
repair costs and uses the cached cost as the estimate in
subsequent flaw selection QLCFR reduced the overhead
of LCFR, but at a cost of solving fewer problems

2 S i m i l a r F l a w s a n d L C F R (T e m p l a t e s)

LCFR is expensive because it estimates separately the
cost of repair for every flaw in ever) potential extension
to the current plan However, in most problems flaws
can be similar they involve the same type of condition
and are amenable to repair by the same fix For example,
flaws in the Blocks World domain are commonlj of the
form (on 'x 'y ') or (c l e a r ?x) The resolution of
any flaw of these forms is likely to be the same (e g , add
an action to move the indicated block), hence, we can
expect the cost of flaw repair to be roughly the same for
flaws with similar forms

C onsequently, we exploit the similarity in flaws to re­
duce the number of repair cost estimates to be made
In particular we assume that at a particular stage of
plan refinement, the repair cost is the same for all simi­
lar flaws Other than this approximation, repair cost is
the same as that of LCFR scheme

QLCFR also approximated the repair cost of flaws by
estimating once and re-using the estimate The differ­
ence between our approach and QLCFR is that QLCFR
cached the estimate and re-used it in subsequent plan
refinements rather than applying it to similar flaws at
the same point in plan refinement Our approach al­
lows recenLly acquired information to be incorporated in
estimating cost

The first step towards deciding how to change a de­
veloping plan is to identify and group together identical
open conditions in the plan Two open conditions are
said to be similar if they have the same predicate For
example, (p rad 1 ?x) and (p red l ?y) are similar A
set of similar open conditions with predicate p are said
to form a template p A l l of the open conditions in a
plan can be grouped into a set of templates

We assume that when open conditions are similar the
order in which they are selected for repair does not mat­
ter Thus, the repair cost of a template is estimated by
finding the repair cost of the first member of the tem­
plate

This approach approximates only the cost of open con­
ditions Threats are not easily grouped because they do

not involve variable bindings Thus, similar threats often
do not have similar resolutions and are often resolved as
a side effect of repairing some other flaws Consequently,
a uniform repair cost would not be a reasonable approx­
imation of the actual costs

Open conditions are considered only if a plan does
not have any threats If a plan has threats, the one wi th
the minimum repair cost is selected, otherwise, the first
member of the template wi th the minimum repair cost
is selected

2 1 E x p e c t e d P e r f o r m a n c e

We expected that the average number of plans exam­
ined before finding a solution in this scheme should be
comparable to that of LCFR, while the overhead should
be much less than that of LCFR Overhead is defined
as the number of extra plans created in service of esti­
mating flaw cost Since only a subset of the open condi
tions are evaluated in the templating approach, on the
average its overhead should be less than that of LC FR
However in the worst rase, the templating approach can
incur more overhead than LCFR when the estimate for
one member of the template does not generalize to the
rest potentially causing additional backtracking Em­
pirical performance is reported in Section 6

2 2 C o r r e c t n e s s a n d C o m p l e t e n e s s

Because only flaw selection is modified the correctness
and completeness of UC POP is maintained by the tem­
plating approach

3 T e m p l a t e s w i t h R e p a i r Reuse

With Templates open conditions are grouped to esti­
mate repair cost We extend this idea to the next step
selecting (or reusing) similar actions to add to repair sim­
ilar flaws Consequently, given that an action is added
to the plan to repair a flaw of a particular type, an­
other instance of the same action can be added, at the
same time, to repair another flaw of the same type This
sense of reuse is much more l imited and local than what
is typicallv meant by plan reuse (eg , [kambhampati
and Hendler, 1992]), it is constrained to reusing the oc­
casional step within a plan being developed

Consider a plan P with a set of flaws F F can be
grouped into a set of templates T = {T1,T2} Tm]
Each T, consists of a set of similar flaws Let Tmin (1 <
mm < m) be the template with the minimum repair
cost The first flaw in the T m i n set, / m i n . 1, is selected
for repair, and a set of new plans P' are generated Let
P's be a subset of P' such that each plan in P1 includes
a new plan step for repairing fmin 1 For each plan in
PI, a set of new plans are generated in which some of
the flaws of type T m i n

 a r e repaired by adding another
instance of an action added f o r r m i n |

Two values are returned the plans in which all flaws
of type Tm i m are repaired by adding the same type of

