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Abstract

Finding the lowest-cost path through a graph is
central to many problems including route planning
for a mobile robot If arc costs change during the
traverse then the remainder of the path may need to
be replanned This is the case for a sensor-equipped
mobile robot with imperfect information about its
environment As the robot acquires additional
information via its sensors it can revise its plan to
reduce the total cost of the traverse If the prior
information is grossly incomplete the robot may
discover useful information in every piece of sensor
data. During replanning, the robot must either wait
for the new path to be computed or move in Lhe
wrong direction therefore rapid replanning is
essential The D* algorithm (Dynamic A*) plans
optimal traverses ID real-time by incrementally
repairing paths to the robot s state as new
information is discovered This paper describes an
extension to D* that focusses the repairs to
significantly reduce the total time required for the
initial path calculation and subsequent replanning
operations This extension completes the
development of the D* algorithm as a full
generalizalUon of A* for dynamic environments
where arc costs can change during the traverse of
the solution path *

1 Introduction

The problem of path planning can be stated as finding a
sequence of state transitions through a graph from some ini-
tial slate 10 a goal state, or determining that no such sequence
exists The path is optimal if the sum of the transition costs
also called arc costs, is minimal across all possible
sequences through the graph If during the ' traverse of the
path, one or more arc costs in the graph is discovered to be

1 This research was sponsored by ARPA under contracts Per
cepuon for Outdoor Navigation' (contract number DACA76-89 C
0014 monitored by the US Army TEC) and Unmanned Ground
Vehicle System (contract number DAAEO7 90-C R059 moni
tored by TACOM)
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incorrect the remaining portion of the path may need to be
replanned to preserve optimality A traverse is optimal if
every transiuon in the traverse is part of an optimal path to
the goal assuming, at the time of each transition all known
information about the arc costs is correct

An important application for this problem, and the one
that will serve as the central example throughout the paper, is
the task of path planning for a mobile robot equipped with a
sensor operating in a changing unknown or partially-known
environment. The slates in the graph are robot locations and
the arc values are the costs of moving between locations,
based on some metric such as distance time, energy
expended, nsk, etc The robot begins with an initial estimate
of arc costs comprising its 'map , but since the environment
is only partially-known or changing some of the arc costs
are likely to be incorrect As the robot acquires sensor data,
it can update its map and replan the optimal path from its
current state to the goal It is important that this replanning
be fast, since during this time the robot must either stop or
continue to move along a suboptimal path

A number of algorithms exist for producing optimal
traverses given changing arc costs One algonthm plans an
initial path with A* [Nilsson 1980] or the distance transform
[Jarvis, 1985J using the prior map information moves the
robot along the path until either it reaches the goal or its
sensor discovers a discrepancy between the map and the
environment, updates the map, and (hen replans a new path
from the robot s current stale to the goal [Zelinsky 1992]
Although this brute-force replanner is optimal it can be
grossly inefficient, particularly in expansive environments
where the goal is far away and little map information exists

Boult [1987] maintains an optimal cost map from the
goal to all states in the environment assuming the
environment is bounded (finite) When discrepancies are
discovered between the map and the environment, only lhe
affected portion of the cost map is updated The map
representation is limited to polygonal obstacles and free
space Trovato [1990] and Ramalingam and Reps [1992]
extend this approach to handle graphs with arc costs ranging
over a continuum The limitation of these algorithms is that
the entire affected portion of the map must be repaired
before the robot can resume moving and subsequently make
additional corrections Thus, the algorithms are inefficient
when the robot is near the goal and the affected portions of
the map have long "shadows' Stentz [1994] overcomes



these limitations with D+, an Incremental algorithm which
maintains a partial, optimal cost map limited to those
locations likely to be of use to the robot Likewise repair of
the cost map is generally partial and re-entrant, thus reducing
computational costs and enabling real-time performance

Other algorithms exist for addressing the problem of
path planning in unknown or dynamic environments [Korf
1987, Lumelsky and Stepanov, 1986, Pirzadeh and Snyder
1990] but these algorithms emphasize fast operation and/or
low memory usage at the expense of opomahry

