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The search space in partial-order planning 
grows quickly wi th the number of subgoals and 
ini t ia l conditions, as well as less countable fac­
tors such as operator ordering and subgoal in 
teractions For partial-order planners to solve 
more than simple problems, the expansion of 
the search space wil l need to be controlled 
This paper presents four new approaches to 
controlling search space expansion by exploit­
ing commonalities in emerging plans These 
approaches are described in terms of their al­
gorithms, their effect on the completeness and 
correctness of the underlying planner and their 
expected performance The four new and two 
existing approaches are compared on several 
metrics of search space and planning overhead 

1 I m p r o v i n g S e a r c h E f f i c i e n c y i n 
P l a n n e r s 

Partial order planning is becoming a common method of 
planning Unfortunately but hardly unexpectedly, the 
search space in partial order planning expands quickly 
as the problem size increases Unfortunately but less 
expectedly search space expansion is dependent on a 
\anety of factors some of which are difficult to predict 
A problem that was solved in short order may be made 
impossible to solve in reasonable time simply by adding 
an innocuous looking new goal, by changing the ordering 
of goals or even by adding a few more objects to the 
problem init ial state 

More graceful degradation of performance can be 
achieved by identifying aspects of the planner most sus-
ceptible to the problem changes and developing methods 
to ameliorate the search space expansion This paper 
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presents four new approaches for improving efficiency 
in a partial order planner by exploiting commonalities 
between proposed plane during two phases of planning 
flaw selection and plan refinement These approaches are 
described in terms of their algorithms, their effect on the 
completeness and correctness of the underlying planner 
and their expected performance when compared to two 
existing approaches Finally the new and existing ap-
proaches are compared on several metrics of search space 
and planning overhead 

The goal of this project was to determine why it could 
be so hard to design efficient problem descriptions [or 
UCPOP, a partial order planner We found that what 
seemed like tr iv ial problems could not be solved in rea­
sonable time Indeed minor variations on the same 
problem led to UCPOP's being unable to solve the new 
problem Using a variety of analysis methods we deter 
mined that the primary fault lay in UCPOP's selection 
of flaws to repair and additions to the plan to repair 
the flaws Three approaches have been used to enhance 
search in planning more sophisticated plan representa­
tions and reasoning (e g hierarchical planning and re 
source reasoning as in [Tate et at , 1994 Wilk ins, 1988]) 
domain specific control knowledge (through programmer 
intervention or machine learning) and improved search 
methods WE focused on the third approach because jt 
requires the least change to the underlying planner 

We used UCPOP because it is an easily available, do­
main independent partial order planner [Penberthy and 
Weld, 1992] UCPOP plans by iteratively selecting and 
repairing flaws in the current plan A flaw is repaired 
by adding steps and constraints to the plan The search 
control strategy decides which partial plan to select for 
expansion In general, U( POP gives good results on 
small domains and problems in which subgoals are in 
dependent For problems with interrelated subgoals or 
those requiring arithmetic, UCPOP often does not hnd 
a solution even with very large search l imits 

The Least Cost Flaw Repair (LCFR) strategy [Joslin 
and Pollack, 1994] improved search control in UCPOP 
by selecting the flaw with the min imum repair cost The 
repair cost of a flaw is defined as the number of plans 
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generated to repair it Open conditions and threats 
are treated alike The main drawback of LCFR is the 
overhead incurred for flaw selection The total time 
spent in planning with LCFR can be more than that 
for UCPOP, even though UCPOP examines far more 
plans than LCFR However, LCFR reduces the search 
space more than other flaw selection strategies [Peot and 
Smith 1993] 

A variant on LCFR, QLCFR [Joslin and Pollack, 
1994], assumes the cost of un-repaired flaws to be con­
stant over time it caches the results of estimating flaw 
repair costs and uses the cached cost as the estimate in 
subsequent flaw selection QLCFR reduced the overhead 
of LCFR, but at a cost of solving fewer problems 