SRINIVASAN AND HOWE 1621

action, and the plans, in which some but not all flaws
are repaired this way We require the second value to
facilitate backtracking As with the basic templating
scheme, not all flaws of a similar type require the same
cost or action for repair (e g , some might be satisfied bv
init ial conditions) Consequently, the first set of plans
are added to the search queue and the second set is stored
in the event of later backtracking

3 1 Expec ted Per fo rmance
Two opposing factors were expected to affect the perfor­
mance as measured by plans examined and overhead If
reuse is successful most of the time, then both plans
examined and overhead wil l be less, however, if new
threats are introduced due to reuse, repairing them will
cost more in terms of plans examined as well as over­
head The worst case wil l occur when an early attempt
to reuse is inappropriate, leading to considerable back­
tracking As a consequence, we expected the success of
this approach to be highly problem/domain dependent

3 2 Correctness and Completeness
Any newly added plan step may introduce threats for
each of the flaws in template T m i n , a se' of new threats
could be introduced However, all of these introduced
threats w ill be detected Thus, the final solution wil l sti l l
be correct In addition the backtracking facility insures
that if a solution exists, it wi l l eventually be found Con-
sequently, completeness and correctness are maintained

4 P r o b a b i l i s t i c Reuse
Templating and Reuse can be viewed as approaches in
which plan repair reuse is applied wi th probability 0 and
1 respectively Because we suspect that plan repair reuse
is not always the best strategy (and cannot currentJy rec­
ognize when it is and is not the best strategy), we can
define an approach in which reuse is applied with some
probability p 0 < p < I Intuitively, some p exists
for which the performance wil l be better than that of
Templating or Reuse This value can be determined em­
pirically Obviously, the value of p depends both on the
problem and domain We hypothesize that p should be
small non-zero value, and so determined it empirically
For all tests, the same value of p, 0 2 was used

5 A d d i n g a N e w C o n s t r u c t t o t h e P l a n
L a n g u a g e (B a n g - U C P O P)

The previous approaches all altered the control of plan
expansion within the planner only One alternative is to
make the plan language more expressive of constraints
known by the user A simple constraint is that mult i ­
ple inclusions of the same operator within a single plan
should be instantiated to different objects within the en-
vironment This hard constraint us a simple form of the
resource reasoning included in more sophisticated plan­
ning systems

We developed this approach to address problems dis-
covered when analyzing the behavior of UCPOP in
Truck world [Hanks et a / , 1993] (a simulator of trucks
moving cargo between different destinations) UCPOP
fails (i e , could not find a plan even given a large search
space) on apparently simple conjunctive subgoal prob­
lems in Truckworld A typical example is 'Bring 4 fuel
drums from outside the truck and fill the fuel tank "
Because the size of the search space increased dramat­
ically with the order and number of identical subgoals,
we hypothesized that the number of identical fuel drums
needed and available might lead the planner to starch
unnecessarily for the right binding of fuel drums in the
right order

We studied the behavior of UCPOP in Truckworld bv
collecting execution traces of UCPOP working on Truck-
world problems wi th similar conjunctive sub-goals Us
ing CLIP [Anderson et a / , 1993] (an instrumentation
tool for defining and running data collection routines in
a simulated environment), we collected data on what
plans were generated, how certain open conditions were
repaired what threats were considered, and what van
able bindings wen used

We analyzed the data with a variety of methods
from simple eyeballing through dependency detection
[Howe and Cohen, 1994], and determined that in effect,
UCPOP was searching in circles trying the same vari­
able bindings over and over again For example consider
the problem of picking up two identical fuel drums from
a world which has five such drums To repair the first
open condition (i c , picking up the first drum), a set of
five possible plans are generated For the second drum, a
similar set of plans is generated, wi th one of them trying
to reuse the first step to get the first drum This results
in a threat Next, UCPOP tries binding a new value
for the first flaw It continues to try pairs of identical
bindings before it finds two unique binding values that
can repair both the open conditions Most of the search
time is wasted in trying the same values for variables
that require different values Thus, the plan language
needs a construct to indicate to UCPOP that it should
use different variable bindings for certain variables, so
that it can converge on the solution much faster