Thus paper describes an extension to D* which focusses
the cost updates to minimize slate expansions and further
reduce computational costs The algorithm uses a heuristic
function similar to A* to both propagate cost increases and
focus cost reductions A biasing function is used to
compensate for robot motion between replanning operations
The net effect is a reduction in run-time by a factor of two to
three The paper begins with the intuition behind the
algorithm, describes the extension presents an example
evaluates empirical comparisons, and draws conclusions

2 Intuition for Algorithm

Consider how A* solves the following robot path planning
problem Figure 1 shows an eight-connected graph repre-
senung a Cartesian space of robot locations The states in the
graph, depicted by arrows are robot locations and the arcs
encode the cost of moving between states The white regions
are locations known to be in free space The arc cost for
moving between free states is a small value denoted by
EMPTY The grey regions are known obstacle locations, and
arcs connected to these stales are assigned a prohibitively
high value of OBSTACLE The small black square is a
closed gate believed to be open (i e , EMPTY value) With
out a loss of generality the robot is assumed to be point-size
and occupies only one location at a tune A* can be used to
compute optimal path costs from the goal G, to all states in
the space given the initial set of arc costs, as shown in the
figure The arrows indicate the optimal state transitions
therefore, the optimal path for any slate can be recovered by
following the arrows to the goal Because the closed gate is
assumed to be open. A* plans a path through it.

The robot starts at some initial location and begins
following the optimal path to the goal At location R the
robot's sensor discovers the gate between the two large
obstacles is closed This corresponds to an incorrect arc
value m the graph rather than EMPTY it has a much higher
value of GATE, representing the cost of first opening the
gale and men moving through it All paths through this arc
are (possibly) no longer optimal as indicated by the labelled
region A* could be used to recompute the cost map, but this
is inefficient if the environment is large and/or the goal is far
away

Several characteristics of the problem motivate a better
approach First, changes to the arc costs are likely to be in
the vicinity of the robot, since it typically carries a sensor
with a limited range This means that most plans need only
be patched "locally" Second the robot generally makes
near-monotonic progress toward the goal Most obstructions
are small and simple padi deflections suffice, thus avoiding
the high computational cost of backtracking Third, only the

remaming portion of the path must be replanned at a given
location in the traverse which lends to get progressively
shorter due to the second characteristic

Figure 1 Invalidated States in the Graph

As described in Stenlz [1994] D* leverages on these
characteristics to reduce run-time by a factor of 200 or more
for large environments The paper proves that the algorithm
produces correct results regardless—only the performance
improvement is affected by the validity of the problem
charactenstics

Like A*, D* maintains an OPEN list of stales for
expansion however these states consist of two types
RAISE and LOWER RAISE states transmit path cost
increases due to an increased arc value and LOWER stales
reduce costs and re-direct arrows to compute new optimal
paths The RAISE states propagate me arc cost increase
through the invalidated slates by starting at the gate and
sweepmg outward addmg the value of GATE to all states in
the region The RAISE states acuvate neighboring LOWER
slates which sweep in behind to reduce costs and re direct
pointers LOWER states compute new optimal paths to the
slates that were previously raised

States are placed on the OPEN list by their key value
k(X) which for LOWER stales is the current path cost h(X)
i e coslfrom the state X to the goal) and for RAISE states
the previous, unraised h(X) value Stales on the list are
processed in order of increasing key value The intuition is
thatl the previous optimal path costs of the RAISE slates
define a lower bound on the path costs of LOWER states they
can discover Thus if the path costs of the LOWER states
currently on the OPEN list exceed the previous path costs of
the RAISE states then it is worthwhile processing RAISE
states to discover (possibly) a better LO WER slate

The process can terminate when the lowest value on the
OPEN list equals or exceeds the robot's path cosl, since
additional expansions cannot possibly find a better path to
the goal (see Figure 2) Once a new optimal path is
computed or the old one is determined to be valid, the robot
can continue to move toward the goal Note m the figure that
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only part of the cost map has been repaired This is the
efficiency of the D* algorithm