2 S i m i l a r F l a w s a n d L C F R ( T e m p l a t e s ) 

LCFR is expensive because it estimates separately the 
cost of repair for every flaw in ever) potential extension 
to the current plan However, in most problems flaws 
can be similar they involve the same type of condition 
and are amenable to repair by the same fix For example, 
flaws in the Blocks World domain are commonlj of the 
form (on 'x 'y ' ) or ( c l e a r ?x) The resolution of 
any flaw of these forms is likely to be the same (e g , add 
an action to move the indicated block), hence, we can 
expect the cost of flaw repair to be roughly the same for 
flaws with similar forms 

C onsequently, we exploit the similarity in flaws to re­
duce the number of repair cost estimates to be made 
In particular we assume that at a particular stage of 
plan refinement, the repair cost is the same for all simi­
lar flaws Other than this approximation, repair cost is 
the same as that of LCFR scheme 

QLCFR also approximated the repair cost of flaws by 
estimating once and re-using the estimate The differ­
ence between our approach and QLCFR is that QLCFR 
cached the estimate and re-used it in subsequent plan 
refinements rather than applying it to similar flaws at 
the same point in plan refinement Our approach al­
lows recenLly acquired information to be incorporated in 
estimating cost 

The first step towards deciding how to change a de­
veloping plan is to identify and group together identical 
open conditions in the plan Two open conditions are 
said to be similar if they have the same predicate For 
example, (p rad 1 ?x) and (p red l ?y) are similar A 
set of similar open conditions with predicate p are said 
to form a template p A l l of the open conditions in a 
plan can be grouped into a set of templates 

We assume that when open conditions are similar the 
order in which they are selected for repair does not mat­
ter Thus, the repair cost of a template is estimated by 
finding the repair cost of the first member of the tem­
plate 

This approach approximates only the cost of open con­
ditions Threats are not easily grouped because they do 

not involve variable bindings Thus, similar threats often 
do not have similar resolutions and are often resolved as 
a side effect of repairing some other flaws Consequently, 
a uniform repair cost would not be a reasonable approx­
imation of the actual costs 

Open conditions are considered only if a plan does 
not have any threats If a plan has threats, the one wi th 
the minimum repair cost is selected, otherwise, the first 
member of the template wi th the minimum repair cost 
is selected 

2 1 E x p e c t e d P e r f o r m a n c e 

We expected that the average number of plans exam­
ined before finding a solution in this scheme should be 
comparable to that of LCFR, while the overhead should 
be much less than that of LCFR Overhead is defined 
as the number of extra plans created in service of esti­
mating flaw cost Since only a subset of the open condi 
tions are evaluated in the templating approach, on the 
average its overhead should be less than that of LC FR 
However in the worst rase, the templating approach can 
incur more overhead than LCFR when the estimate for 
one member of the template does not generalize to the 
rest potentially causing additional backtracking Em­
pirical performance is reported in Section 6 

2 2 C o r r e c t n e s s a n d C o m p l e t e n e s s 

Because only flaw selection is modified the correctness 
and completeness of UC POP is maintained by the tem­
plating approach 

3 T e m p l a t e s w i t h R e p a i r Reuse 

With Templates open conditions are grouped to esti­
mate repair cost We extend this idea to the next step 
selecting (or reusing) similar actions to add to repair sim­
ilar flaws Consequently, given that an action is added 
to the plan to repair a flaw of a particular type, an­
other instance of the same action can be added, at the 
same time, to repair another flaw of the same type This 
sense of reuse is much more l imited and local than what 
is typicallv meant by plan reuse (eg , [kambhampati 
and Hendler, 1992]), it is constrained to reusing the oc­
casional step within a plan being developed 