5 1 S c h e m e D e s c r i p t i o n

For this scheme, a new language construct which creates
a "special variable is introduced Bindings of such a
variable are treated differently, in particular, the plan
ner wi l l ensure that if a binding value is needed for the
special variable it w i l l differ from that used in all previous
instances of this operator in the current plan Moreover
if more than one of such bindings are possible, only one
plan using exactly one value LS created, plans for other
possible unique values are saved in the event of back­
tracking

A special variable is denoted by the prefix '?''' (hence,

1622 PLANNING

(de f i ne (opera to r p ick-druM)
parameterS (?ant ? ,poS ? arm)
p r e c o n d i t i o n (and (ou ts ide ?ann)

(d rum- i t pos ?amt))
e f f e c t (and (not (drum-at ?pos ?ant))

(amoun t - i n -am 7arm 7 amt)))

Figure 1 UCPOP operator for Truck World that illus­
trates the use of a Bang variable, 7 ' pos

the name Sang- UCPOP for this approach) Bang vari­
ables art treated differently only during binding Cur-
rently, only one such variable per plan operator it al
lowed, in order to minimize the complexity of resolving
which variable binding resulted in a threat Another re
striction is that two operators that clobber each other
should not use the same type (as defined by the plan
domain) of special variable

Special variables have a curious but useful side effect
on repairing threats For example, given two instances
O,,, 1 and Os, 2 of the same operator O,, and let ps he the
special variable parameter in its operator, then the new
scheme ensures that unique values wil l be used for p,
in Q 1 and O,, 2 Under the normal planning process,
an unsafe link may be introduced due to O,, 2, but now
there is no threat Hence, the planner marks this threat
as bogus and removes it This saves time that otherwise
would be wasted on resolving such threats

Figure 1 shows an example of an operator which uses a
bang variable The operator comes from the Truckworld
domain and is one of the operators needed to refuel a
truck The bang variable, ?pos, indicates the port ion
at which the fuel drum is stored Multiple fuel drums
are typically required to refuel a truck thus a plan may
include multiple instances of this operator each referring
to a different fuel drum in a different location Bang is
ideal for this situation because we do not wish to at­
tempt to pick up the same fuel drum repeatedly during
refueling we can only gainfully empty it once

Unlike the other approaches this approach required
considerable change to the algorithm for linking in new
actions to plans To expedite backtracking the algo­
r i thm caches alternative unique variable bindings and
search control maintains two search queues When a
planning failure occurs, it moves a plan from the most
recent backup list into the primary search queue and
continues The modified algorithm is shown in Figure 2

Plan language constructs for restricting 6earch space
are available in some hierarchical planners For example,
0-Plan2 [Tate ti al, 1994] uses condition types which
allow the domain writer to restrict selection of actions
as well as to bind variables The 'onlv_use_for_query'
condition type of O-PIan2 resembles the Bang scheme
but differs in the situations for which it is the best ap-
proach The Bang scheme is most effective when the

PLAN-LINKJNG(open-cond, step, current)
plan-list = NULL
more-plans = NULL
, let V be the variable in open-cond to be bound
While binding-exists(V)

if (special-vanable(V))
find a binding not used in other instances

B = unique-binding(V)
, tf a binding can be found generate plans
i f (B '= NULL)

current = make-plan(B,open-cond current)
else current = NULL
, add to plans for backtracking
if (plan-list ' = NULL)

more-plans = add (current, more-plans)
current = NULL

else , find a binding with normal methods
B = binding(V)
current = make-plan(B open-cond current)

i f (current '= NULL)
plan list = add(current,plan-list)

return current plan and list for backtracking
return plan-list, more-plans

Figure 2 Algorithm for linking in new plan actions un­
der the. Bang-UCPOP approach

number of binding values is large and no one is preferred
Only_use_for_query cannot be applied in specific actions
and does not look for previous bindings used 111 other
instances of the current action An over indulging 0-
Plan2 condition type can result in the planner throwing
away valid plans, whereas Bang stores all plans for later
backtracking I he Bang scheme can be modified to se­
lectively recognize bang variables at the problem level
In 0-Plan2, the condition type information is built into
the domain specification