The D* algondim described in Stentz [1994] propagates
cost changes through the invalidated states without
considering which expansions will benefit the robot at its
current location Like A* D* can use heuristics to focus the
search in the direction of the robot and reduce the total
number of state expansions Let the focussing heuristic
g{X R be the estimated path cost from the robot' location R
to X Define a new function, thee stimated robot path cost to
be f(X, R) = h(X) + g(X R) and sort all LOWER stales on the
OPEN list by increasing ft") value The function J{X R) is
the estimated path cost from the state R through X to C
Provided that g(°) satisfies the monotone restriction, then
since h{X) is optimal when LO WER stale X is removed from
the OPEN list an optimal path will be computed to R
[Nilsson, 1980] The notation g{°) is used 10 refer to a
function independent of its domain

Flgure 2 LOWER Staizs Reach the Robot

In the case of RAISE stales the previous h(°) value
defines a lower bound on the h(°) values of LOWER states
they can discover therefore if the same focussing heuristic
g{°) is used for both types of states the previous ft") values
of the RAISE stales define lower bounds on the /") values of
the LOWER states they can discover Thus if the/l") values
of the LOWER states on the OPEN list exceed the previous
/H values of the RAISE states then it is worthwhile
processing RAISE slates to discover better LOWER states
Based on this reasoning, the RAISE slates should be sorted
on the OPEN list by fiX R) = k(X) + g(X,R) But since
k(X) = h(X) for LOWER states the RAISE state definmon
for ft°) suffices for both kinds of slates To avoid cycles in
the backpointers it should be noted that ties in ft°) are sorted
by increasing t(°) on the OPEN list [Stentz 1993]

The process can terminate when the lowest value on the
OPEN list equals or exceeds the robot's path cost, since the
subsequent expansions cannot possibly find a LOWER state
that 1) has a low enough path cost, and 2) is 'close enough
to the robot to be able to reduce the robot's path cost when it
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reaches it through subsequent expansions Note that this is a
more efficient cut-off than the previous one which considers
only the first en tenon

Figure 3 shows the same example, except that a
focussed search is used All states in the RAISE state wave
front have roughly the same /H value The wave front is
more "narrow" m the focussed case since the inclusion of the
cost to return to the robot penalizes the wide flanks
Furthermore, the | OWER states activated by the RAISE
state wave front have swept in from the outer sides of the
obstacles to compute a new optimal path to the robot Note
that the two wave fronts are narrow and focussed on the
robot s location Compare Figure 3 to Figure 2 Note that
both the RAISE and LOWER stale wave fronts have covered
less ground for the focussed search than the unfocussed
search m order to compute a new, optimal path to R Therein
is the efficiency of the Focussed D* algorithm

The problem with focussing the search is that once a
new optimal path is computed to the robot s location the
robot then moves to a new location If its sensor discovers
another arc cost discrepancy the search should be focussed
on the robot's new location But states already on the OPEN
list are focussed on the old locauon and have incorrect g(°)
and /T) values One solution is to recompute g{°) and f[°)
for all stales on the OPEN list every time the robot moves
and new states are to be added Basui on empirical evidence
the cost of re-sorting the OPEN list more than offsets the
savings gamed by a focussed search

LLILE U
—

Figure 3 Focussed LOWER States Reach Robot

The approach in this paper 15 to take advantage of the
fact that the robot generally moves only a few states between
replanming operations, so the g(°) and f°) values have only a
small amount of error Assume that state X 1s placed on the
OPEN lisi when the robot 1s at Jocauon R, Its A°) value al
that potnt 15 X R;) II the robot moves 0 location &, we
could calculate AX, R,) and adjust s posizon on the OPEN
List To avoud this computational cost, we compute a lower
bound on fiX,R) given by
LXR) = fX Ro)-g(R,, R)-€ [f;(X R)) 15 a lower bound



on fiX, R,) since 1t assumes the robot moved 1n the
‘directicn ' of state X, Lhus subtracung the mouon from
2(X R,) The parameter e 1s an arbitrarily small positive
number If X 15 repositioned on the OPEN List by f;(X R))

then swnce £, (X R,) 1s a lower bound on fiX, R)) X will be
selected for expansion before or when 1L1s needed At the
ume of expansion, the true £X R)) value 1s compuled, and X
1s placed back on the OPEN listby X R,)

