Recovering Problem-Solving Activities from Query Messages

Yoshihiko

HAYASHI

NTT Information and Communication Systems Laboratories
1-2356 Take, Yokosuka, 238-03 JAPAN
E-mail: ha.yashi@nttnly.isl.ntt.jp

Abstract

We investigated a set of query messages taken
from an Usenet newsgroup, and analyzed rela-
tions between the nature of problem-solving ac-
tivities and their natural language descriptions.
Based on the corpus investigation, this pa-
per proposes an efficient computational mech-
anism for recovering problem-solving activities
from query messages written in Japanese. The
main claim of the paper is that the underlying
problem-solving activity described in a natural
language message can be efficiently recovered
if provided with general knowledge on human
problem-solving and the associated linguistic
patterns in the descriptions.

1 Introduction

In this paper, we focus on trouble-shooting type
problem-solving activities. One general way to solve such
a complex problem is to know a solution which might
solve the problem and to apply it. These days some
people utilize computer networks as a forum useful for
problcm-solving[llammond, 1995]. Thus understanding
how people ask for information with electronic messages
will be inevitable to realize an intelligent information
access function on information super highways.

With this motivation, we started this work with an
investigation of a set. of actual query messages, which
had been taken from an Usenet newsgroup[Krol, 1993].
The newsgroup chosen as our corpus is "fj.sys.mac"’,
which provides a forum of discussions about Apple's
Macintoshes, mainly for Japanese-speaking people. We
selected forty-two messages, aimed at trouble-shooting,
out of 119 query messages which appeared in a three-
months' term in 1993. Each of these selected messages
contains a description of the writer's trouble-shooting
type problem-solving activity.

2 A Motivational

Let us start with a translated and slightly simplified ex-
ample of an actual query message taken from the corpus.

Example

' Needless to say, there are no particular intentions for the
choice.

(Example)

S1: | found my Macll had been infected with
some kind of virus.

s2: So, | wanted to run a vaccine program and

s3: tried to make my Mac read an MSDOS
formatted 2DD floppy disk.

s4: However, Apple File Exchanger could not
read it.

s5: Can't Maclls read MSDOS formatted 2DDs?

The story begins with his/her discovery of a trouble
(si) and ends with a query (s5). Sentences s2 through s4
describe his/her trouble-shooting type problem-solving
activity. How can people read this message? From s2, we
will be able to guess that, at least for him/her, running
a vaccine program is a way to solve the trouble stated in
si. Thanks to the marker "so" in s2, we will be able to
guess this, even if we do not have good knowledge about
disinfecting computer viruses.

On the other hand, the relation between s2 and s3
seems to be unclear on two points. First, because the two
sentences are connected by the conjunction "and", there
are two possibilities for interpreting the role of the action
described in s3; that is, either running a. vaccine program
followed by making Mac read a 2DD disk will shoot the
trouble, or to run a vaccine program, making Mac read a
2DD disk is necessary. Main verbs in both sentences may
provide a slight clue. However, it does not seem to be
a strong one. The domain knowledge, in general, might
help the disambiguation process. However, if his/her
actions were based on his/her wrong belief or knowledge,
even correct domain knowledge would not be of help?.
In either case, it is clearly shown by S4 that his/her trial
to make Mac read a 2DD disk failed and this suggests
that he/she still cannot disinfect the virus from his/her
Macll.

Note that the entire problem-solving process described
in the message can be seen as a goal-directed activ-
ity. The trouble stated in si may prevent him/her from
achieving his/her primary goal, which is not explicit in
the message. Therefore he/she introduces a new goal,
disinfecting the virus. The activities described in s2
through s4 are associated with the new goal. In addi-

21n this example, his/her doing s3 is actually underivable
from correct domain knowledge. Most of the response mes-
sages to this query have pointed it out.

HAYASHI 1711

tion, the query stated by s5 can be seen as a step of
the problem-solving, although the level differs from the
actual activities.

