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A b s t r a c t 

In order to deal w i t h unexpected or illegal 
behavior in mult i -agent systems, under ly ing 
causal models connecting the target system's 
behavior and each agent's behavior are indis­
pensable. In this paper, we present a method 
for generating causal networks, which consist 
of ar i thmet ic and differential relations for ex­
p l ic i t ly defined parameters and impl ic i t l y ex­
ist ing parameters embedded in the target sys­
tem. The task consists of three components: 
1) A macro-behavior rule generator, which pre­
pares impl ic i t parameters and generates the 
rules about system's behavior at macro-level. 
2) A causal network constructor. 3) An expla­
nat ion generator. In the course of this process, 
spatial extents are represented and reasoned 
w i th qual i tat ive regions. We took, as an exam­
ple for this method, the foraging behavior of ant 
colonies, which are typical mobile mult i -agent 
systems w i th a local communicat ion method by 
means of the chemical pheromone. 

1 Introduct ion 
Methods for automat ical ly generating underly­
ing causal relations for mobile mult i -agent sys­
tems, e.g., traffic system, industry f low system, 
are indispensable to reorganize the system's be­
havior and achieve the system's goals efficiently. 
Scientific questions on the complex behavior of 
the mult i -agent systems arise in connection to 
the system's emergent property, i.e., the sys­
tem's behavior can be very complex in spite 
of the simple behavior of each agent. A l though 
we have no way to control such properties com­
pletely, we can understand and explain the be­
havior w i th an under ly ing mathemat ical model, 
by observing the system's behavior and verify­
ing assumptions about the target system. 

In this paper, we propose a method for gen­
erating causal networks among the parameters 
which describe the target mult i -agent system. 
By causal networks, we mean the qual i tat ive 
ar i thmetic and differential relations of param­

eters. A l l of the parameters needed to de­
scribe the target system are not given expl ic i t ly. 
There exist impl ic i t parameters, embedded in 
the target system, which must be salvaged. 
Our method consists of three components: 1) A 
macro-behavior rule generator, which prepares 
impl ic i t parameters and the macro-behavior 
rules. 2) A causal network constructor. 3) 
An explanat ion generator. In the course of 
this process, spatial extents are represented and 
reasoned w i th qual i tat ive regions. 
In the fol lowing section, we i l lustrate an ex­
ample to demonstrate our method, the forag­
ing behavior of ant colonies, which are typical 
mobile mult i -agent systems w i t h a local com­
municat ion method by means of the chemical 
pheromone. 

2 P r o b l e m 

2.1 F o r a g i n g B e h a v i o r o f A n t 
C o l o n i e s 

We selected an ant colony as an example for 
the causal network construct ion because it is a 
typical example of a mobile mult i -agent system. 
It has macro-goals at the colony level which 
must be achieved by the cooperative behaviors 
of the micro-agents. The micro-agents have a 
local communicat ion method w i t h the chemical 
pheromone, but the colony itself has no global 
communicat ion methods. 
It is dif f icult for the target system to have a 
centralized control l ing mechanism (headquar­
ters) because it lacks a global communicat ion 
method. The target system must therefore 
achieve its macro-goals by coordinat ing or t un ­
ing the ind iv idual micro-agent behavior. 
The foraging behavior of an ant colony is the 
organized behavior of the ant society. Th is 
is a typ ica l example of the complex behavior 
of a biological mult i -agent system [Assad and 
Packard, 1992] [Drogoul et a/., 1992]. A l though 
the behavior (a lgor i thm) of each ant is quite 
simple, the colony shows complex foraging be­
haviors, which maximize the bai t t ransport ra-

1750 QUALITATIVE REASONING AND DIAGNOSIS 



t io and minimize the risk caused by environ-
mental disturbance, i.e., cl imate, food competi­
t ion , and so on [Hoelldobler and Wi lson, 1990]. 
In this paper, the model for the foraging be­
havior of each ant is assumed to be as follows, 
shown in Figure l . 1 

[The foraging behavior system of ant colonies] 

1. At any t ime, an ant is in one of these 
modes: search, attracted, trace, or trans­
port. 

2. Search is the default mode. The ant moves 
randomly in search mode. 

3. When an ant in any mode finds a bait-si te, 
i t turns in to transport mode, in which it 
carries a b i t of bait back to the colony's 
nest. Bai t can exist at several bait-
sites. An ts in t ransport mode secrete re­
cru i tment pheromone on their t ransporta­
t ion pa th , which becomes the pheromone 
' t r a i l . ' An ant in t ransport mode turns 
in to search mode when it reaches the nest. 

