
Scaling up Self-Explanatory Simulators: Polynomial-time Compilation

Kenneth D. Forbus
The Institute for the Learning Sciences

Northwestern University
1890 Maple Avenue, Evanston, I L ,

60201, USA

Abstract
Self-explanatory simulators have many potential applica­
tions, including supporting engineering activities, intelligent
tutoring systems, and computer-based training systems. To
fully realize this potential requires improving the technol­
ogy to efficiently generate highly optimized simulators.
This paper describes an algorithm for compiling self-
explanatory simulators that operates in polynomial time. It
is capable of constructing self-explanatory simulators with
thousands of parameters, which is an order of magnitude
more complex than any previous technique. The algorithm
is fully implemented, and we show evidence that suggests
its performance is quadratic in the size of the system being
simulated. We also analyze the tradeoffs between compil­
ers and interpreters for self-explanatory simulation in terms
of application-imposed constraints, and discuss plans for
applications.

1. Introduction
Self-explanatory simulators [1,2,3,4] integrate qualitative
and quantitative knowledge to produce both detailed de­
scriptions and causal explanations of a system's behavior.
They have many potential applications in intelligent tutor­
ing systems and learning environments [5, 6] and engineer­
ing tasks [7,8]. One step towards realizing this potential is
developing techniques that can operate efficiently on sys­
tems involving many hundreds of parameters, so that, for
instance, complex training simulators can be generated
automatically. This paper describes a polynomial-time
method for compiling self-explanatory simulators and
shows that it operates successfully on models larger than
most industrial applications require. This paper considers
only initial-value simulations of lumped-element (ordinary
differential-algebraic) systems.

Section 2 reviews the basics of self-explanatory simula­
tors. Section 3 describes our new polynomial-time compi­
lation technique. Section 4 outlines the complexity analysis
and Section 5 summarizes empirical results, including evi­
dence that its performance is quadratic in the size of the
system being simulated. Section 6 identifies tradeoffs in
constructing self-explanatory simulators in light of task re­
quirements. Section 7 outlines our plans for future work.

2. Self-Explanatory simulation: The basics
Traditional numerical simulators generate predictions of
behavior via numerical computation using quantitative
models of physical phenomena. Most simulators are written
by hand, although an increasing number are generated by

Brian Falkenhainer
Modeling Research Technology Area

Xerox Wilson Center MS 128-28E
800 Phillips Road, Webster, NY,

14580, USA

domain-specific toolkits. Modeling decisions, such as what
phenomena are important to consider, how does the phe­
nomena work, how can it be modeled quantitatively, and
how to implement the quantitative model for efficient com­
puter solution, are mostly made by hand. Domain-specific
toolkits provide reasonable solutions to the last two prob­
lems, and with appropriate libraries they can simplify the
first problem. However, the choices of how to translate the
physical description into the conceptual entities supported
by the toolkit, and which quantitative model to use from the
library to model an entity, are still made by hand. Moreo­
ver, no existing toolkit provides the intuitive explanations
used by scientists and engineers to describe how a system
works. These intuitive, qualitative descriptions serve sev­
eral important purposes in building and working with
simulations. First, they guide the formulation of quantita­
tive models by identifying what aspects of the physical
situation are relevant. Second, qualitative descriptions are
used to check the results of a simulation, to ensure that it
"makes sense." Thus two advantages of self-explanatory
simulation are increased automation and better explana­
tions [1].

Self-explanatory simulators harness the formalisms of
qualitative physics to automate the process of creating
simulators. Given an initial physical description, a qualita­
tive analysis of the situation reveals what conceptual entities
are relevant to the task and what causal factors affect a pa­
rameter under different circumstances. This information is
then used, in concert with quantitative information in the
domain theory, to construct numerical simulation programs
for the system. By incorporating explicit representations of
conceptual entities (such as physical processes) in the
simulator, causal explanations can be given for the simu­
lated behavior. Moreover, the qualitative representations
allow automating some of the "reality checks" that an expert
would apply in evaluating a simulation. For instance, a
simulation of a fluid system which reported a negative
amount of liquid in a container is not producing realistic
results. This ability is called self-monitoring.