Consider a plan P with a set of flaws F F can be 
grouped into a set of templates T = {T1,T2} Tm] 
Each T, consists of a set of similar flaws Let Tmin (1 < 
mm < m) be the template with the minimum repair 
cost The first flaw in the T m i n set, / m i n . 1, is selected 
for repair, and a set of new plans P' are generated Let 
P's be a subset of P' such that each plan in P1 includes 
a new plan step for repairing fmin 1 For each plan in 
PI, a set of new plans are generated in which some of 
the flaws of type T m i n

 a r e repaired by adding another 
instance of an action added f o r r m i n | 

Two values are returned the plans in which all flaws 
of type Tm i m are repaired by adding the same type of 
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action, and the plans, in which some but not all flaws 
are repaired this way We require the second value to 
facilitate backtracking As with the basic templating 
scheme, not all flaws of a similar type require the same 
cost or action for repair (e g , some might be satisfied bv 
init ial conditions) Consequently, the first set of plans 
are added to the search queue and the second set is stored 
in the event of later backtracking 

3 1 Expec ted Per fo rmance 
Two opposing factors were expected to affect the perfor­
mance as measured by plans examined and overhead If 
reuse is successful most of the time, then both plans 
examined and overhead wil l be less, however, if new 
threats are introduced due to reuse, repairing them will 
cost more in terms of plans examined as well as over­
head The worst case wil l occur when an early attempt 
to reuse is inappropriate, leading to considerable back­
tracking As a consequence, we expected the success of 
this approach to be highly problem/domain dependent 

3 2 Correctness and Completeness 
Any newly added plan step may introduce threats for 
each of the flaws in template T m i n , a se' of new threats 
could be introduced However, all of these introduced 
threats w ill be detected Thus, the final solution wil l sti l l 
be correct In addition the backtracking facility insures 
that if a solution exists, it wi l l eventually be found Con-
sequently, completeness and correctness are maintained 

4 P r o b a b i l i s t i c Reuse 
Templating and Reuse can be viewed as approaches in 
which plan repair reuse is applied wi th probability 0 and 
1 respectively Because we suspect that plan repair reuse 
is not always the best strategy (and cannot currentJy rec­
ognize when it is and is not the best strategy), we can 
define an approach in which reuse is applied with some 
probability p 0 < p < I Intuitively, some p exists 
for which the performance wil l be better than that of 
Templating or Reuse This value can be determined em­
pirically Obviously, the value of p depends both on the 
problem and domain We hypothesize that p should be 
small non-zero value, and so determined it empirically 
For all tests, the same value of p, 0 2 was used 

5 A d d i n g a N e w C o n s t r u c t t o t h e P l a n 
L a n g u a g e ( B a n g - U C P O P ) 

The previous approaches all altered the control of plan 
expansion within the planner only One alternative is to 
make the plan language more expressive of constraints 
known by the user A simple constraint is that mult i ­
ple inclusions of the same operator within a single plan 
should be instantiated to different objects within the en-
vironment This hard constraint us a simple form of the 
resource reasoning included in more sophisticated plan­
ning systems 

We developed this approach to address problems dis-
covered when analyzing the behavior of UCPOP in 
Truck world [Hanks et a / , 1993] (a simulator of trucks 
moving cargo between different destinations) UCPOP 
fails (i e , could not find a plan even given a large search 
space) on apparently simple conjunctive subgoal prob­
lems in Truckworld A typical example is 'Bring 4 fuel 
drums from outside the truck and fill the fuel tank " 
Because the size of the search space increased dramat­
ically with the order and number of identical subgoals, 
we hypothesized that the number of identical fuel drums 
needed and available might lead the planner to starch 
unnecessarily for the right binding of fuel drums in the 
right order 

We studied the behavior of UCPOP in Truckworld bv 
collecting execution traces of UCPOP working on Truck-
world problems wi th similar conjunctive sub-goals Us 
ing CLIP [Anderson et a / , 1993] (an instrumentation 
tool for defining and running data collection routines in 
a simulated environment), we collected data on what 
plans were generated, how certain open conditions were 
repaired what threats were considered, and what van 
able bindings wen used 

