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Abstract 
Finding the lowest-cost path through a graph is 
central to many problems including route planning 
for a mobile robot If arc costs change during the 
traverse then the remainder of the path may need to 
be replanned This is the case for a sensor-equipped 
mobile robot with imperfect information about its 
environment As the robot acquires addit ional 
information via its sensors it can revise its plan to 
reduce the total cost of the traverse If the prior 
information is grossly incomplete the robot may 
discover useful information in every piece of sensor 
data. During replanning, the robot must either wait 
for the new path to be computed or move in Lhe 
wrong direction therefore rapid replanning is 
essential The D* algorithm (Dynamic A* ) plans 
optimal traverses ID real-time by incrementally 
repa i r ing paths to the robot s state as new 
information is discovered This paper describes an 
extension to D* that focusses the repairs to 
significantly reduce the total time required for the 
initial path calculation and subsequent replanning 
opera t ions Th is ex tens ion completes the 
deve lopment of the D* a lgo r i thm as a f u l l 
generalizaUon of A* for dynamic environments 
where arc costs can change during the traverse of 
the solution path 1 

1 Introduction 
The problem of path planning can be stated as finding a 
sequence of state transitions through a graph from some ini­
tial slate 10 a goal state, or determining that no such sequence 
exists The path is optimal if the sum of the transition costs 
also cal led arc costs, is m in ima l across al l possible 
sequences through the graph If during the ' traverse of the 
path, one or more arc costs in the graph is discovered to be 

1 This research was sponsored by ARPA under contracts Per 
cepuon for Outdoor Navigation' (contract number DACA76-89 C 
0014 monitored by the US Army TEC) and Unmanned Ground 
Vehicle System (contract number DAAE07 90-C R059 moni 
tored by TACOM) 

incorrect the remaining portion of the path may need to be 
replanned to preserve optimality A traverse is optimal if 
every transiuon in the traverse is part of an optimal path to 
the goal assuming, at the time of each transition all known 
information about the arc costs is correct 

An important application for this problem, and the one 
that wil l serve as the central example throughout the paper, is 
the task of path planning for a mobile robot equipped with a 
sensor operating in a changing unknown or partially-known 
environment. The slates in the graph are robot locations and 
the arc values are the costs of moving between locations, 
based on some metr ic such as distance t ime, energy 
expended, nsk, etc The robot begins with an initial estimate 
of arc costs comprising its 'map , but since the environment 
is only partially-known or changing some of the arc costs 
are likely to be incorrect As the robot acquires sensor data, 
it can update its map and replan the optimal path from its 
current state to the goal It is important that this replanning 
be fast, since during this time the robot must either stop or 
continue to move along a suboptimal path 

A number of algorithms exist for producing optimal 
traverses given changing arc costs One algonthm plans an 
initial path with A* [Nilsson 1980] or the distance transform 
[Jarvis, 1985J using the prior map information moves the 
robot along the path until either it reaches the goal or its 
sensor discovers a discrepancy between the map and the 
environment, updates the map, and (hen replans a new path 
from the robot s current stale to the goal [Zelinsky 1992] 
Although this brute-force replanner is optimal it can be 
grossly inefficient, particularly in expansive environments 
where the goal is far away and little map information exists 

Boult [1987] maintains an optimal cost map from the 
goal to a l l states in the env i ronment assuming the 
environment is bounded (finite) When discrepancies are 
discovered between the map and the environment, only lhe 
affected port ion of the cost map is updated The map 
representation is l imited to polygonal obstacles and free 
space Trovato [1990] and Ramalingam and Reps [1992] 
extend this approach to handle graphs with arc costs ranging 
over a continuum The limitation of these algorithms is that 
the entire affected port ion of the map must be repaired 
before the robot can resume moving and subsequently make 
additional corrections Thus, the algorithms are inefficient 
when the robot is near the goal and the affected portions of 
the map have long "shadows' Stentz [1994] overcomes 
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these limitations with D+, an Incremental algorithm which 
maintains a part ia l , opt imal cost map l imited to those 
locations likely to be of use to the robot Likewise repair of 
the cost map is generally partial and re-entrant, thus reducing 
computational costs and enabling real-time performance 