5 2 E x p e c t e d P e r f o r m a n c e

Best case performance in terms of number of plans ex­
amined, occurs when problems have identical conjunc­
tive subgoals and when the first variable bindings do not
need to be retracted later The worst case performance
occurs when the unique values selected early do not sat­
isfy all the subgoals, thus requiring backtracking This
approach 's expected to do much better than other ap
proaches for domains with many possible bindings lo the
same variables, as in the motivating Truckworld exam­
ple In other cases, this approach may incur additional
backtracking and thus additional computation because
the new constraint does not help

The major drawback of this approach is that it re­
quires user intervention The user must know when to
use bang variables in a domain description (e g , when it
is expected that problems wil l contain multiple conjunc-

SRINIVASAN AND HOWE 1623

tive sub-goals involving the same types of objects)

5 3 C o r r e c t n e s s a n d C o m p l e t e n e s s o f
A p p r o a c h

To make sure that we have not violated the correctness
and completeness of the underlying planner, we need to
prove that when special variable operators are used, ev­
ery answer is a correct solution to the planning problem
and that if a solution exists it wi l l eventually be found

The proof consists of three parts

1 Even though the algorithm is l imited to only one
binding value for a special variable, backtracking is
sti l l permitted and thus completeness is preserved

2 When special variables are bound to values from
goal terms, then correctness is preserved

3 When special variables are bound to particular
unique values, marking threats as bogus when they
are due to different instances of the same special
variable operator does not affect correctness

The correctness and completeness of UCPOP has al­
ready been proven [Penberthy and Weld, 1992], so we
wil l show that all these cases are reducible to UCPOP
If UCPOP cannot find a solution (e g if enough unique
values do not exist), then neither can our modification
A complete proof is beyond the scope of this paper (see
[Srinivasan and Howe, 1995] for details), but we can pro-
vide a sketch of each part

P a r t 1 B a c k t r a c k i n g If a special variable is included
in a new plan refinement, then the inclusion wil l cause a
single new plan to be added to the search queue with all
other possible plans being put onto a 'reserve" queue
Should later plan refinements led to a failure, then the
next possible plan from the reserve queue can be moved
into the search queue and plan refinement continued
from there Thus, no potential plans have been pruned
irretrievably backtracking and thus completeness is pre-
served

P a r t 2 G o a l Te rms When special variables are
bound to values from goal terms then no searching needs
to be done for variable bindings Thus, the operator in­
corporating the special variable is treated just like other
operators, and correctness, as in the original scheme, is
preserved

P a r t 3 Bogus T h r e a t s In UCPOP threats are de­
tected when two conditions in the current plan have the
same predicate (e g , the "clear" condition from Blocks
world) In Bang-UCPOP, if the threat involves a special
variable that was not bound as part of the goal term
(whose correctness was proven in part 2), we know that
no such threat actually exists because the two conditions
have been instantiated to different variables Therefore,
such a threat can be marked as "bogus" This does not

affect backtracking because if the variables are not spe-
cial then the normal rules of binding in UCPOP hold

6 C o m p a r i s o n o f A p p r o a c h e s

In this paper, we have defined four extensions to two cur­
rent approaches (vanilla UCPOP and LCFR in UCPOP)
for controlling plan search in a partial order plan­
ner We expected the new approaches to perform sig­
nificantly better than LCFR or UCPOP in some do-
mains/problems The goal of the comparison was to de-
termine which of the six approaches works best in some
common planning problems

Three performance metrics were collected number of
plans examined before reaching a solution, overhead in­
curred in terms of the number of plans created for flaw
selection, and CPU time On average, we expected that
the four new approaches, templating, reuse, probabilis­
tic reuse and Bang-UCPOP would compare favorably
to LCFR on plans examined but would have less over­
head and so require less CPU time A complete report
of results in provided in [Srinivasan and Howe, 1995]