3 A Recovery Mechanism

3.1 Overview

Our recovery mechanism consists of three cascaded pro-
cesses. The first process identifies message fragments,
each of which describes a single problem-solving step of
the entire activity, by recognizing some distinctive sur-
face expression patterns, as in many information extrac-
tion systems[Hobbs, 1992],[Kitani, 1994], Each fragment
is then assigned a sub-graph which represents the struc-
ture of the step by the second process. The third process
finally integrates these sub-graphs and represents the en-
tire problem-solving activity as a set of graph structures
with help from general knowledge on problem-solving
and the associated linguistic heuristics in the discourse
structures. Each of the graphs represents a possible un-
derlying problem-solving activity. We call such a graph
problem-solving graph, or PS-graph in short.

3.2 Ontology for the PS graphs

In this paper, we assume that a goal state is enabled
by one of the alternative goal-achieving actions, and a
goal-achieving action is generated by a sequence of de-
composed actions.

Table 1: Links in the PS-graphs.
Type Lk Source | Destinatiou
Node Node
Action alternative X G
enable X G
a-step X X
generate X X
non-executable | P X
Causality | caused X P
cause-always X P
prevent P X
Problem | to-solve G P
-Solving
Auxiliary | similar P P

There are four node types for the PS-graphs;

* G node: It encodes a goal state of the agent (writer),
and may have its value, achieved/unachieved.

* P node: It encodes that a problematic situation
(a trouble) came about, and may have its value,
fixed/unfixed.

+ X node: It encodes an action by the agent, and may
have its value, succeeded/failed.

+ XP node: It is a composite node by an X node and
a P node connected by a causality type link. It en-
codes a causal relation, an action caused a trouble.

We have ten direct link types as shown in Table 1.

+ Action type: alternative link encodes the action X is
one of the alternative actions which enables the goal

1712 PLANNING

G. Enable link is used in cases where X is the only
action to enable the goal. A-step link encodes the
action X is one of the decomposed action to achieve
the goal G. Generate link is used in cases where
X is the only decomposed action. Not-executable
encodes the problem P prevents execution of the
action X.

» Causality type: Caused link encodes the action X
caused the problem P. Cause-always link is used
when the agent knows a fact that X always causes
P which may be an undesirable side-effect.

* Problem-solving type: To-solve link encodes the
agent has a new goal state G in which the problem
P does not come about. It is automatically intro-
duced whenever the agent knows a problem came
about.

* Auxiliary type: Similar link connects two
same/similar problematic states. It is typically used
in cases where the same problem comes about again,
in spite of the fact that a problem-solving activity
has been conducted.

4 Recovery of Single PS Step

4.1 Types of problems

We looked through the forty-two objective messages
and extracted sixty-three problem description fragments.
Table 2 classifies types of the problems. The classifica-
tion was conducted by focusing on following three points:

1. Did he intend to do some action?
2. Did he actually do the action?
3. Is there a problematic situation /si now?

In the table, example expressions in English and the
number of occurrences for each type are also shown.
Here, we distinguished two situations:

* FI (primary): The problem is introduced as a pri-
mary problem for the writer. Because most of the
problem-solving activities are described in chrono-
logical order, it appears prior to the other levels of
problems in the descriptions.

* F2 (lower-level): The problem came about dur-
ing the problem-solving activities. It mainly de-
scribes a situation where the writer's goal-achieving
or problem-solving activity caused the same prob-
lem or introduced a new problem.

Note that we included the problem type (f) in our va-
riety of problem types. In this type, actually, there is
no trouble anymore. For the example in the table, the
writer fixed the problem (the print process doesn't ter-
minate) by an action (send Cirl-d to the printer). How-
ever, we can imagine that he/she is not convinced by the
solution, and wants to know a better solution. We see
human problem-solving in a broader sense than usual.