Al firs1 this approach appears worse, simnce the OPEN
list 1s first re sorted by £,(°) and then parually adjusted to
replace the f,(°) values with the correct A*) values Bul since
g(K, Ry + e 15 subtracled from aii stales on the OPEN Lt
the ordening 15 preserved, and the list need not be r-sorted
Furthermore the Hrst step can be avoided altogether by
adding gi.R, Ry)+¢& 0 the states 1o be mserted on the OPEN
list. rather than subtracting 1t from those already on the list,
thus preserving the relattve ordenng between stales already
on the hist and states about Lo be added Therefore the only
remainmg computaton 1S the adjusument step But thus step
ts needed only for those states that shaw promise [or
reaching the robot's location }or typical problems this
amounts to fewer than 2% of the states on the OPEN hist

3 Definltlons and Formulation

I'o tormalize this intumtion, we begin with the notaucn and
defimuons used 1 Stentz [1994] and) then extend at for the
focussed algonthm The problem space can be formulated ay
a set of srares denoung robot locauons connccied by direc-
nonal arcs each of which has an associated cost The robot
starts at a particular staic and moves across dres (incurmng
the cost of traversal) o other states noul 1 reaches 1he goal
state denoted by G Every visited state X excepl & has a
backpowter w0 a nexi state ¥ denoted by btX) = ¥ D* uses
backpomtar, 10 represcnt paths (o the goal The cost of tra-
versing an arc {rom stale ¥ o stale X 15 a postuve number
given by the arc cost function «tX. ¥y If ¥ does not have an
arc 1o X then o(X 1) 15 undefined Two states X and Y are
nerghbors 1o the space il (X 1) or c(Y X) s defined

D* nuses an OPEN list 10 propagale information aboul
changes to the arc cost funchon and to calculale path costs Lo
slaes 1n the space Every state X has an assoclated fag ((X)
such that HX) = ¥NEW of X has never been on the OPEN lisL,
HX) = OPEN 1f X 15 currently on the OPEN Nisl and
#(X) = CLOSED 1f X 1s no longer on the OPEN hst For
each visited sae X, D* mamlans an esumale of the sum of
the arc costs from X 1o G given by Lthe path cost funclion
#(X) Given the proper conditions this esumale 15 equivalent
to the optimal (mummal) cosl from slate X to ¢ Tor each
state X on the OPEN list (1 ¢, HX) = OPEN) the key
function k(X) 1sdefined (o be equal to the munimum of A(X)
before modification and all values assumed by h(X) since X
was placed on Lthe OPEN list The key funcuon classifies a
stalc X on the GPEN List into one of two types a RAISE
slate 1f k(X) < h(X), and a LOWER state 1F kX) = HX) D*
uses RAISE staies on the OPEN list Lo propagale
informatbon about path cost mncreases and LOWER states 0
propagate wnformatuon about path cost reducuons The
propagauon takes place through the repeated removal of
states from the OPEN list. Each nme a state 1s removed from
the Lisy, 1t 18 expanded to pass cost changes to its neighbors

These neighbors are 1o turn placed on the OPEN lisI to
conanue the process

Suates are sorted on the OPEN list by a brased fi*)
value given by fX R), where X 15 the state on the OPEN
hst and R, 1s the robot s state a1 the ume X was mnserted or
adjusted on the OPEN hist Lel {Re. & Ry} be the
sequence of states occupied by the robot when siales were
added to the OPEN list The value of f4(°) 15 given by
foX R) = iIX R)+d(R Ry where ) 1s the estmated
robot path cost given by X R) = k() + g(X R) and 4(°) 15
the accrued bias funcuon given by
dR R} = gR R)+8R, R)+ +gR R _ )+ s
¢>0 and 4R, R = 0 if 1 = § The function g(X Y} 18 Lhe
focussing heunstc, represenung the esnmated path cost
from ¥ 10 X The OPEN list states are sorted by increasing
fp(°) value with ucs in fi(*) ordered by increasing A°) and
ties 1n f1°1 ordered by increasing &(*) Ties in &(°) are
ordered arbiranly Thos a veclor of values (fp(°) f1®) &(*))
15 stored with each slate on the list

Whenever a staie 1s removed [tom the OPEN List us
f°y value 15 cxamuned 1o see 1f 1L was computed using the
most recenl local powl If not, 1ts f°) and fx(°) values are
recalculatcd using the new focal point and accrued bias,
respectively and Lhe state 1s placed back on the list
Processaing the £t°) values in ascending order ensures Lthat
the first encountered A°) value using the current {ocal point
15 the minumum such value, denoted by £, = Let &, be s
corresponding &°) value |bese parameters comprise an
unportant threshold for D* By processing properly-focussed
f°) values m ascending order (and A(") values 1o ascending
order Tor a constam f°) value} the algonthm ensares that for
all states X of A <S,, OF (AX) =, and A(X) <k )
then h(X) 1s opumal The parametcr val/ 1y used 1o store the
vector {f, &, for (he purpose ol Uus Lest.