We analyzed the data with a variety of methods 
from simple eyeballing through dependency detection 
[Howe and Cohen, 1994], and determined that in effect, 
UCPOP was searching in circles trying the same vari­
able bindings over and over again For example consider 
the problem of picking up two identical fuel drums from 
a world which has five such drums To repair the first 
open condition (i c , picking up the first drum), a set of 
five possible plans are generated For the second drum, a 
similar set of plans is generated, wi th one of them trying 
to reuse the first step to get the first drum This results 
in a threat Next, UCPOP tries binding a new value 
for the first flaw It continues to try pairs of identical 
bindings before it finds two unique binding values that 
can repair both the open conditions Most of the search 
time is wasted in trying the same values for variables 
that require different values Thus, the plan language 
needs a construct to indicate to UCPOP that it should 
use different variable bindings for certain variables, so 
that it can converge on the solution much faster 

5 1 S c h e m e D e s c r i p t i o n 

For this scheme, a new language construct which creates 
a "special variable is introduced Bindings of such a 
variable are treated differently, in particular, the plan 
ner wi l l ensure that if a binding value is needed for the 
special variable it w i l l differ from that used in all previous 
instances of this operator in the current plan Moreover 
if more than one of such bindings are possible, only one 
plan using exactly one value LS created, plans for other 
possible unique values are saved in the event of back­
tracking 

A special variable is denoted by the prefix '?''' (hence, 
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(de f i ne (opera to r p ick-druM) 
parameterS (?ant ? ,poS ? arm) 
p r e c o n d i t i o n (and (ou ts ide ?ann) 

(d rum- i t pos ?amt)) 
e f f e c t (and (not (drum-at ?pos ?ant ) ) 

( amoun t - i n -am 7arm 7 amt ) ) ) 

Figure 1 UCPOP operator for Truck World that illus­
trates the use of a Bang variable, 7 ' pos 

the name Sang- UCPOP for this approach) Bang vari­
ables art treated differently only during binding Cur-
rently, only one such variable per plan operator it al 
lowed, in order to minimize the complexity of resolving 
which variable binding resulted in a threat Another re 
striction is that two operators that clobber each other 
should not use the same type (as defined by the plan 
domain) of special variable 

Special variables have a curious but useful side effect 
on repairing threats For example, given two instances 
O,,, 1 and Os, 2 of the same operator O,, and let ps he the 
special variable parameter in its operator, then the new 
scheme ensures that unique values wil l be used for p, 
in Q 1 and O,, 2 Under the normal planning process, 
an unsafe link may be introduced due to O,, 2, but now 
there is no threat Hence, the planner marks this threat 
as bogus and removes it This saves time that otherwise 
would be wasted on resolving such threats 

Figure 1 shows an example of an operator which uses a 
bang variable The operator comes from the Truckworld 
domain and is one of the operators needed to refuel a 
truck The bang variable, ?pos, indicates the port ion 
at which the fuel drum is stored Multiple fuel drums 
are typically required to refuel a truck thus a plan may 
include multiple instances of this operator each referring 
to a different fuel drum in a different location Bang is 
ideal for this situation because we do not wish to at­
tempt to pick up the same fuel drum repeatedly during 
refueling we can only gainfully empty it once 

Unlike the other approaches this approach required 
considerable change to the algorithm for linking in new 
actions to plans To expedite backtracking the algo­
r i thm caches alternative unique variable bindings and 
search control maintains two search queues When a 
planning failure occurs, it moves a plan from the most 
recent backup list into the primary search queue and 
continues The modified algorithm is shown in Figure 2 