Figure I shows a typical architecture for self-
explanatory simulators. The state vectors are arrays of
floating point and boolean values describing the state of the
system at a particular point in time. The floating point val­
ues represent the values of continuous parameters, such as
pressure and velocity. The boolean values represent the
validity of statements about the physical system at that time,
e.g., if liquid exists inside a container or if a particular
physical process is acting. Given a state vector and a time

1798 QUALITATIVE REASONING AND DIAGNOSIS

increment, the evolver generates a state vector representing
the state of the system after that time increment.

In many physical systems, the equations governing the
temporal evolution of the system's behavior can themselves
change, as when phase changes occur or flows start and
stop. These changes occur at limit points, which mark the
boundaries between qualitatively distinct behaviors. The
transition finder (again see Figure 1) detects the occurrence
of l imit points. The controller uses the transition finder and
evolver to " ro l l back" the simulation to include all l imit
points in the simulated behavior. This increases the accu­
racy of the simulation because it ensures that the appropriate
sets of equations are always used, and increases the accu­
racy of explanations because it ensures that causally impor­
tant events (e.g., reaching a phase transition) are included in
the simulated behavior. The controller also is responsible
for recording a concise history describing the system's
qualitative behavior over time. This concise history is used
in conjunction with a structured explanation system [9] to
provide hypertext explanations of the system's behavior
over time, including physical, causal, and mathematical
descriptions. The nogood checker generates a warning if
qualitative constraints are violated by a state vector, thus
providing self-monitoring.

The first systems to generate self-explanatory simulators
were compilers, doing all reasoning off-l ine to produce
software that approached the speed of traditional simulators
while providing causal explanations and self-monitoring.
These compilation strategies were computationally expen­
sive. SIMGEN M K l [1] used envisioning, an exponential
technique, for its qualitative analysis procedure.

SIMGEN MK2 [2] exploited the observation that simu­
lation authors never explicitly identify even a single global
qualitative state of the system being simulated, hence
qualitative simulation is unnecessary for simulation con­
struction. Qualitative analysis is still necessary to deter­
mine what physical phenomena are relevant, for instance,
but most exponential reasoning steps could be eliminated.
SIMGEN Mk2 could construct simulators of systems larger
than any envisioning-based system ever could (i.e., involv­
ing up to hundreds of parameters), such as a twenty stage
distillation column [10]. This advance in capabilities was
not free: The tradeoff was that some explanatory capabili­
ties (i.e., efficient counterfactual reasoning) and self-
monitoring capabilities (i.e., the guarantee that every nu­
merical simulator state satisfied a legal qualitative state)
were lost in moving from SIMGEN M k l to SIMGEN Mk2.
As Section 3 explains, even SIMGEN Mk2 was subject to
combinatorial explosions, because it was based on an
ATMS. The techniques in this paper trade away more self-
monitoring to achieve polynomial-time performance.

An alternative to compil ing self-explanatory simulators
is to build interpreters that interleave model-building,
model translation into executable code, and code execution
[3,4]. For example, PIKA [4] uses Mathematica and a
causal ordering algorithm to decompose a set of equations
into independent and dependent parameters and find an or­
der of computation. Every state transition which changes
the set of applicable model fragments reinvokes this reason­
ing to produce a new simulator. ([11] uses an incremental
constraint system to minimize this cost.) One motivation for

interpreters was the perceived slowness of compiler tech­
niques; by only building models for behaviors that are
known to be relevant, presumably the overall time from
formulation of the problem to the end of simulation would
be reduced, even though the simulation time itself might be
longer due to run-time reasoning. Such systems are not
themselves immune from combinatorial explosions, and
have never been tested on examples as large as compilers
(c.f. [10]), but on small examples interpreters can exhibit
impressive performance.