6 1 E x p e r i m e n t D e s i g n

The six approaches were tested on 40 problems in ten
domains The same set of problems without any mod­
ification is used for all versions Most of the problems
are from the example domains provided with UCPOP
and tested in Joslin and Pollack s research wi th LCFR
Four of the problems are from the Truckworld domain
[Hanks et al 1993], all of which require picking up fuel
drums, the four differ in the number of subgoals and
arm positions In all the domains some of the operators
were modified to include a special variable parameter for
Bang-UCPOP Because most of the domains are small in
size, only one special variable operator was used Al l tn
als were run on the same SPARC IPX workstation in the
same version of Common Lisp

For all cases, the search l im i t was restricted to 10000
plans examined A failure was reported only when no
possible plan could be found within that limit

6 2 R e s u l t s

The results are reported in Tables 1 thru 4 Table 1
presents the number of problems wi th in each domain
that were solved by each approach The domains were
Blocks World (A) , Truck World (B), Robot Domain (C),
Monkey and Banana (D), Briefcase World (E), Russell's
The World (F), Fridge Domain (G), Strips World (H i
Office Domain (I) , and Others (J) Table 2 lists the av­
erage number of plans examined by each approach in
problems within each test domain, this corresponds to
how much of the space was explored during plan refine-
ment Table 3 lists the average number of plans created
for flaw selection (which included those created to esti­
mate cost) for each approach in each problem domain,
UCPOP and Bang are not included because they do not

1624 PLANNING

Table 3 Average Overhead number of plans created for
all problems

create any plans for flaw selection Finally as a crude
estimate of both factors incorporated in the previous two
measures and those not average C PU time is provided
in Table 4

Table 1 shows that LCFR solves the largest number
of problems However, the four new approaches solve all
but one or two of those solved by LCFR Al l approaches
solve considerably more problems than UCPOP

In terms of number of plans examined, we expected
the performance of the four new approaches to be com­
parable on average to LCFR and better than UCPOP
The data (in Table 2) shows that the average case per­
formance is comparable in about half the domains, with
the 'best" average (numbers in boldface) for each do­
main distributed among the approaches In all but a
few cases, LCFR and the four new cases offer either a
comparable number of plans examined or a reduction
over UCPOP

While plans examined was expected to be compara­
ble or worse than LCFR, we expected the overhead 1o
be significantly lower for the new approaches In fact,
the overhead (Table 3) and CPU time (Table 4) data
suggest that LCFR is quite costly in comparison to the
other approaches For problems with no solution, LCFR
expends the most effort before reporting a failure A l l
other approaches report failure as early as possible Only
in the Blocks World problems does LCFR out-perform
the other approaches

Table 4 Average CPU time in seconds, all problems
In terms of overhead, the performance of the proba­

bilistic reuse scheme is usually lower or comparable to
the approaches other than Bang This implies that if
proper criteria, mostly likely domain and problem de­
pendent, for reuse can be determined then the search
space can be reduced greatl)

Bang-UCPOP incurs no overhead, its CPU time is the
minimum in all but three domains However, it appears
to be problem dependent, rather than specifically do-
main dependent and so should be applied based on the
type of problem rather than applying it for every prob­
lem in the domain The primary cost of Bang-UCPOP
is the storage of certain nodes to allow back tracking
If the unsmtability of certain plans can be detected very
early, the search space explosion to support backtracking
can be controlled

Our template scheme assumes that the order in which
similar open conditions are selected for repair does not
matter We tested this assumption by running exper­
iments in which flaw selection from a template is ran­
domized The results showed no significant difference
between open conditions selected randomly versus sim­
ply taking the first flaw from the template

7 Conclusion
Not too surprisingly, no one approach seems to be best,
solving all possible problems as efficiently as possible
Each solution seems to have its pros and cons, favor
ing some domain or problem within a domain Though
LCFR is able to solve many problems wi th far fewer
plans examined than UCPOP, the cost of doing so, in
terms of overhead, can be quite high The four ap-
proaches described in this paper solved more problems
than UCPOP, almost as many problems as did LCFR,
and usually incurred far less overhead than LCFR Ad­
ditionally, the results of Bang-UCPOP suggest that flaw
selection alone is not adequate for efficient planning