Other algorithms exist for addressing the problem of 
path planning in unknown or dynamic environments [Korf 
1987, Lumelsky and Stepanov, 1986, Pirzadeh and Snyder 
1990] but these algorithms emphasize fast operation and/or 
low memory usage at the expense of opomahry 

Thus paper describes an extension to D* which focusses 
the cost updates to minimize slate expansions and further 
reduce computational costs The algorithm uses a heuristic 
function similar to A* to both propagate cost increases and 
focus cost reduct ions A biasing funct ion is used to 
compensate for robot motion between replanning operations 
The net effect is a reduction in run-time by a factor of two to 
three The paper begins wi th the intu i t ion behind the 
algorithm, describes the extension presents an example 
evaluates empirical comparisons, and draws conclusions 

2 Intuition for Algorithm 
Consider how A* solves the following robot path planning 
problem Figure 1 shows an eight-connected graph repre-
senung a Cartesian space of robot locations The states in the 
graph, depicted by arrows are robot locations and the arcs 
encode the cost of moving between states The white regions 
are locations known to be in free space The arc cost for 
moving between free states is a small value denoted by 
EMPTY The grey regions are known obstacle locations, and 
arcs connected to these stales are assigned a prohibitively 
high value of OBSTACLE The small black square is a 
closed gate believed to be open (i e , EMPTY value) With 
out a loss of generality the robot is assumed to be point-size 
and occupies only one location at a tune A* can be used to 
compute optimal path costs from the goal G, to all states in 
the space given the init ial set of arc costs, as shown in the 
figure The arrows indicate the optimal state transitions 
therefore, the optimal path for any slate can be recovered by 
following the arrows to the goal Because the closed gate is 
assumed to be open. A* plans a path through it. 

The robot starts at some init ial location and begins 
following the optimal path to the goal At location R the 
robot's sensor discovers the gate between the two large 
obstacles is closed This corresponds to an incorrect arc 
value m the graph rather than EMPTY it has a much higher 
value of GATE, representing the cost of first opening the 
gale and men moving through it A l l paths through this arc 
are (possibly) no longer optimal as indicated by the labelled 
region A* could be used to recompute the cost map, but this 
is inefficient if the environment is large and/or the goal is far 
away 

Several characteristics of the problem motivate a better 
approach First, changes to the arc costs are likely to be in 
the vicinity of the robot, since it typically carries a sensor 
with a limited range This means that most plans need only 
be patched " local ly" Second the robot generally makes 
near-monotonic progress toward the goal Most obstructions 
are small and simple padi deflections suffice, thus avoiding 
the high computational cost of backtracking Third, only the 

remaming portion of the path must be replanned at a given 
location in the traverse which lends to get progressively 
shorter due to the second characteristic 

Figure 1 Invalidated States in the Graph 

As described in Stenlz [1994] D* leverages on these 
characteristics to reduce run-time by a factor of 200 or more 
for large environments The paper proves that the algorithm 
produces correct results regardless—only the performance 
improvement is affected by the validity of the problem 
charactenstics 

Like A * , D* maintains an OPEN l ist of stales for 
expansion however these states consist of two types 
RAISE and LOWER RAISE states transmit path cost 
increases due to an increased arc value and LOWER stales 
reduce costs and re-direct arrows to compute new optimal 
paths The RAISE states propagate me arc cost increase 
through the invalidated slates by starting at the gate and 
sweepmg outward addmg the value of GATE to all states in 
the region The RAISE states acuvate neighboring LOWER 
slates which sweep in behind to reduce costs and re direct 
pointers LOWER states compute new optimal paths to the 
slates that were previously raised 

States are placed on the OPEN list by their key value 
k(X) which for LOWER stales is the current path cost h(X) 
i e cosl from the state X to the goal) and for RAISE states 
the previous, unraised h(X) value Stales on the list are 
processed in order of increasing key value The intuition is 
thatl the previous optimal path costs of the RAISE slates 
define a lower bound on the path costs of LOWER states they 
can discover Thus if the path costs of the LOWER states 
currently on the OPEN list exceed the previous path costs of 
the RAISE states then it is worthwhile processing RAISE 
states to discover (possibly) a better LO WER slate 