It should be noted that the claim that PIKA is "5,000
times faster than SIMGEN M K 2 " [4] is problematic, for
three reasons. First, the domain theories used by each sys­
tem were completely different. PIKA used just two model
fragments, with built-in quantitative models containing ex­
ample-specific numerical constants. This is not realistic. By
contrast, in keeping with the goal of increased automation,
the domain models used in SIMGEN M K 2 were similar to
others used in qualitative physics, with quantitative infor­
mation added modularly. For instance, parameters such as
f luid and thermal conductances and container sizes and
shapes are explicit variables in our models that can be set by
the simulation user at run-time. Second, the hardware and
software environments used by the two systems were com­
pletely different, making the comparison figures meaning­
less. Finally, the factor of 5,000 claimed is based on one
example only; the other example for which even roughly
comparable data is available shows a difference smaller by a
factor of 10.

3. SIMGEN M K 3 : Compiling self-explanatory
simulators in polynomial-time

We have developed a polynomial-time algorithm for
compiling self-explanatory simulators. The improvements
in complexity are purchased at the cost of reduced self-
monitoring and less compile-time error checking. However,
the ability to quickly generate simulators for systems con­
taining thousands of parameters suggests that these costs are
worth it. Here we outline the algorithm and explain how it
works. We begin by describing why using an A T M S [16]
was the source of exponential behavior in SIMGEN M K 2 .
Next we examine the inference services needed to generate
simulators, and show polynomial-time methods for achiev­
ing them. Finally, we outline the algorithm.

F0RBUS AND FALKENHAINER 1799

3.1 ATMS: The exponential within
ATMS' are often used in qualitative reasoning when many
alternative situations are being explored [12]. A qualita­
tive state can be defined as a set of assumptions and their
consequences, so that states (and partial states) can be con­
cisely represented by ATMS labels [13]. The labels in an
ATMS database provide a simple and elegant inferential
mechanism for simulation generation. For instance, the
code needed to generate the truth of a proposition could be
generated by interpreting the label as a disjunction of con­
junctions, with each assumption becoming a procedural test.
(For instance, the boolean corresponding to a particular
liquid flow occuring might be set to TRUE if the boolean
corresponding to the fluid path being aligned was TRUE
and the numerical value for the pressure in the source were
greater than the numerical value for the pressure in the des­
tination.) Labels for causal relationships were used to infer
what combinations of them could occur together, and hence
what mathematical models were needed. (For instance, there
can be several distinct models for flow rates, depending on
whether or not one is considering conductances, but no two
of these models can ever hold at the same time.) Using la­
bels made certain optimizations easy, such as proving that
two distinct ordinal relationships were logically equivalent
and thus allowing the same test to be used for each, which
enhances reliability. (For example, in a spring-block oscilla­
tor the relationship between the length of the spring and its
rest length determines the sign of the force.)

Unfortunately, even when we did not perform qualita­
tive simulation at all, the number of environments generated
by the ATMS grew exponentially with the size of the sys­
tem modeled. Empirically, we found that the source of this
growth was the transitivity inference system, whose job it is
to infer new ordinal relationships via transitivity and mark
as inconsistent combinations of ordinal relations that violate
transitivity. This makes sense because dependency net­
works in which assumptions are justified by other assump­
tions, and especially those containing cycles, lead to expo-
nential label growth [14]. The majority of assumptions in a
typical analysis are ordinal relations, and cyclic dependen­
cies are inherent in transitivity reasoning. Transitivity rea­
soning cannot be avoided when using an ATMS in simula­
tion generation, because without it the labels wil l include
impossible combinations. We conclude that the ATMS
must be abandoned to generate simulators in polynomial
time.