Let R, be (he current slate on which the search is
focussed, tmihialized Lo the robot s stan siate Define the
robot stale funcuon riX} which returns the robot s siate
when X was last mserted or adjusted on the QPEN hist The
parameter 4 15 the accrued bias from the robot s start
state [0 its cument state 1L 18 shorthand for d(R_, . R,) and 1s
mihalized to 4, = dR; R)) =0 The following
shorthand notaiion 1s used for fg°) and A
flX) =X rX)) and IO =AX AXD

4 Algonthm Description

The D* algonthm consists pnmanly of Lthree functions
PROCESS - STATF MODIFY - COST and
MOVE - ROBOT PROCESS-STATE compuies opuumal
path costs to the goal MODIFY COST changes the arc cost
functon c(°) and enters affecied states on the OPEN list, and
MOVE - ROBOT uscs Lhe two funcuons to move the robot
opumally The algorithms for PROCESS - STATE
MODIFY - COST, and MOVE _ROBOT are presented
below along with three of the more detailed funcuions for
managing the OPEN list INSERT MIN- STATE, and
MIN - VAL The user provides the (unction GVALIX Y)
which computes and returns the {focussing heunstic 2(X Y)
The embedded routines are MIN(a b} retarns Lhe
murumuom of the two scalar values 2 and b, LESS(a b) lakes a
veclor of values (g, g for a and a vector (b, by for &
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and returns TRUE if a, <b, or (a, = b, and g, <b,),
LESSE(Xa, b) takes two vectars 4 and » and retrns TRUE
if @, <b, or (e, = b, and a,<5,), COST(X) compules
fX R_, > = hX)+ GVALX R, ) aod retumns the vector of
values (X, R_, ), k(X)) for asiae X, DELETE(X) deletes
state X from the OPEN List and seis 1X) = CLOSED,
PUT —STATE(X) sets KX) = OPEN and mserts X on the
OFEN list according to the vector {f(X) £X) kX)), and
GET - STATE telurns the stale on the OPEN list with
mnmum vector value (NULL i the hst 1s empty)

The INSERT funcuon, given below changes the value
of k(X) W h_,, and mserts or reposiions X on the OPEN
list The value for k(X) 1s delermuned at lines L1 through L5
The remaining two values m the vector are computed at line
L7 and the state 15 inserted at line L8

Function INSERT (X, hy,,)

L1 1fnX) = NEW then &X) = b

L2 else

L3 i nX) = OPEN then

14 k(Xy = MIN(K(X) h,.), DELETE(X)

L5  else HX) = MIN(W(X), b, )

L6 h(X) = hnew’ !‘(X) = R:wr

L7 fiX) = kX)+ GVALX R_, ), fplX) = AX)+d_,
L8 PUT-STATEX)

The funcnon MIN - STATE, given below, returns the
state on the 2PEN list with munimum £°) valoe In order to
do thus, the function retmeves the state on the OPEN list with
lowest f,(°) value If the siate was placed on the OPEN hst
when the robol was at a previous locauon (ing L2) then tt1s
re-inserted on the OPEN list at lings 1.3 and L4 This
operation has the effect of correcung the siate’s accrued bias
using the robot's current state while leaving the state s k(™)
and k(°) values unchanged MIN-STATE conlnues Lo
remneve states from the OPEN list unul 1t finds one that was
placed on the OPEN List with the robot al its current siate

Function MIN-STATE ()

L1 while X = GET-STATE( }~ANULL
L2  ofnXy#R,, then
L3 Frew = BX), AX) = K(X)
14 DELETE(X) INSERTX h__)
LS  elserctum X
L6 reium NULL
The MIN - VAL funcuon, given below retums the 5°)
and k°) values of Lbe stale on the OPEN list with mmimum
fi°) value thatis, {f k& p