The process can terminate when the lowest value on the 
OPEN list equals or exceeds the robot's path cosl, since 
additional expansions cannot possibly find a better path to 
the goal (see Figure 2) Once a new opt imal path is 
computed or the old one is determined to be valid, the robot 
can continue to move toward the goal Note m the figure that 
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only part of the cost map has been repaired This is the 
efficiency of the D* algorithm 

The D* algondim described in Stentz [1994] propagates 
cost changes through the inval idated states wi thout 
considering which expansions wi l l benefit the robot at its 
current location Like A* D* can use heuristics to focus the 
search in the direction of the robot and reduce the total 
number of state expansions Let the focussing heuristic 
g{X R be the estimated path cost from the robot' location R 
to X Define a new function, thee stimated robot path cost to 
be f(X, R) = h(X) + g(X R) and sort all LOWER stales on the 
OPEN list by increasing ft") value The function J{X R) is 
the estimated path cost from the state R through X to C 
Provided that g(°) satisfies the monotone restriction, then 
since h{X) is optimal when LO WER stale X is removed from 
the OPEN l ist an optimal path w i l l be computed to R 
[Nilsson, 1980] The notation g{°) is used 10 refer to a 
function independent of its domain 

In the case of RAISE stales the previous h(°) value 
defines a lower bound on the h(°) values of LOWER states 
they can discover therefore if the same focussing heuristic 
g{°) is used for both types of states the previous ft") values 
of the RAISE stales define lower bounds on the /[") values of 
the LOWER states they can discover Thus if the/I") values 
of the LOWER states on the OPEN list exceed the previous 
/H values of the RAISE states then it is wor thwhi le 
processing RAISE slates to discover better LOWER states 
Based on this reasoning, the RAISE slates should be sorted 
on the OPEN l ist by f[X R) = k(X) + g(X,R) But since 
k(X) = h(X) for LOWER states the RAISE state definmon 
for ft0) suffices for both kinds of slates To avoid cycles in 
the backpointers it should be noted that ties in ft°) are sorted 
by increasing t(°) on the OPEN list [Stentz 1993] 

The process can terminate when the lowest value on the 
OPEN list equals or exceeds the robot's path cost, since the 
subsequent expansions cannot possibly find a LOWER state 
that 1) has a low enough path cost, and 2) is 'close enough 
to the robot to be able to reduce the robot's path cost when it 

reaches it through subsequent expansions Note that this is a 
more efficient cut-off than the previous one which considers 
only the first en tenon 

Figure 3 shows the same example, except that a 
focussed search is used Al l states in the RAISE state wave 
front have roughly the same /H value The wave front is 
more "narrow" m the focussed case since the inclusion of the 
cost to return to the robot penalizes the wide flanks 
Furthermore, the I OWER states activated by the RAISE 
state wave front have swept in from the outer sides of the 
obstacles to compute a new optimal path to the robot Note 
that the two wave fronts are narrow and focussed on the 
robot s location Compare Figure 3 to Figure 2 Note that 
both the RAISE and LOWER stale wave fronts have covered 
less ground for the focussed search than the unfocussed 
search m order to compute a new, optimal path to R Therein 
is the efficiency of the Focussed D* algorithm 

The problem with focussing the search is that once a 
new optimal path is computed to the robot s location the 
robot then moves to a new location If its sensor discovers 
another arc cost discrepancy the search should be focussed 
on the robot's new location But states already on the OPEN 
list are focussed on the old locauon and have incorrect g(°) 
and /T) values One solution is to recompute g{°) and f[°) 
for all stales on the OPEN list every time the robot moves 
and new states are to be added Basui on empirical evidence 
the cost of re-sorting the OPEN list more than offsets the 
savings gamed by a focussed search 
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If X is a RAISE state its path cost may not be optimal 
Before X propagates cost changes to its neighbors, its 
optimal neighbors are examined at lines L4 through L8 to 
see if h(X) can be reduced At lines L16 through L19 cost 
changes are propagated to NEW slates and immediate 
descendants in the same way as for LOWER states If X is 
able to lower the path cost of a state that is not an immediate 
descendant (lines L21 through 1-23), X is placed back on the 
OPEN list for future expansion This action is required to 
avoid creating a closed loop in the backpointers [Stentz, 
1993] If the path cost of X is able to be reduced by a 
suboptimal neighbor (lmes L25 through L28), the neighbor 
is placed back OD the OPEN l is t Thus, the update is 
"postponed" una! the neighbor has an optimal path cosL 