3.2 How to get what you really need without
exponential performance

What is the minimum reasoning needed to generate a simu­
lator for a physical scenario? (1) The model fragments of a
domain theory must be instantiated to identify the relevant
physical and conceptual entities and relationships (e.g., the
existence of contained fluids and phase change processes).
(2) The causal and quantitative relationships that follow
from them must be determined, to generate the appropriate
causal accounts and mathematical models (e.g., models that
allow the level of a liquid to be computed given its mass,
density, and specifications of its container). (3) The truth
values of propositions corresponding to these relationships

holding and/or entities existing (e.g. whether the liquid ex­
ists at a particular time, and if so, what processes are acting
on it) must be inferred to control the operation of the quanti­
tative models. The performance of any compiler and the
quality of the code it produces depends on how these ques­
tions are answered. For instance, if the shape of a container
can be fixed at compile-time, then the model for liquid level
depending on that shape can be "hard-wired," but if the
shape is unknown, a run-time conditional must be inserted
and code representing alternative models generated.

Three techniques provide the inferential services needed
for polynomial-time simulation generation. (1) Reification
of antecedents: When instantiating model fragments, create
explicit assertions concerning their antecedents, in addition
to installing the appropriate dependency network. One ex­
ample is
((l i q u i d - f l o w (C-S w a t e r l i q u i d f) P1 G)

:ANTECEDENTS
(:AND (> (A (a m o u n t - o f - i n w a t e r l i q u i d F)) ZERO)

(a l i g n e d PI)
(> (A (p r e s s u r e (C-S w a t e r l i q u i d f))

(A (P ressu re G)))))
(The creation of such assertions is automatic, and is

transparent to the domain modeler.) Such reified antece­
dents are also generated for causal relations and mathemati­
cal models. These antecedent assertions are used by the
compiler in generating truth value tests for propositions. (2)
Symbolic evaluation: If the truth value of a proposition is
known at compile-time, it is presumed to hold universally.
For instance, if a valve is known to be open at compile-
time, the simulator produced should always presume the
valve is open, but otherwise the simulator should include
explicit tests as to whether or not the valve is open and
change its operation accordingly. A simple symbolic
evaluator provides this information, using the reified ante­
cedents and a logic-based TMS [16]. Given a proposition, it
returns TRUE, FALSE, or MAYBE, according to whether
the proposition is universally true, universally false, or can
vary at run-time. (3) Deferred error checking: Finding
errors at compile-time can require exponential work. One
example is proving that exactly one of the quantitative
models for a specific phenomena must hold at any given
simulated time. Such exponential inferences can be avoided
by substituting run-time conditionals. For instance, if there
are N mathematical models of a phenomena, insert a condi­
tional test that runs the appropriate model according to the
simulator's current parameters, and signals an error if no
model is appropriate. This reduces self-monitoring, in that
finding such problems at compile-time would be useful.
However, this solution is common practice in building stan­
dard simulators when its behavior might enter a regime for
which the author lacks a good mathematical model.

3.3 The SIMGEN M K 3 Algori thm
The algorithm is outlined in Figure 2. It is very similar to
SIMGEN M K 2 (described in [2]), so here we focus on how
the above techniques are used.

Step 1: Creation of the scenario model
As before, we assume domain theories are written in a com-

1800 QUALITATIVE REASONING AND DIAGNOSIS

1. Create scenario model by instantiating model fragments
from domain theory
2. Analyze scenario model to define simulator state vector
and constituents of concise history and structured

explanation system.
2.1 Extract physical and conceptual entities
2.2 Define boolean parameters for relevant

propositions
2.3 Define numerical parameters and relevant

comparisons
2.4 Extract influences to create causal ordering

3. Write simulator code
3.1 Simplify antecedents of boolean parameters
3.2 Compute update orders

3.2.1 For numerical parameters,
use causal ordering

3.2.2 For boolean parameters,
use equivalences and dependencies

3.3 Write evolver code
3.4 Write transition finder code
3.5 Write nogood checker code
3.6 Write structured explanation system

Figure 2: The S1MGEN MK3 Algorithm

positional modeling language, using Qualitative Process
theory [15] for their qualitative aspects. Since the cost of
qualitative reasoning was the dominant cost in SIMGEN
MK.1 and M K 2 , the tradeoffs in this step are crucial. The
source of efficiency in interpreters like PIKA [4] and DME
[3] is that they appear to do no qualitative reasoning beyond
instantiating model fragments directly corresponding to
equations.