Function MIN-VAL ()

L]l X = MIN- STATE( )
12 o X = NULL \hen retum NO - VAL
L3 else rewm {AX), kX))

In {funclion PROCESS - STATE cosl changes are
propagated and new paths are computed At lines L1 through
L3, the stale X with the lowest f°) value 15 removed from
the OPEN hst [T X 152 LOWER stale (1€ k(X) = KX)), 1ls
path cost 1s optimal At lmes L9 through .14, each neighbor
¥ of X 1s examined to see 1f 1ts path cost can be lowered
Additionally, nesghbor states that are NEW receive an unutial
path cosl value and cost changes are propagaied 10 each
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neighbor Y that has a backpointer to X, regardless of
whether the new cost is greater than or less than the old
Since these states are descendants of X, any change to the
path cost of X affecis their path costs as well The
backpointer of Y is redirected, if needed All neighbors that
receive a new path cost are placed on the OPEN list, so that
they will propagate the cost changes to their neighbors

Function PROCESS-STATE ()

Ll X = MIN-STATE( )

L2 ' X = NULL then retum NO - VAL

L3 val = (AX) kX)), k., = KX), DELETE(X)
L4 if k _, < hX) thep

L5 foreach neighbor ¥ of X

L6 if ((¥y2 NEW and LESSEQ(COST(Y) val) and
L7 RX) > MY + (¥ X) then

L8 Xy =Y KX) = AN+ X)

LO Ifkvm, = h(X) then

L10 for each neighbor ¥ of X

L11 if (¥) = NEW or

L12 (Yy = X and BN 2 A+ (X D) or
L13 (B =X and K1) > h(X) + «(X 1)) then
L14 BN = X, INSERT(Y, o(X) + c(X, )
L15else

L16 for each neighbor ¥ of X
L17 ful) = NEW or

L1R (b(¥) = X and A(PN = A(X) + o(X, 7)) then
L19 i) = X INSERT(Y h(X)+c(X, ¥V
120 else

121 i h¥)= X and Ai¥)> h(X) + (X Y) and
122 HX) = CLOSED tben

L23 INSERT(X hiX}}

1.24 else

L25 &N =2X and A > A(H +c(¥ Xy and
126 HY) = CLOSED and

127 LESS{val COST(Y)) then

L28 INSERTIY W)

L29 returm MIN - VAL )

If X is a RAISE state its path cost may not be optimal
Before X propagates cost changes to its neighbors, its
optimal neighbors are examined at lines L4 through L8 to
see if h(X) can be reduced At lines L16 through L19 cost
changes are propagated to NEW slates and immediate
descendants in the same way as for LOWER states If X is
able to lower the path cost of a state that is not an immediate
descendant (lines L21 through 1-23), X is placed back on the
OPEN list for future expansion This action is required to
avoid creating a closed loop in the backpointers [Stentz,
1993] If the path cost of X is able to be reduced by a
suboptimal neighbor (Imes L25 through L28), the neighbor
is placed back OD the OPEN list Thus, the update is
"postponed" una! the neighbor has an optimal path cosL

In function MODIFY- COST, the are cost function is
updated with the changed value Since the path cost for state
Y will change, X is placed on the OPEN list When X is
expanded via PROCESS-STATE it computes a new
h(Y) = h(X) + ¢(X Y) and places Y on the OPEN list
Additional state expansions propagate the cost to the
descendants of Y



Function MODIFY-COST (X, Y, cval

LI ¢(XY) = cva
L2 if {X) = CLOSED then INSERT(X h(X))
L3 return MIN-VAL( )