In function MODIFY- COST, the are cost function is 
updated with the changed value Since the path cost for state 
Y w i l l change, X is placed on the OPEN l ist When X is 
expanded v ia PROCESS-STATE it computes a new 
h(Y) = h(X) + c(X Y) and places Y on the OPEN l i s t 
Addi t ional state expansions propagate the cost to the 
descendants of Y 
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neighbor Y that has a backpointer to X, regardless of 
whether the new cost is greater than or less than the old 
Since these states are descendants of X, any change to the 
path cost of X affecis their path costs as we l l The 
backpointer of Y is redirected, if needed A l l neighbors that 
receive a new path cost are placed on the OPEN list, so that 
they wi l l propagate the cost changes to their neighbors 



Function MODIFY-COST (X, Y, cval 

LI c(XY) = cval 

L2 if t(X) = CLOSED then INSERT(X h(X)) 
L3 return MIN-VAL( ) 

The function MOVE-ROBOT illustrates how to use 
PROCESS-STATE and MODIFY-COST to move the 
robot from state 5 through die environment to G along an 
o p t i m a l t rave rse A t l i nes L I t h rough L 4 o f 
MOVE-ROBOT r(°) is set to NEW for a l l stales the 
accrued bias and focal point are initialized, h(G) is set to 
zero, and G is placed on the OPEN IISL PROCESS-STATF 
is called repeatedly at lines L6 and L7 until either an initial 
path is computed to the robot's stale (1 e H.S) = CLOSED) 
or it is determined that no path exists (1 e vat = NO - VAL 
and t(S) = NEW) The robot then proceeds to follow the 
backpointers until it either reaches the goal or discovers a 
discrepancy (line L l l ) between the sensor measurement of 
an arc cost J(°) and the stored arc cost c(°) (e g due to a 
detected obstacle) Note that these discrepancies may occur 
anywhere not just on the path to the goal If the robot moved 
since the last tune discrepancies were discovered, then its 
stale R is saved as the new focal point, and the accrued bias 
dcurr, is updated (lines L12and L13) MODIFY-COST is 
called to correct c(°) and place affected slates on the OPEN 
hstatlme L15 PROCESS-STATE is then called repeatedly 
at line L17 lo propagate costs and compute a new path to the 
goal The robot continues to follow the backpointers toward 
the goal The function returns GOAL-REACHED if the 
goal is lound and NO -PATH if it is unreachable 

L19 return GOAL - REACHED 
It should be noted that line L8 in MOVE-ROBOT only 

detects the condition thai no path exists from the robot s 
state to the goal if for example the graph is disconnected It 
does not detect the condition that all paths to the goal are 
obstructed by obstacles In order to provide for this 
capability, obstructed arcs can be assigned a large positive 
value of OBSTA CLE and unobstructed arcs can be assigned 
a small positive value of EMPTY OBSTACLE should be 
chosen such thai it exceeds the longest possible path of 

5 Example 
Figure 4 shows a cluttered 100 x 100 state environment The 
robot starts al state S and moves to state G A l l of the obsta­
cles shown in blade, are unknown before the robot starts its 
traverse, and the map contains only EMPTY arcs The robot 
is point-size and is equipped with a 10-state radial Geld-of-
view sensor The figure shows the robot s traverse from S to 
G usmg the Basic D* algoruhm The traverse is shown as a 
black curve with white arrows As the robot moves its sen­
sor detects me unknown obstacles Detected obstacles are 
shown in grey with black arrows Obstacles that remain 
unknown after the traverse are shown in solid blade or black 
with white arrows The arrows show the final cost Geld for 
all states examined during me traverse Note that most of the 
states are examined at least once by the algorithm 