4. The t ra i l evaporates and diffuses, which 
produces a pheromone atmosphere (We 
call the pheromone atmosphere just 
'pheromone') . 

5. When an ant in search mode comes across 
a pheromone atmosphere, it turns in to at­
tracted mode, in which it is induced by 
the pheromone and moves toward a posi­
t ion of higher pheromone density. If the 
pheromone disappears before the ant in 
at t racted mode find a t ra i l , i t turns into 
search mode. 

6. When an ant in search or attracted mode 
finds a t ra i l , it turns in to trace mode, in 
which it traces the t ra i l in the reverse di­
rection of the nest. If the ant in trace mode 
cannot f ind a bait at the end of t ra i l , it 
turns in to search mode. 

An ant in trace or t ransport mode must be able 
to recognize the direct ion of the nest. There 
are two assumptions about the abi l i ty. The 
first one is that ants can remember the path 
f rom the nest to the current posi t ion. The sec­
ond one is tha t 'nest pheromone1 is being se­
creted at the nest and each ant can recognize 
the direct ion of the nest by the gradient of the 
pheromone density. 
Th is simple a lgor i thm of the ant (agent) imple­
ments the foraging behavior of the ant colony 
(mult i -agent system), i.e., 

1. to f ind the bait-si te(s), 
2. to mobil ize ants in the colony in order to 

carry bait on a large scale, therefore, 
3. to maximize the bait t ransport rat io. 

*The model is not entirely faithful to real ant behavior. 
It represents common aspects of many kinds of ant colonies. 

Notice that this simple agent's a lgor i thm (and 
the colony's strategy) can be easily influenced 
by an environmental disturbance. When more 
than one bait-site exists and all the ants in the 
colony gather to a bait-site simultaneously, en­
emy animals can easily attack the colony. The 
colony might also miss other bait-sites which 
have more bai t than the bait-site current ly un­
der attack. 

(c) Evaporation and diffusion of pheromone. 

Figure 1. The foraging behavior system. 

2.2 N u m e r i c a l S i m u l a t i o n s 
We have carried out numerical simulations of 
the foraging behavior w i t h several sets of pa­
rameters [Nakamura and Kurumatan i , 1995], 
Part of the results of the simulations is shown 
in Figure 2. 
In these simulat ions, a nest exists in the center 
of the environment, and there are eight bait-
sites equidistant f rom the nest. The only dif­
ference between the two is the number of ants 
in the colony. 
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In Figure 2(a), there are 60 ants searching for 
8 bait-sites. Some ants actual ly f ind a bait-
site and generate a pheromone t ra i l between 
the bait-site and the nest. Since the t ra i l evap­
orates more quickly than the other ants gather 
to the t ra i l , continuous growth of the t ra i l 
and continuous large-scale t ransport are not 
achieved. In Figure 2(b), there are 600 ants. 
They are able to gather to the t ra i l , and large-
scale t ransport is achieved. The results indicate 
that there must be a large enough number of 
ants in the colony to overcome the t ime-delay 
between the gathering speed of the ants and the 
evaporat ion/di f fusion speed of the pheromone. 

In Figure 2(b), almost all of the ants gather to 
bait-site number 5. The colony basically "for­
gets" the other bait-sites. Ac tua l ly the same 
phenomenon that all the ants gather to only 
one bait-site is observed under almost al l pa­
rameters whenever large-scale t ransport is re­
alized. The reason is tha t there is a posit ive 
feedback in the differential relations of the sys­
tem parameters, i.e., the number of ants gath­
ering to a bait-si te, the amount of secreted 
pheromone by the ants, and the amount of 
evaporated pheromone atmosphere which at­
tracts the ants. 