The function MOVE-ROBOT illustrates how to use
PROCESS-STATE and MODIFY-COST to move the
robot from state 5 through die environment to G along an
optimal traverse At lines LI through L4 of
MOVE-ROBOT r(°) is set to NEW for all stales the
accrued bias and focal point are initialized, h(G) is set to
zero, and G is placed on the OPEN I[ISL PROCESS-STATF
is called repeatedly at lines L6 and L7 until either an initial
path is computed to the robot's stale (1e H.S) = CLOSED)
or it is determined that no path exists (1 e vat = NO - VAL
and {(S) = NEW) The robot then proceeds to follow the
backpointers until it either reaches the goal or discovers a
discrepancy (line LI1) between the sensor measurement of
an arc cost J(°) and the stored arc cost c(°) (e g due to a
detected obstacle) Note that these discrepancies may occur
anywhere notjuston the path to the goal If the robot moved
since the last tune discrepancies were discovered, then its
stale R is saved as the new focal point, and the accrued bias
dcurr, is updated (lines L12and L13) MODIFY-COST is
called to correct ¢(°) and place affected slates on the OPEN
hstatime L15 PROCESS-STATE is then called repeatedly
at line L17 lo propagate costs and compute a new path to the
goal The robot continues to follow the backpointers toward
the goal The function returns GOAL-REACHED if the
goal is lound and NO -PATH if it is unreachable

Function MOVE-ROBOT (5§, )

L1 for each state X m (he graph

L2 KXy = NEW

L3 dCHl'J' = 0 Rcurr = S

14 INSERT(G O

L5 val = (0 0}

L6 while r(8S)= CLOSED and valz NO - VAL
L7 val = PROCESS - STATE( )

LB if A5} = NEW Ihen retum NO — PATH
19 R=3S5

L10while R= G

L1l i s(X =X P forsome (X1 then
L12 IfR___#R then

L13 d:urr = d:urr+ GVAL(R Rf.l.ll'r‘J +E ' R:‘.‘HH‘ = R
L14 foreach (XY) such that 5(X N=cX, )

L15 val = MODIFY - COST(X Y 5(X 1))

L16 while LESS(val COST(R)) and val=NO - VAL
L17 vai = PROCESS — STATE( )

L1I2 R =MR)

L19 return GOAL - REACHED

It should be noted that line L8 in MOVE-ROBOT only
detects the condition thai no path exists from the robot s
state to the goal if for example the graph is disconnected It
does not detect the condition that all paths to the goal are
obstructed by obstacles In order to provide for this
capability, obstructed arcs can be assigned a large positive
value of OBSTA CLE and unobstructed arcs can be assigned
a small positive value of EMPTY OBSTACLE should be
chosen such thai it exceeds the longest possible path of

EMPTY arcs m Lthe graph No unobstructed path exists (o the
goal from 5 if h(S)z OBSTACLE after exiung the loop at
Iine L6 Likewise no unobstructed path exists to the goal
from as@ate R dunuog the raverse (f A{R)2 OBSTACLE afier
exiting the foop at hne L16 Since R = R, for a robot
state R undergoing path recalculatons then g(R R) = 0 and
AR Ry = k&) Therefore, opumality 15 guaranieed for a
slale B ff_ >hR) or(f_ = AR and k _, 2 A(R))

min min

5 Example

Figure 4 shows a cluttered 100 x 100 state environment The
robot starts al state S and moves to state G All of the obsta-
cles shown in blade, are unknown before the robot starts its
traverse, and the map contains only EMPTY arcs The robot
is point-size and is equipped with a 10-state radial Geld-of-
view sensor The figure shows the robot s traverse from S to
G usmg the Basic D* algoruhm The traverse is shown as a
black curve with white arrows As the robot moves its sen-
sor detects me unknown obstacles Detected obstacles are
shown in grey with black arrows Obstacles that remain
unknown after the traverse are shown in solid blade or black
with white arrows The arrows show the final cost Geld for
all states examined during me traverse Note that most of the
states are examined at least once by the algorithm

val

A

Figure 4 Dasic D* Algonthm

Figure 5 shows the robot s traverse using the Focussed
D* algoruhm The number of NEW states examined is fewer
man Basic D* since the Focussed D* algorithm focuses the
initial path calculation and subsequent cost updates on the
robot s location Note that even for those stales examined by
the algorithm fewer of them end up with optimal paths to
the goal Finally, note thatl the two trajectories are not fully
equivalent This occurs because the lowest-cost traverse is
not unique and the two algorithms break ties in the path
costs arbitrarily
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6 Experimental Results