Plan language constructs for restricting 6earch space 
are available in some hierarchical planners For example, 
0-Plan2 [Tate ti al, 1994] uses condition types which 
allow the domain writer to restrict selection of actions 
as well as to bind variables The 'onlv_use_for_query' 
condition type of O-PIan2 resembles the Bang scheme 
but differs in the situations for which it is the best ap-
proach The Bang scheme is most effective when the 

PLAN-LINKJNG(open-cond, step, current) 
plan-list = NULL 
more-plans = NULL 
, let V be the variable in open-cond to be bound 
While binding-exists(V) 

if (special-vanable(V)) 
find a binding not used in other instances 

B = unique-binding(V) 
, tf a binding can be found generate plans 
i f (B '= NULL) 

current = make-plan(B,open-cond current) 
else current = NULL 
, add to plans for backtracking 
if (plan-list ' = NULL) 

more-plans = add (current, more-plans) 
current = NULL 

else , find a binding with normal methods 
B = binding(V) 
current = make-plan(B open-cond current) 

i f (current '= NULL) 
plan list = add(current,plan-list) 

return current plan and list for backtracking 
return plan-list, more-plans 

Figure 2 Algorithm for linking in new plan actions un­
der the. Bang-UCPOP approach 

number of binding values is large and no one is preferred 
Only_use_for_query cannot be applied in specific actions 
and does not look for previous bindings used 111 other 
instances of the current action An over indulging 0-
Plan2 condition type can result in the planner throwing 
away valid plans, whereas Bang stores all plans for later 
backtracking I he Bang scheme can be modified to se­
lectively recognize bang variables at the problem level 
In 0-Plan2, the condition type information is built into 
the domain specification 

5 2 E x p e c t e d P e r f o r m a n c e 

Best case performance in terms of number of plans ex­
amined, occurs when problems have identical conjunc­
tive subgoals and when the first variable bindings do not 
need to be retracted later The worst case performance 
occurs when the unique values selected early do not sat­
isfy all the subgoals, thus requiring backtracking This 
approach 's expected to do much better than other ap 
proaches for domains with many possible bindings lo the 
same variables, as in the motivating Truckworld exam­
ple In other cases, this approach may incur additional 
backtracking and thus additional computation because 
the new constraint does not help 

The major drawback of this approach is that it re­
quires user intervention The user must know when to 
use bang variables in a domain description (e g , when it 
is expected that problems wil l contain multiple conjunc-
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tive sub-goals involving the same types of objects) 

5 3 C o r r e c t n e s s a n d C o m p l e t e n e s s o f 
A p p r o a c h 

To make sure that we have not violated the correctness 
and completeness of the underlying planner, we need to 
prove that when special variable operators are used, ev­
ery answer is a correct solution to the planning problem 
and that if a solution exists it wi l l eventually be found 

The proof consists of three parts 

1 Even though the algorithm is l imited to only one 
binding value for a special variable, backtracking is 
sti l l permitted and thus completeness is preserved 

2 When special variables are bound to values from 
goal terms, then correctness is preserved 

3 When special variables are bound to particular 
unique values, marking threats as bogus when they 
are due to different instances of the same special 
variable operator does not affect correctness 

The correctness and completeness of UCPOP has al­
ready been proven [Penberthy and Weld, 1992], so we 
wil l show that all these cases are reducible to UCPOP 
If UCPOP cannot find a solution (e g if enough unique 
values do not exist), then neither can our modification 
A complete proof is beyond the scope of this paper (see 
[Srinivasan and Howe, 1995] for details), but we can pro-
vide a sketch of each part 

P a r t 1 B a c k t r a c k i n g If a special variable is included 
in a new plan refinement, then the inclusion wil l cause a 
single new plan to be added to the search queue with all 
other possible plans being put onto a 'reserve" queue 
Should later plan refinements led to a failure, then the 
next possible plan from the reserve queue can be moved 
into the search queue and plan refinement continued 
from there Thus, no potential plans have been pruned 
irretrievably backtracking and thus completeness is pre-
served 