In the fo l lowing section, we present a method 
for generating causal networks, which can be 
used to explain such phenomena. 

3 Generating Causal Networks 
Our approach is to prepare fragments of knowl ­
edge about the system's behavior at macro 
level, called macro-behavior rules, and then to 
generate causal networks using the rules. A 
part of macro-behavior rules are generated f rom 
the description of the problem, w i t h salvaging 
impl ic i t parameters. 
Our method has the advantages tha t 1) spatial 
extents can be represented and reasoned sym­
bol ical ly, therefore par t ia l differential equations 
(e.g., diffusion) can be handled in qual i tat ive 
(symbolic) manner, 2) impl ic i t parameters can 
be found and used to generate causal networks, 
and 3) the generated causal networks can be 
used to generate explanat ion or reorganize the 
target mult i -agent system, e.g., suppressing the 

Since our aim is not to represent such regions 
precisely ( i t can be done by numerical simula­
t ions), we represent their characteristic proper­
ties symbolical ly, to reason about the behavior 
of the target systems. 
A l though one method for representing the char­
acteristic properties is to describe the bound-
aries of a region qual i tat ively [Kurumatan i , 
1990], in this paper, we use only the area of 
a region, the amount of ent i ty included in a 
region, and their qual i tat ive changes, in addi­
t ion to describing the topological relationships 
among regions. From the computat ional point 
of view, defining a new qual i tat ive region pro­
ceeds as fol lows: 

• Define a symbol (atom) for the region. 
• Define the class of the region. The class 

has the descriptions about instance re­
gions, including the changing manner of 
the region (equation type), i.e., diffusion, 
evaporation, constant, and so on. 

• The characteristic properties (qual i tat ive 
variables) of the region, i.e., 

area(region) 
total amount (region) 
average.amount(region) 

2 I f more than one such region exists, reg ion (f, 1, +) 
denotes separated regions r1 , r 2 . . . . , m . 
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are prepared and can be used in the re­
maining reasoning process. 

• Topological relations between two regions 
and the dynamically changing status of a 
region, i.e., 

i d e n t i c a l ( r a , r b ) , i s o l a t e d ( r a , r b ) , 
i n t e r s e c t ( r a , r b ) , i n c l u d e ( r a , r b ) , 
no_change(r) , 
expand ing( r ) , s h r i n k i n g ( r ) 

will be used in the remaining process. 

3.2 M a c r o - B e h a v i o r R u l e s ( 1 ) 
- a b o u t A g e n t s 

A causal network is a graph representing the 
causal relations among the variables, on which 
qualitative values (+, 0, -) are propagated to 
generate explanations. A part of the variables 
are included in the definition of the problem, 
and the rest of them are introduced by the rea-
soner. 
The nodes of the graph represent parameters 
and characteristic properties at "macro-level," 
i.e., at the description level of the whole target 
system, rather than each agent (the behavior of 
each agent is described at "micro-level"). The 
arcs are labeled by the qualitative relation of 
adjacent nodes. 
For instance, in a situation where ants in search 
mode come across a pheromone atmosphere 
and they switch to attracted mode, the tran-
sition ratio (frequency) of the ants from search 
mode to attracted mode is qualitatively propor­
tional to the density (population) of the ants 
in search mode, and also to the area of the 
pheromone atmosphere, described by,3 

MO+(trans_rate(search, a t t r a c t e d ) , 
popu la t i on (sea rch ) ) . 

MO+(trans_rate(search, a t t r a c t e d ) , 
a rea(phero) ) . 

These notations are a part of the causal net­
work, which is generated by a macro-behavior 
rule. The rule is a fragment of knowledge about 
the macro-behavior, describing the situation in 
which the rule is activated, and the effect of the 
activation. For instance, the rule about tran­
sition from search mode to attracted mode is 
written in the form of predicate: 

t r a n s i t ( s e a r c h , a t t r ac ted ) : -
/ * cond i t i on f o r a c t i v a t i o n * / 
region(Search, search_region) , 
reg ion(Phero, phero_reg ion) , 
i n te rsec t (Search , Phero), 

3 M0+ is a 'monotonic' function. M0+(a,b) means that a 
is qualitatively proportional to b, i.e., da/db is positive, and 
a = 0 when 6 = 0 . I+(a, b) means that a is qualitatively 
influenced by b, i.e., [da/dt] = ... + [b] ... , where [z] is the 
sign of x. 