Step 1 uses a qualitative reasoner to instantiate model
fragments and draw certain trivial conclusions (i.e., if A>B
then A=B). No transitivity reasoning, influence resolu­
tion or limit analysis is attempted. We use TGIZMO, a pub­
licly available QP implementation [16] for our qualitative
reasoner. We modified it in two ways. First, the pattern-
directed rules that implement many QP operations were
simplified, stripping out inferences not needed by the
compiler. Second, we implemented antecedent reification
by modifying the modeling language implementation to
assert antecedents explicitly in the database as well as pro­
ducing LTMS clauses.

Step 2: Constructing the simulator's state
Here the results of qualitative analysis are harvested to
specify the contents of state vectors, the concise history, and
the explanation system. The numerical parameters are the
quantities mentioned in the scenario model. Boolean pa­
rameters are introduced for relevant propositions: the exis­
tence of individuals (EXISTS) and quantities (QUANTITY), the
status of processes and views (ACTIVE), and any ground
propositions mentioned in their antecedents, recursively
(except ordinal relations, which are computed by comparing
numerical values). Each boolean parameter has an associ­
ated antecedents statement, a necessary and sufficient
condition for the truth of the corresponding proposition.

As noted above, any proposition known to be true in the
scenario model is presumed to hold universally over any use
of the simulator. The compiler does not generate simulator
parameters for such propositions, although they are still
woven into the explanation system appropriately. Every
proposition whose truth value is not known in the scenario
yields a boolean parameter whose value must be ascertained
at run-time. This technique allows the compiler to produce
tighter code by exploiting domain constraints and user hints.
The symbolic evaluator decides what propositions are static
and simplifies antecedents containing them.

Step 3: Wri t ing the simulator code
To achieve flexibility compositional modeling demands
decomposing domain knowledge into small fragments. This
can lead to long inference chains, which if proceduralized
naively, would result in simulators containing redundant
boolean parameters and run-time testing. Step 3.1 simpli­
fies inference chains in order to produce better code. We
use two simplification techniques; (1) Symbolic evaluation
exploits compile-time knowledge to simplify expressions
and (2) A minimal set of boolean parameters is found by
dividing them into equivalence classes, based on their ante­
cedents. That is, if a proposition A depends only on B, and B
in turn depends only on C, and C either has an empty ante­
cedent or an antecedent with more than one ground term,

then A, B, and C would be in the same equivalence class,
and C would be its canonical member. Each equivalence
class is represented in the simulation code by a single boo­
lean parameter, although all original propositions are re­
tained in the explanation system to maintain clarity.

In Step 3.2, the state space assumption, common in en­
gineering and satisfied by QP models [17], guarantees we
can always divide the set of parameters into dependent and
independent parts, with the independent parameters being
those which are directly influenced (or uninfluenced) and
with the dependent parameters computed from them. To
gain a similar guarantee for boolean parameters we stipulate
that the domain theory is condition grounded [18], an as­
sumption satisfied by all domain theories we have seen in
practice. An independent boolean parameter mentions no
other boolean parameters in its antecedents. It could be uni­
versally true or false, or its value could be determined at
run-time by ordinal relations (e.g., the existence of a con­
tained liquid depending on a non-zero amount of that sub-
stance in liquid form in the container) or by the simulation
user's assumption (e.g., the state of a valve). A boolean
parameter that is not independent is dependent. The logical
dependencies between boolean parameters define an order­
ing relation that can be used as the order of computation for
them.