P a r t 2 G o a l Te rms When special variables are 
bound to values from goal terms then no searching needs 
to be done for variable bindings Thus, the operator in­
corporating the special variable is treated just like other 
operators, and correctness, as in the original scheme, is 
preserved 

P a r t 3 Bogus T h r e a t s In UCPOP threats are de­
tected when two conditions in the current plan have the 
same predicate (e g , the "clear" condition from Blocks 
world) In Bang-UCPOP, if the threat involves a special 
variable that was not bound as part of the goal term 
(whose correctness was proven in part 2), we know that 
no such threat actually exists because the two conditions 
have been instantiated to different variables Therefore, 
such a threat can be marked as "bogus" This does not 

affect backtracking because if the variables are not spe-
cial then the normal rules of binding in UCPOP hold 

6 C o m p a r i s o n o f A p p r o a c h e s 

In this paper, we have defined four extensions to two cur­
rent approaches (vanilla UCPOP and LCFR in UCPOP) 
for controlling plan search in a partial order plan­
ner We expected the new approaches to perform sig­
nificantly better than LCFR or UCPOP in some do-
mains/problems The goal of the comparison was to de-
termine which of the six approaches works best in some 
common planning problems 

Three performance metrics were collected number of 
plans examined before reaching a solution, overhead in­
curred in terms of the number of plans created for flaw 
selection, and CPU time On average, we expected that 
the four new approaches, templating, reuse, probabilis­
tic reuse and Bang-UCPOP would compare favorably 
to LCFR on plans examined but would have less over­
head and so require less CPU time A complete report 
of results in provided in [Srinivasan and Howe, 1995] 

6 1 E x p e r i m e n t D e s i g n 

The six approaches were tested on 40 problems in ten 
domains The same set of problems without any mod­
ification is used for all versions Most of the problems 
are from the example domains provided with UCPOP 
and tested in Joslin and Pollack s research wi th LCFR 
Four of the problems are from the Truckworld domain 
[Hanks et al 1993], all of which require picking up fuel 
drums, the four differ in the number of subgoals and 
arm positions In all the domains some of the operators 
were modified to include a special variable parameter for 
Bang-UCPOP Because most of the domains are small in 
size, only one special variable operator was used Al l tn 
als were run on the same SPARC IPX workstation in the 
same version of Common Lisp 

For all cases, the search l im i t was restricted to 10000 
plans examined A failure was reported only when no 
possible plan could be found within that limit 

6 2 R e s u l t s 

The results are reported in Tables 1 thru 4 Table 1 
presents the number of problems wi th in each domain 
that were solved by each approach The domains were 
Blocks World (A) , Truck World (B), Robot Domain (C), 
Monkey and Banana (D), Briefcase World (E), Russell's 
The World (F), Fridge Domain (G), Strips World (H i 
Office Domain ( I ) , and Others (J) Table 2 lists the av­
erage number of plans examined by each approach in 
problems within each test domain, this corresponds to 
how much of the space was explored during plan refine-
ment Table 3 lists the average number of plans created 
for flaw selection (which included those created to esti­
mate cost) for each approach in each problem domain, 
UCPOP and Bang are not included because they do not 
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Table 3 Average Overhead number of plans created for 
all problems 

create any plans for flaw selection Finally as a crude 
estimate of both factors incorporated in the previous two 
measures and those not average C PU time is provided 
in Table 4 

Table 1 shows that LCFR solves the largest number 
of problems However, the four new approaches solve all 
but one or two of those solved by LCFR Al l approaches 
solve considerably more problems than UCPOP 

In terms of number of plans examined, we expected 
the performance of the four new approaches to be com­
parable on average to LCFR and better than UCPOP 
The data (in Table 2) shows that the average case per­
formance is comparable in about half the domains, with 
the 'best" average (numbers in boldface) for each do­
main distributed among the approaches In all but a 
few cases, LCFR and the four new cases offer either a 
comparable number of plans examined or a reduction 
over UCPOP 