Four algorithms were tested to verify optumality and to com
pare run-time results The first algonthm the Brute Force
Replanner (BFR) initially plans a single path from the goal
to the start state The robot proceeds to follow the path until
its sensor detects an errorIN The map The robot updates the
map, plans anew path from the goal to its current location
using a focussed A* search and repeats until the goal is
reached The focussing heuristic g(X Y), was chosen to be
the minimum possible number of state transitions between Y
and X, assuming the lowest arc cost value for each

The second and third algondims Basic D* (BD*) and
Focussed D* with Minimal Initialization (FD*M), are
descnbed in Stentz [1994] and Section 4 respectively The
fourth algonthm Focussed D* with Full Initialization
(FD*F), is the same as FD*M except thai the path costs are
propagated to all states in the planning space, which is
assumed to be finite, during the initial path calculation,
rather than terminating when the path reaches the robot's
start state

The four algorithms were compared on planning
problems of varying size Each environment was square
consisung of a start state in the center of the left wall and a
goal state in center of the right wall Each environment
consisted of a mix of map obstacles known to the robot
before the traverse and unknown obstacles measurable by
the robot s sensor The sensor used was omnidirectional with
a 10-staie radial field of view Figure 6 shows an
environment model with approximately 100 000 states The
known obstacles are shown in grey and the unknown
obstacles in black

The results for environmenis of 10 , 10°%, and 10° stales

are shown in Table 1 The reported times are CPU time for a
Sun Microsystems SPARC-10 processor For each
environment size the four algonthms were compared on five
randomly-gen era ted environments and the results were
averaged The off-line ume is the CPU time required to
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compute the initial path from the goal to the robot, or in the
case of FD*Fp from the goal lo all states in the environment
This operation is 'off-line' since it could be performed in
advance of robot motion if the initial map were available
The on-line time is the total CPU time for all replanning
operations needed to move the robot from the start to the
goal

| 5

Filgure 6 Tymcal Environment for Companson

Focussed D* | Focussed D™ Basic D* Brute Force
with Full Lo | with Mun [l Replanner
OF lme 107 |1 85oce 0 1650e 102sec |0 09 sec
On tme 107 [109 sec ) 70 sec 131 sec 1307 sec
Off lme 100 [1975sec  [06Baec  |1255sec |04l asec
Ot Loe 10" |953 pee 1820sec  |1694sec |11 86 mn
Off Lne 10° [224625cc  [953 80c 129 0B eec |4 82 sec
On line 106 1001 sec 41 72 sec 21 47 sec 50 63 mun

Table 1 Results for Empirical Tests

The results for each algonthm are highly dependent on
the complexity of the environment, including the number
size, and placement of me obstacles, and the ratio of known
lo unknown obstacles For the test cases examined all
variations of D* outperformed BFR in on-line time, reaching
a speedup factor of approximately 300 for large
environments Generally the performance gap mcreased as
the size of the environment mcreased |If the user wants lo
minimize on-line time at the expense of off-line ume, then
FD*F is the best algonithm In this algonthm, path costs to
all states are computed initially and only the cost
propagations are focussed Note that FD*F resulted in lower
on-line lanes and higher off-line times than BD* The FD*M
algondim resulted in lower off-line times and higher on-line



times than BD* Focussing the search enables a rapid start
due to fewer state expansions, but many of the unexplored
states must be examined anyway during the replanning
process resulting in a longer execution time Thus. FD*M is
the best algonthm if the user wants to minimize the total
time that is, if the off-line time is considered to be on-line
time as well

Thus, the Focussed D* algonthm can be configured to
outperform Basic D* in either total time or the on-line
portion of the operation, depending on the requirements of
the task As a general strategy focussing the search is a good
idea, the only issue is how me computational load should be
distributed

7 Conclusions

This paper presents the Focussed D* algandnn for real-time
path replanning The algondun computes an initial path from
the goal state to the start state and then efficiently modifies
this path during me traverse as arc costs change The algo-
ndun produces an optimal traverse meaning that an optimal
path to the goal is followed at every slate in the traverse
assuming all known Informauon at each step is correct The
focussed version of D* outperforms the basic version and it
offers the user the option of distributing the computational
load amongst the on- and off line portions of the operation
depending on the task requirement The addition of a heu
nstic focussing function to D* completes ITS development as
a generalization of A* to dynamic environments--A* is the
special case of D* where arc costs do not change dunng the
traverse of the solution path
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