/ * reg ion r e l a t i o n s * / 
gensym(at t racted_. A t t r a c t e d ) , 
asser tz ( 

r e g i o n ( A t t r a c t e d , a t t r a c t e d . r e g i o n ) ) , 
asser tz ( inc lude(Phero , A t t r a c t e d ) ) , 

/ * quan t i t y r e l a t i o n s * / 
ass ertz(m_zero_plus( 

t rans_ra te(Search , A t t r a c t e d ) , 
popu la t i on (Search ) ) ) , 

ass ertz(m_zero_plus( 
t rans_ra te(Search , A t t r a c t e d ) , 
a rea(Phero) ) ) . 

Since search in this rule is a qualita­
tive region representing the spatial distribu­
tion of search mode ants in the environ­
ment, popu la t ion(search) is equivalent to 
total_amount(search). The former is an alias 
of the latter, just for distinguishing the distri­
bution of agents from the physical entity. 

3.3 R u l e G e n e r a t i o n 

The macro-behavior rules about agents are gen­
erated at the beginning of the whole reason­
ing process. In the course, the implicitly exist­
ing variables in the system needed to generate 
causal networks are defined. 
The rule generator receives an automaton con­
sisting of the set of modes and the conditions of 
mode transition. It processes each condition of 
mode transition from X to Y, written in prolog 
predicate form, such as: 

t rans_cond i t i on (X , Y) :-
i n ( p o s i t i o n ( X ) , r e g i o n ( Z ) ) , 

where Z is a name of class region appeared in 
the problem description, e.g., physical entity 
( t r a i l , phero, ...) or mode name (search, ...). 
The corresponding macro-behavior rule is gen­
erated by rewriting the above form. This pro­
cess includes: 

• Introducing predicates for denning a new 
region and topological relations, e.g., 
reg ion(Y, class_region_name). 
i nc lude (Z , Y) . 

• Defining implicit variables, e.g., 
transjraie(X, Y) 

• Adding qualitative relations, e.g., 
MO+(trans_rate(X, Y ) , popu la t ion (X) ) 
MO+( t rans . ra te (X , Y ) , a r e a ( Z ) ) . 

Although this part can be regarded as an ab­
stracted version of the translation technique 
discussed in [Rajamoney and Koo,-1990], spa­
tial extents and implicit parameters can be han­
dled by our method. 
Because our targets are limited to 'mobile' 
multi-agent systems, our translation technique 
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can exploit the metric of Euclidean spaces. In 
other words, there is a simple mapping between 
position (point) at micro-level and spatial ex-
tent (region) at macro-level. That's why the 
above procedure can be applied to each condi­
tion of mode transition. 

3.4 M a c r o - B e h a v i o r R u l e s ( 2 ) 
- a b o u t P h y s i c a l E n t i t y 

Al l physical entities appearing in our problem 
(pherornone, trail) are described at the macro-
level, i.e., 

r eg ion (phe ro_ l , phero_region) . 
equat ion_type(phero_region, d i f f u s i o n ) . 

where the latter predicate indicates that a re­
gion in the class phero_region changes gov­
erned by a diffusion equation. 
The macro-behavior rule for such a physical en­
t i ty depends only on the equation type govern­
ing the entity, e.g., the rule for a diffusing entity 
is written as follows: 

s o l v e ( d i f f u s i o n ) : -
reg ion(R, C lass) , 
equat ion_type(Class, d i f f u s i o n ) , 
asser tz (expanding(R)) , 
asser tz ( i_minus( to ta l_amount (R) , 

d i f f u s i o n _ r a t e ( R ) ) ) . 

When generating causal networks, such a rule 
is used to check the equation type of a certain 
physical entity, and to reason about the change 
of concerning parameters, after defining im­
plicit variables such as dtffusion-rate(phero_l). 