While plans examined was expected to be compara­
ble or worse than LCFR, we expected the overhead 1o 
be significantly lower for the new approaches In fact, 
the overhead (Table 3) and CPU time (Table 4) data 
suggest that LCFR is quite costly in comparison to the 
other approaches For problems with no solution, LCFR 
expends the most effort before reporting a failure A l l 
other approaches report failure as early as possible Only 
in the Blocks World problems does LCFR out-perform 
the other approaches 

Table 4 Average CPU time in seconds, all problems 
In terms of overhead, the performance of the proba­

bilistic reuse scheme is usually lower or comparable to 
the approaches other than Bang This implies that if 
proper criteria, mostly likely domain and problem de­
pendent, for reuse can be determined then the search 
space can be reduced greatl) 

Bang-UCPOP incurs no overhead, its CPU time is the 
minimum in all but three domains However, it appears 
to be problem dependent, rather than specifically do-
main dependent and so should be applied based on the 
type of problem rather than applying it for every prob­
lem in the domain The primary cost of Bang-UCPOP 
is the storage of certain nodes to allow back tracking 
If the unsmtability of certain plans can be detected very 
early, the search space explosion to support backtracking 
can be controlled 

Our template scheme assumes that the order in which 
similar open conditions are selected for repair does not 
matter We tested this assumption by running exper­
iments in which flaw selection from a template is ran­
domized The results showed no significant difference 
between open conditions selected randomly versus sim­
ply taking the first flaw from the template 

7 Conclusion 
Not too surprisingly, no one approach seems to be best, 
solving all possible problems as efficiently as possible 
Each solution seems to have its pros and cons, favor 
ing some domain or problem within a domain Though 
LCFR is able to solve many problems wi th far fewer 
plans examined than UCPOP, the cost of doing so, in 
terms of overhead, can be quite high The four ap-
proaches described in this paper solved more problems 
than UCPOP, almost as many problems as did LCFR, 
and usually incurred far less overhead than LCFR Ad­
ditionally, the results of Bang-UCPOP suggest that flaw 
selection alone is not adequate for efficient planning 

However, these approaches and this comparison are 
barely a first step We need to model why different ap-
proaches work better in different domains and problems 
Such models wil l help determine which approaches to 
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apply in which situations and to design new methods 
For example from the execution traces of UCPOP, we 
observed that reordering sub-goals or operators in the 
domain strongly affects the amount of search required 
to solve problems in particular, some order igs lead 
quickly to a solution while others appear to cricle A 
flaw selection strategy partly eliminates this problem, 
but at great expense If we can identify what plans or 
orderings wil l lead to cycles, then we can modify plan 
refinement to prune those plans early in the planning 
process 

The two l imited reuse approaches performed well on 
problems wi th related sub-goals One simple improve-
ment to probabilistic reuse could be to make the prob-
ability a function of number of flaws in the plan with 
reused steps For example, if the number of threats intro-
duced by applying reuse is more than that introduced by 
solving the minimum cost flaw, the probabil i ty of reuse 
should be reduced A better way is to use more knowl­
edge about the domain and problem to decide on step 
reuse rather than a p p l y i g reuse wi th some probability 
We should be able to identify long sequences (sub-plans) 
and solve similar flaws together rather then considering 
them separately For example, in Truckworld, when the 
truck tries to pick up fuel drums to f i l l its fuel tank it 
can pick up other objects it needs since the sequence of 
steps are same 

Considering the time reported to solve even a simple 
problem the problem of scaling up to larger problems 
is daunting Based on this small exploration of meth­
ods for improving plan generation efficiency we need 
additional methods for constraining the search space in 
partial order planning and language constructs to incor­
porate known constraints Most importantly, we need 
to know how domain dependent problem characteristics 
lead to inefficient exploration of the search space 
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