4.2 ldentifying problem descriptions

Table 3 lists expression patterns which can be used for
the identification of problem descriptions. By these pat-
terns, 92.1% (58/63) of the problem descriptions in the

:solved

P a failed ‘failed cfailed a failed (P
imilar -solve
cakse-always S * 10-5
*lo—.mlu not-execuable | \f| 2 cawsed H caused G| :achieved
G
+ enable
to-soive *ta-solw *“’"d"“ +‘°"°“" +‘°""d” X J:succeeded
G G G G G
X'=~X to-saive
(a) (b) © (a1} {d2) (e) G
)]
Figure 1: Sub-graphs for the problem types.
Table 2: Types of problems.
_Type 1 12 {3 | FI}F2] Example _ |
a: Unexpected trouble - 1-1- IT T2] TTound my system had been inlected Dy a virus.
b: Undesirable side-eflect +1- {- |3 II we access a file on the server, a warning appears.
c: Impossible action + (- |- 2 I tried to connect 1t, but [don’t have the connection kit.
dl: Action failure + |+ 1+ [19 [1]l | When | sent a mail by 1t, the file code was changed.
d2: PS5 action fatlure + 1+ {+ 10 D fiven 1t | reinstalled the system, same error occurred.
e: Irouble avoidance faillure | + | - + {2 0 [didn’t select the File-Share, but it tried to connect.
t: Undesirable trouble fix + |+ - 1 1 Unless we send Ctrl-d, the print process doesn’t terminate.

corpus are covered. Particular modal expressions in
Type-A provide the strongest clues; and these are closed
expressions.

Here we would like to remark on two major modal
expressions which strongly suggest that the associated
propositional part of a description describes a problem-
atic situation.

» verb + "te-shimau": This expression's original func-
tion is to represent the perfect tense. However in
many cases, it represents a nuance that the writer
thinks/feels that the situation described by the
main-clause is undesirable for him/her[Masuoka,
1989]. In this domain, it turns out to be describ-
ing a problematic situation.

« verb + "te-kure-nai": This is a negation form of
"te-kureru", which represents a situation where the
agent of the verb is not the writer and the associated
situation is desirable (empathy in [Kuno, 1987])
for him/her. Therefore, in this domain, its nega-
tion form, "te-kure-nai", represents that the writer
thinks the situation caused by a systems/program's
behavior is problematic.

In contrast to these expressions, other Types are open
expressions. Thus, we must prepare a set of explicit
patterns which covers possible expressions in advance.

4.3

The problem types (b) through (f), shown in Table 2, are
expressed mainly by conditional clauses/sentences. Ta-
ble 4 lists combinations of expression patterns by which
we can map an identified problem description into one of
the problem types. In the table, we indicate the patterns

Recognizing problem type

as a triple, x-part, connective, and y-part; here, x-part
is the antecedent and y-part is the consequent of a con-
ditional expression. The following are brief explanations
about the distinctive Japanese connectives which appear
in the table with respect to the problem types.

+ "-baai" (= in case of -ing): Use of this connec-
tive suggests that the conditional sentence describes
a kind of fact. Thus, it insists that the problem
type may be (b), in which an undesirable side-effect
caused by an action is described.

* "-nodesuga" This connective establishes the an-
tecedent (x-part) as a background description. Use
of this connective, together with an intentional ex-
pression in the x-part, suggests to us that one of the
pre-conditions for the intended action did not hold
at the time.

+ "-to" (= if/when): This connective is the most com-

mon and neutral one. It corresponds to "if* or
"when" in English.
* "-noni/nimo kakawarazu" (= even if): These con-

nectives might be similar to "even if" or "although"
in English. As [Masuoka, 1989] discusses, these
connectives emphasize that there is an expectation
violation for the speaker. Therefore, this type is
strongly connected with the problem type (d2) and
(e).

We confirmed that the mapping rule gave us a fairly
accurate result (average-recall: 73.0%, average-precision:
90.2%) toward the corpus data by a hand simulation. As
the result shows, in the current mapping rule, stress is
placed on the precision rate.

HAYASHI 1713

Table 3: Surface expression patterns in problem descriptions.

| Type | Example [kreq |
A: Modal expression | zokusel ga kawat te-shimau 29

attribute SUBJ change MODAL
The attribute has changed.

13: It does nel work

sono sousa ha umakulka na 5
the operation TOPIC work NEG

The operation doesn’t work.

: krror occurs

11

eraa-hyouji ga araware ta

error-message SUBIJ appear PAST
An error message was displayed.

1): Don’t know

houliou ga wakara nat)
method SUBJ know NEG
I have no idea about the method.

ki System crashes

shisutemu wo buuto deki nai 3
systeiun OB boot. can NEG
I cannot boot the system.