Figure 5 shows the robot s traverse using the Focussed 
D* algoruhm The number of NEW states examined is fewer 
man Basic D* since the Focussed D* algorithm focuses the 
initial path calculation and subsequent cost updates on the 
robot s location Note that even for those stales examined by 
the algorithm fewer of them end up with optimal paths to 
the goal Finally, note thatl the two trajectories are not fully 
equivalent This occurs because the lowest-cost traverse is 
not unique and the two algorithms break ties in the path 
costs arbitrarily 
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6 Experimental Results 
Four algorithms were tested to verify optumality and to com 
pare run-time results The first algonthm the Brute Force 
Replanner (BFR) initially plans a single path from the goal 
to the start state The robot proceeds to follow the path until 
its sensor detects an error IN The map The robot updates the 
map, plans anew path from the goal to its current location 
using a focussed A* search and repeats unti l the goal is 
reached The focussing heuristic g(X Y), was chosen to be 
the minimum possible number of state transitions between Y 
and X, assuming the lowest arc cost value for each 

The second and third algondims Basic D* (BD*) and 
Focussed D* wi th M in ima l Ini t ia l izat ion (FD*M) , are 
descnbed in Stentz [1994] and Section 4 respectively The 
fourth algonthm Focussed D* with Ful l Ini t ia l izat ion 
(FD*F), is the same as F D * M except thai the path costs are 
propagated to all states in the planning space, which is 
assumed to be finite, during the init ial path calculation, 
rather than terminating when the path reaches the robot's 
start state 

The four algori thms were compared on planning 
problems of varying size Each environment was square 
consisung of a start state in the center of the left wall and a 
goal state in center of the right wal l Each environment 
consisted of a mix of map obstacles known to the robot 
before the traverse and unknown obstacles measurable by 
the robot s sensor The sensor used was omnidirectional with 
a 10-staie rad ia l field of v iew F igure 6 shows an 
environment model with approximately 100 000 states The 
known obstacles are shown in grey and the unknown 
obstacles in black 

The results for environmenis of 10 , l05, and 106 stales 
are shown in Table 1 The reported times are CPU time for a 
Sun Mic rosys tems SPARC-10 processor For each 
environment size the four algonthms were compared on five 
randomly-gen era ted environments and the results were 
averaged The off-line ume is the CPU time required to 

compute the initial path from the goal to the robot, or in the 
case of FD*FP from the goal lo all states in the environment 
This operation is 'off-line' since it could be performed in 
advance of robot motion if the init ial map were available 
The on-line time is the total CPU time for all replanning 
operations needed to move the robot from the start to the 
goal 

The results for each algonthm are highly dependent on 
the complexity of the environment, including the number 
size, and placement of me obstacles, and the ratio of known 
lo unknown obstacles For the test cases examined all 
variations of D* outperformed BFR in on-line time, reaching 
a speedup fac to r of a p p r o x i m a t e l y 300 f o r large 
environments Generally the performance gap mcreased as 
the size of the environment mcreased If the user wants lo 
minimize on-line time at the expense of off-line ume, then 
FD*F is the best algonithm In this algonthm, path costs to 
al l states are computed i n i t i a l l y and on ly the cost 
propagations are focussed Note that FD*F resulted in lower 
on-line lanes and higher off-line times than B D * The F D * M 
algondim resulted in lower off-line times and higher on-line 
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times than B D * Focussing the search enables a rapid start 
due to fewer state expansions, but many of the unexplored 
states must be examined anyway during the replanning 
process resulting in a longer execution time Thus. FD*M is 
the best algonthm if the user wants to minimize the total 
time that is, if the off-line time is considered to be on-line 
time as well 

Thus, the Focussed D* algonthm can be configured to 
outperform Basic D* in either total time or the on-line 
portion of the operation, depending on the requirements of 
the task As a general strategy focussing the search is a good 
idea, the only issue is how me computational load should be 
distributed 

7 Conclusions 
This paper presents the Focussed D* algandnn for real-time 
path replanning The algondun computes an initial path from 
the goal state to the start state and then efficiently modifies 
this path during me traverse as arc costs change The algo-
ndun produces an optimal traverse meaning that an optimal 
path to the goal is followed at every slate in the traverse 
assuming all known lnformauon at each step is correct The 
focussed version of D* outperforms the basic version and it 
offers the user the option of distributing the computational 
load amongst the on- and off line portions of the operation 
depending on the task requirement The addition of a heu 
nstic focussing function to D* completes ITS development as 
a generalization of A* to dynamic environments--A* is the 
special case of D* where arc costs do not change dunng the 
traverse of the solution path 
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