3.5 C o l l e c t i n g Q u a l i t a t i v e 
R e l a t i o n s 

The reasoner receives 1) behavior of the agents, 
2) descriptions of the environment, and 3) the 
initial state of the target system. 
First of all, the reasoner generates macro-
behavior rules about agents. 
The environment should be described with 
qualitative regions. The macro-behavior rules 
about physical entity check the equation type of 
an entity in the environment, and reason about 
the changes of its characteristic properties. 
Both types of macro-behavior rules are a collec­
tion of the declaration "how the target system 
behaves in a certain situation" described at the 
macro-level. We reason about the target sys­
tem's behavior using the following process: 

1. Set the init ial state to the current-state. 
2. Apply the macro-behavior rules to the cur­

rent-state, and determine the rule to be­
come active. 

3. If there is no rule which can be activated, 
stop. 

4. Collect the qualitative (causal) relations of 
parameters in the activated rules, i.e., gen­
erating the causal network corresponding 
to the current state. 

5. Examine the possibility for each param­
eter to cross the landmark, and also ex­
amine the possibility that topological rela­
tions change (spatial version of limit anal­
ysis). 

6. Collect the fragments of the next state in 
the activated rules, and set it to the cur-
rent.state. 

7. Go to 2. 
This process resembles one from qualitative 
process theory [Forbus, 1984] [Falkenh ainer and 
Forbus, 1988]. The differences are that 1) the 
macro-behavior rule, which corresponds to in-
dividual view and process in qualitative process 
theory, is generated by the reasoner, in addition 
to defining implicit parameters, and 2) spatial 
extents, such as pherornone diffusion, can be 
represented and reasoned about with qualita­
tive regions. 
Main part of a generated causal network is 
shown in Figure 4. This network corresponds 
to a state in Figure 2(b) after a large enough 
number of ants are attracted by the pherornone, 
trace the trail, and transport the bait while se­
creting recruitment pherornone. 
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pheromone is expanding. 
t r a n s i t i o n from search to a t t r a c t e d 
i s p o s i t i v e . 
t r a n s i t i o n from a t t r a c t e d t o t race 
i s p o s i t i v e . 
t r a n s i t i o n from t race t o t r anspo r t 
i s p o s i t i v e . 

pheromone i s expand ing . 

In the generated explanat ion, the reasoner finds 
a posit ive feedback among the parameters. 
Th is means that there is a possibi l i ty that the 
pheromone atmosphere and the gathering ant 
populat ion wi l l grow exponential ly. 
The fact tha t the reasoner can find such a 
causal relation in the target system is impor­
tan t , because we can use the results in order to 
redefine each agent's behavior. 
The system presented in this paper is im ­
plemented in SICStus Prolog (ver.2.1) on a 
SPARCstat ion20. 

5 Discussion 
The relationship between the complex behavior 
of mult i -agent systems and each agent's behav-
ior has been par t ia l ly investigated [Ray, 1991], 
but they lack the abi l i ty of prov id ing under­
ly ing mathemat ical models. Stat ist ical anal­
ysis for system behavior w i th a fixed simple 
agent behavior [Axelrod, 1984] can describe 
the statist ic relationship between agent's be­
havior and system's behavior, e.g., d is t r ibut ion 
of agent in the environment. Since both of 
them lack causal relations, explanation genera­
t ion and reorganization are impossible. 

6 Conclusion 
A method for generating causal networks for 
mobile mult i -agent systems has been discussed. 
Our method consists of generating macro-
behavior rules whi le salvaging impl ic i t parame­
ters, then construct ing causal networks among 
system parameters. Spatial extents are repre­
sented and reasoned w i th qual i tat ive regions, 
in the course of the process. 
Th is method was applied to the explanat ion 
generation of the foraging behavior of ant 
colonies. 
Since the causal network represents the un­
derlying mathematical structures of the tar­
get system, the reasoner can find the macro 
properties of the target system, such as posi­
t ive/negat ive feedbacks embedded in the target 
system, which can be used in redefining each 
agent's behavior. 

Potent ia l applications include cargo-control 
system, traffic navigat ion, industry f low con­
t ro l , and so on. 
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