F: Unexpected
system behavior

yosou-nl-hanshite tadashiku hyouji sare nai 2
unexpectedly properly display PASSIVE NEG
Unfortunately, it is not displayed properly.

Table 4: Mapping to probletn types from surface patterns.

[x-part 1 Connective | y-part | Type 1
- - A CDEF [(a)
present + positive | -baar (general) (b)
intentional verb -nodesuga BD (c)
present + posifive | -to ABCLEF | (dl)
past + positive -noni/nimo+kakawarazu | A\ B,C.EF | (d2)
negative -nout/mmo+kakawarazu | A,B,.C.EF | (e)
negative 1o ABCEF | (1)
4.4 Assigning a sub-graph « type (e): [Allen, 1984] introduced a predicate NOT-

By the second process of the mechanism, each of the ex-
tracted fragments is then assigned one of the ready-made
sub-graphs shown in Figure 1 according to its problem
type. Each situation and the associated newly intro-
duced goal G can be described as follows:

* type (a): He/she has a new goal state G in which
the problem encoded in P is fixed.

+ type (b): He/she knows that there is an undesir-
able side-effect represented by P. The new goal G is
either, execute X without P, or simply solve P.

+ type (c): He/she knows that
conditions for executing X did not hold. Hence,
he/she believes that X is not executable. To make
hold the condition and make X be executable is the

one of the pre-

TO0-DO(a,t,p) it would be true if the plan p in-
cludes not performing the action a at the time t.
Like this treatment, we regard not performing the
action X intentionally as a kind of action. There-
fore, we link the X' and the P node by the caused
link. We can imagine, in this case, that the writer is
wondering why the solution didn't work. The new
goal G, thus, would be to know the reasons, and the
associated information request may be described in
the query message.

type (f): As mentioned in 4.1, the sub-graph en-
codes an extended problem-solving activity. The
newly introduced goal G would be to know a better
solution to solve the once solved problem P. That
is, the G would be strongly associated with an in-
formation request in the query message.

new goal.

+ type (dl): He/she knows that the action X caused 5 Recovery of an Entire PS Activity
a problematic situation P, and has a goal to solve
it. The problem P would prevent achievement of 51 Overall algorithm

upper-level goals.

+ type (d2): He/she knows that the action X, in-
tended to solve an upper-level problem, caused same
problem P again; and he/she has a new goal to solve

It.

1714 PLANNING

Figure 2 outlines the overall algorithm. The input to the
algorithm is a set of sub-graphs provided by the second
process. As far as we looked through the set of messages,
most of the problem-solving activities are described in

chronological order.

Thus, the algorithm basically iter-

ates through the each sub-graph in the input set, and
constructs a set of possible PS-graphs incrementally °.

5.2 Linking sub-graphs
The Base-line

The central part of the algorithm links a current sub-
graph (c-graph in the algorithm) into a PS-graph be-
ing constructed. The procedure, make-graph-1, does the
job. The crucial point here is which node in the c-graph
should be connected to which node in the being con-
structed PS-graph by which type of link.

The answer to the first point is provided by the pro-
cedure, get-top-node. It simply returns the top node in
the c-graph as one part of the connection point. Note
that we can naturally expect that the returned node is
limited to the action type (X node). As indicated in Fig-
ure 1, all the top nodes are X nodes, except for problem
type (a) and (f). Because the problem type (a) only ap-
pears in the beginning of descriptions, we don't have to
worry about this. In addition, the problem type (f) can
be seen as an extension to the main problem-solving ac-
tivity; the top P node would be simply linked to another
P node by a similar link *.

The answer to the second point is given by the pro-
cedure, get-link-points. Given a PS-graph being con-
structed, it returns possible nodes in the PS-graph which
can be linked to. According to the graph ontology intro-
duced by Table 1, G nodes, X nodes and P nodes would
be the candidates. However, we can exclude P nodes, as
these are provided only by the input to the algorithm.
They are already pointed by X nodes, or they are top-
level nodes.

The answer to the third point is provided by the pro-
cedure, check-linkable. Given a pair of nodes which con-
sists a connection point, it returns a type of link to be
used. Based on the discussion so far, a possible pair {PS-
graph-node, c-graph-nodo} is either {G node, X node} or
{X node, X node}. As enable/generate links are special
cases of alternative/a-stcp links respectively, the proce-
dure returns alternative for the first pair, and a-step for
the second pair.