However, these approaches and this comparison are
barely a first step We need to model why different ap-
proaches work better in different domains and problems
Such models wil l help determine which approaches to

SRINIVASAN AND HOWE 1628

apply in which situations and to design new methods
For example from the execution traces of UCPOP, we
observed that reordering sub-goals or operators in the
domain strongly affects the amount of search required
to solve problems in particular, some order igs lead
quickly to a solution while others appear to cricle A
flaw selection strategy partly eliminates this problem,
but at great expense If we can identify what plans or
orderings wil l lead to cycles, then we can modify plan
refinement to prune those plans early in the planning
process

The two l imited reuse approaches performed well on
problems wi th related sub-goals One simple improve-
ment to probabilistic reuse could be to make the prob-
ability a function of number of flaws in the plan with
reused steps For example, if the number of threats intro-
duced by applying reuse is more than that introduced by
solving the minimum cost flaw, the probabil i ty of reuse
should be reduced A better way is to use more knowl­
edge about the domain and problem to decide on step
reuse rather than a p p l y i g reuse wi th some probability
We should be able to identify long sequences (sub-plans)
and solve similar flaws together rather then considering
them separately For example, in Truckworld, when the
truck tries to pick up fuel drums to f i l l its fuel tank it
can pick up other objects it needs since the sequence of
steps are same

Considering the time reported to solve even a simple
problem the problem of scaling up to larger problems
is daunting Based on this small exploration of meth­
ods for improving plan generation efficiency we need
additional methods for constraining the search space in
partial order planning and language constructs to incor­
porate known constraints Most importantly, we need
to know how domain dependent problem characteristics
lead to inefficient exploration of the search space

Refe rences

[Anderson et a/ , 1993] S D Anderson, A Carlson,
D L Westbrook, D M Hart, and P R Cohen
CLASP/CLIP Common Lisp Analytical Statistics
Package/Common Lisp Instrumentation Package
Technical Report TR 93-55, Computer Science De­
partment, University of Massachusetts, 1993

[Hanks et al , 1993] S Hanks, D Nguyen, and C
Thomas A beginner's guide to the Truckworld simula­
tor Dept of CS&E UW-CSE-TR 93-06-09, University
of Washington, June 1993

[Howe and Cohen, 1994] A E Howe and P R C ohen
Detecting and explaining dependencies in execution
traces In P Cheeseman and RW Oldford, editors
Selecting Models from Data Artificial Intelligence and
Statistics /V, pages 71-78 Springer-Verlag, NY 1994

[Joslin and Pollack, J994) D Joslin and M Pollack
Least-cost flaw repair A plan refinement strategy for
partial-order planning In Proceedings of the Twelth
National Conference on Arttfictal Intelligence pages
1004-1009, Seattle, WA, August 1994

[kambhampati and Hendler, 1992] S Kambhampati
and J A Hendler A validation-structure-based theory
of plan modification and reuse Artificial Intelligence
Journal, 55(2-3) 1992

[Penberthv and Weld, 1992] J S Penberthj and D S
Weld UCPOP a sound, complete, partial order plan­
ner for adl In Proceedings of the Third International
Conference on Knowledge Representation and Reason
ing, pages 103-114, 1992

[Peot and Smith, 1993] M A Peot and D E Smith
Threat-removal strategies for partial-order planning
In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 492-499 1993

[Srinivasan and Howe, 1995] R Srinivasan and A E
Howe New methods for plan selection and refinement
in a partial-order planner Computer Science Depart­
ment 95-03, Colorado State University, 1995

[Tate et al , 1994] A Tate, B Drabble, and J Dalton
The use of condition types to restrict search in an an
planner In Proceedings of the Twelth National Con­
ference on Artificial Intelligence, pages 1129-1134
Seattle, WA, 1994

[Wilkins, 1988] D E Wilkine Practical Planning Ex
tending the Classical Al Planning Paradigm Morgan
Kaufmann Publishers, Inc , Palo Al to , CA, 1988

pLANNING

file:///nderson