Constraints and heuristics for reducing the
candidates

The get-link-points may return more than one node in a
PS-graph being constructed as a candidate of the linking
points. As this nature is a source of the ambiguities in
PS-graphs, it is important to reduce the number of the
candidates to avoid the combinatorial explosion.

We can utilize some constraints to exclude inappro-
priate candidates. First, we cannot select the X nodes
which are already marked failed as a candidate: the
agent cannot perform any action in order to perform an
already failed action. Second, we cannot choose the G
nodes which are already marked achieved as a candidate.
Such G nodes are possible, if the (f) type sub-graph has
already been introduced to the PS-graph. These con-
straints seem to naturally come from general schema of

*For the explanation, the algorithm is slightly simplified.
There would be several ways to optimize it.
We simply ignore this case in the rest of the paper.

procadure recover—-entire-pS-activity{sub-graphs)
make-graphs{{cari{sub-graphs) {,cdr {sub-graphe}};
. eand procedura;

W M3 e

procedure make-graphs ([P5=-graphs, rest-graphs!
local-variables begin rslt-graphs:={); and;
Lf rest~graphs=={| then
return(assign-values (reduce—graphs {PS-graphs}i}):
4, for eauch P5-graph in PS-graphs deo
5. rslt=graphs:erslt-graphs W
make=graphs~1 (P5~graph,car {rest-graphs})it;
. make-graphsirslt=graphs,cdrirest-graphs));
7. and procedurs;

W RO =

l. procednre make-graphs=1 (PS=graph,c~graph)

2. lecal-variables begin

3, rslt-graphsi={(};
link=polnts:=get—-link-points{PS~graph);
Iink-relations;:;={};

4. end;

5. 4f link=polnte=={} then signal{‘iink=-errcr~1’};

6. for link-point im link=points doe bagin

7. link-relation:=check-linkable{(link-point,

get—-top-nede (c-graphn)):
if link-relation=-=¢ then sigrnal{‘link~errcr-27};
9. rslt=graphs:= rslt-graphs
link=graphs {FS=graph,link=-polnt,
c—graph,link-relatlaon};

o
-

10, end;
11. returnirslt-graphs);
12, end procedure;

Figure 2: PS-graph construction algorithm.

human problem-solving activities. Third, as a PS-graph
is constructed as top-down and left-to-right with time,
we can use this constraint to reduce the candidates.

Furthermore, we can introduce some heuristics to
prune unlikely candidates. The following are principles
® which also come from general schema of human goal-
achieving activities:

* Principle of alternative actions: Suppose X\
through X, are alternative actions to enable a goal
G, and are sorted by goodness of the actions. It is
natural to assume that the agent will try to perform
A'i+1 only when he/she failed to perform A"-.

* Principle of decomposed actions: Suppose A'i
through X, form a sequence of the decomposed ac-
tions to generate an action X. It is natural to assume
that the agent won't try to perform X;.; if he/she
failed to perform X.

With these principles, the associated heuristics can be
summarized as follows: In a situation like Figure 3(a),
linking the c-graph to G is allowed only when the Xi is
already marked failed. That is, failure of X{ must be
represented in the description. The G nodes which vio-
late this cannot be the candidates. On the other hand,
if there is a parallel relation in the associated discourse
structure, the Unking is strongly preferred.

In a situation like Figure 3(b), linking the c-graph to
X'o is allowed only when the X; is not already marked
failed. The X nodes which violate this cannot be the

® Of course, these principles are too strong. However, we
confirmed that most of the messages follow these principles.

HAYASHI 1715

Y

X

A

Figure 3: Possible linking situations.

G

+aa’:erualiv¢

X?

* a-step

X

A

Figure 4: Graph with a virtual node.

(a) (b)

candidates. On the other hand, if there is a tempo-
ral/sequential relation in the associated discourse struc-
ture, the linking is strongly preferred.

Linking sub-graphs actually

Given a PS-graph being constructed, a linkable node in
the PS-graph, a c-graph and a possible link type, the
procedure link-graphs actually links the c-graph into the
PS-graph. Figure 3 has already shown how the linking
would be done.

However, note that when a c-graph is linked to a G
node in a PS-graph, another graph, as shown in Figure
4, must be generated. As mentioned in 3.2, we assume
that a goal state is enabled by one of the alternative goal-
enabling actions, not directly by a sequence of decom-
posed actions. But, these goal-enabling actions are often
missed in the natural language descriptions. Therefore,
to handle such a case, we must assume the existence of
a virtual goal-enabling action and incorporate it in the
PS-graph. We call such a virtual goal-enabling action
virtual action, and denote it as X? in the PS-graphs.

5.3 Post-process

The following are conducted as post-process.

Reducing redundant PS-graphs (reduce-graphs): As
enable/generate links are special cases of alternative/a-
step links, this process first checks the alternative/a-step
links that do not have sister links and changes them to
enable/generate links. As often redundant PS-graphs
are constructed due to the virtual action nodes, the pro-
cedure next checks redundant graphs, and preserves the
most simple ones only.

Assigning success/failure values to nodes (assign-
values): Based on the principles of alternative actions
and decomposed actions, we can assign succeeded/failed
to action nodes, achieved/unachieved to G nodes and
fixed/unfixed to P nodes in a PS-graph, by propagating

1716 PLANNING

explicitly stated success/failure values, which come from
the sub-graphs in the input set, along the directed links.

[L1¢]] §G2 $G2 SG4 503
PO X0 X1 \ 1] PO
La-aohw *
) [
[F1 1]
Pl ao
0 *M
nn
sodwe " .
£-riap
. a1 p X0 X0
- i 0“. -
{a) ‘.‘ ‘ (b]
§G7 (NG 508 (NGY) sae SG10
PO PO

A
AN
At

S 5 8y, 3
2

a-slap

> E—3 T E— ¥

(‘) ast® .‘&

o

“ “..n

sG10

PO
l un fixed
unachue ved

whscheved
+¢m Hr AMN‘
X0
failed
Tgﬂwmk \
; arlep a-MEp
X1

failed Iniked

P

L)

Pi): | infected with virus I\
X0: [run vaccine program |
X1: | make Mac read 2DD |
P1: | could not read 2DD |
GO, G1, X7 XT7T: (implicit)

]

Figure 5: Trace of the Example.

5.4 Trace of the Example

We give a brief trace of the algorithm for the Example
in Figure 5. The input set would be as shown in (a) ¢,
and the initial PS-graph is provided by SG1.

Main process: SG2 can be linked to GO in SG1, and
two PS-graphs, SG4 and SG5, result (shown in (b)).
Therefore, the process tries to link the next element in

®X0 is provided by s2. As in the original message, s2 and

93 form the same sentence, X0 ajone would also be introduced

as an element of the input set,

the input, SG3, to both SG4 and SG5 in the next iter-
ation. In SG4, GO and XO are possible linking points,
but only one graph, SG6, result (shown in (c)). SG7 and
SG8 are excluded by the heuristic based on the principle
of alternative actions. On the other hand, in SG5, X?
and XO are possible linking points, and SG9 and SG10
result (shown in (d)).

Post process: Three graphs, SG6, SG9 and SG10 are
passed to the post process. By the procedure reduce-
graphs, SG9 is identified as a redundant variant of SG10;
therefore, it is thrown away. Two graphs, SG6' and
SG10' are finally provided as possible PS-graphs (shown
in (e)).

Note that the ambiguous relationship between s2
("run vaccine") and s3 ("make Mac read a 2DD disk") is
clearly captured by these two PS-graphs. Also, we know
that the primary problem ("infected with virus") is still
unfixed in either case from the PS-graphs.

6 Discussion

Clearly, the work reported here has a close relation to
the so-called plan recognition. Therefore, it may be
worth mentioning our view on the relation here. Roughly
speaking, plan recognition in natural language under-
standing has long been studied from the perspective of
for hearer, understanding the speaker's utterance is rec-
ognizing the speaker's plan which generates the utter-
ance, and it is assumed that the hearer and the speaker
have same plan library.

This assumption seems to be too strong to handle ac-
tual human dialogues/messages. For one thing, a plan
which is valid for the speaker can be invalid for the
hearer. Thus, we cannot assume it in actuality. One
of the important works which addressed the issue would
be [Pollack, 1990]. In the paper, Pollack views plans as
complex mental attitudes and discusses how a speaker's
invalid plans can be handled in dialogue understanding.
Our work reported here was partly inspired by that work.
However, as Woods points out in his comment[\Voods,
1990] to Pollack, she does not deal with partially spec-
ified plans. As shown in this paper, one can have an
incomplete plan in a problem-solving activity. For ex-
ample, one might plan to run a vaccine program in or-
der to disinfect a computer virus without knowing the
actual vaccine program. Our notion of the recovery of
problem-solving activities can include such cases; incom-
plete plan or precondition failure in the plan recognition
enterprise are handled themselves as one of the problem-
atic situations.

Besides this, Woods made another important com-
ment in his essay. He questions the role of surface expres-
sions by introducing an example; "I want to get tenure,
so I've rented a car". He says, "the conjunction so unam-
biguously signals the intended goal-achieving relation-
ship without the necessity of determining the plan in
order to infer it". This paper may provide an answer
to this question, as we discussed particularly with the
example.

7 Conclusions and Future Works

This paper proposed an efficient computational mecha-
nism for recovering problem-solving activities from query
messages without particular domain knowledge. This
work, however, may be a first trial, and there remain
several issues to be worked out.

From a computational viewpoint, we must first eval-
uate the actual performance of the mechanism through
implementation and experiments with a larger set of un-
seen data. On the other hand, from a theoretical view-
point, there are a number of harder issues. Particularly,
our main concern at the moment is the formalization of
human problem-solving (trouble-shooting) activities in
terms of mental processes, as [Pollack, 1990] formalizes
simple plans as complex mental attitudes.

Acknowledgments

1 would like to thank Jerry Hobbs for his valuable advice
on this work, and Tsuneaki Kato for his useful comments
on an earlier version of this paper. The work was done
mainly while | was staying at CSLI, Stanford University.
Thus, thanks also go to people at CSLI and NTT.

References

[Allen, 1984] Allen, J. Towards a general theory of ac-
tion and time Artificial Intelligence 23, 123-154,
1984.

[Hammond, 1995] Hammond, K.R., Burke, R.C., Mar-
tin, C, and Lytinen, S. FAQ Finder: A Case-based
Approach to Knowledge Navigation. In Proceedings
of the 11th Conference on Artificial Intelligence for
Applications, 80-86, Los Angels, CA, 1995.

[Hobbs, 1992] Hobbs, J.R., Appelt, D.E., Bear, J.S.
Israel, D.J., and Tyson, W.M, FASTUS: A sys-
tem for extracting information from natural-language
text. Technical Note No.519, SRI International, Menlo
Park, CA, 1992.

[Kitani, 1994] Kitani, T., Eriguchi, Y., and Hara, M.
Pattern matching and discourse processing in infor-
mation extraction from Japanese text. Journal of Ar-
tificial Intelligence Research, 2, 89-110, 1994.

[Krol, 1993] Krol, E. The Whole Internet, User's Guide
& Catalog. O'R.eilly & Associates, Sebastopol, CA,
1993.

[Kuuo, 1987] Kuno, S. Functional Syntax: Anaphora,

Discourse and Empathy. University of Chicago Press,
OH, 1987.

[Masuoka, 1989] Masuoka, T., and Takubo, Y, Kiso
Nihongo Bunpou. "Basic Japanese Grammar" (in
Japanese), Kuroshio-Shuppan, Tokyo, Japan, 1989.

[Pollack, 1990] Pollack, M.E.
tal attitudes, in Cohen, Morgan and Pollack (Eds.).
Intentions in Communication. The MIT Press, Cam-
bridge, MA, 1990.

[Woods, 1990] Woods, W.A. On plans and plan recogni-
tion: Comments on Pollack and on Kautz, in Cohen,
Morgan and Pollack (Eds.). Intentions in Communi-
cation. The MIT Press, Cambridge, MA, 1990.

Plans as complex men-

HAYASHI 1717