The overall structure of the code produced by the com­
piler in steps 3.3 through 3.5 is the same as in SIMGEN
M K 2 . The only change in step 3.6 is taking into account the
simplifications in the boolean parameters, which is simple
so we ignore it here. In evolvers, the effects of direct influ­
ences are calculated first to estimate derivatives, the de­
pendent numerical parameters are then updated, followed by
the boolean parameters. The main impact of restricted in-
ferencing in writing evolvers arises in selecting quantitative
models for updating dependent numerical parameters. For
instance, a domain theory may have two quantitative mod-

FORBUS AND FALKENHAINER 1801

els for the level of liquid as a function of mass, depending
on whether the container is cylindrical or rectangular. If the
compiler knows the shape of the container (via symbolic
evaluation) it can install the appropriate model, otherwise it
must provide both models in the simulator and write a run­
time conditional. The compiler must also handle models in
which the equations governing a quantity vary over time. In
SIMGEN MK2 these cases were handled by using influence
resolution to see what combinations of qualitative propor­
tionalities could co-occur, constructing appropriate quanti­
tative models for each combination or signaling a compile-
time error if the domain theory failed to include an appro-
priate quantitative model. In SIMGEN M K 3 we instead re­
trieve all the quantitative models for a parameter not ruled
out via symbolic evaluation and write code that selects the
relevant model based on evaluating the models' antecedents
in the current state vector. The evolver code includes a test
for none of the known models being relevant, and generates
a run-time error in such cases.

In generating transition finders, restricted inference can
lead to moot run-time tests, corresponding to physically
impossible transitions. However, symbolic evaluation
catches most of them, and this is not a serious drawback
because inequality tests are very cheap. Generating nogood
checkers is simplified: Previous compilers generated code
based on ATMS nogoods to detect impossible behaviors.
Much effort was wasted filtering the nogoods, since the vast
majority of them were transitivity violations, which are ir­
relevant when ordinal relations are computed from known
numerical parameters. SIMGEN M K 3 simply uses the sym­
bolic evaluation procedure to see what ordinal relations are
known to be impossible and test for those.

4. Complexity Analysis
A detailed complexity analysis is beyond the scope of

mis paper (but see [19]); here we settle for proving that the
algorithm is polynomial.
Step 1: The only exponential behavior in previous compil­
ers occurred in mis step, so its complexity is crucial. The
time complexity is the sum of the time to instantiate model
fragments and the time to draw conclusions with them. The
cost of instantiation can be decomposed into two factors:
The cost of pattern matching, and the size of the description
produced by the operation of the system's rules. The cost of
pattern-matching is polynomial in the number of antece­
dents [16]. We assume that both the scenario model and the
domain theory are finite, and that the number of new enti­
ties introduced by the domain theory for any scenario model
is a polynomial function of the size of the scenario model.
Domain theories with exponential, or even unbounded,
creativity are possible in theory [18], but never appear in
practice.

The number of clauses instantiated about any particular
statement is bounded by a polynomial, since it is a function
of (a) the number of relevant domain theory statements,
which is always small and certainly independent of the size
of the scenario and (b) the number of entities introduced is
polynomial. Since the work of instantiation is the product
of the number of instantiations and the work to perform
each, the instantiation process is polynomial-time. Fur­
thermore, the dependency network so created is polynomial

in size, as a function of the size of the domain theory and
scenario model. This means that the cost of inference re­
mains polynomial in these factors, since we use an LTMS,
for which the cost of inference is worst-case linear in the
size of the dependency network [16]. We thus conclude
that the time and space complexity of this step is polyno­
mial.
Step 2: Most of the work in this step consists of fetching
information from the TGIZMO database and constructing
corresponding internal compiler datastructures, which is
obviously polynomial time. The only other potentially
expensive part of this computation is the symbolic evalua­
tion procedure. Symbolic evaluation of a ground term is
performed by checking its LTMS label, which is constant
time. Symbolic evaluation of a compound expression is a
recursive analysis of the structure of the expression, ending
in ground terms. The size of expressions is determined by
the antecedents in the domain theory, and thus for any do­
main model a maximum size can be found for such expres­
sions independent of the size of the scenario model. Ergo
symbolic evaluation is also polynomial in the size of the
scenario model.

Step 3: Each of these computations involves simple
polynomial-time operations (see [2]), the most expensive
being sorting the numerical parameters via the causal order­
ing, sorting the boolean parameters via logical dependen­
cies, and computing the equivalence classes for boolean
parameters. Al l of these are simple polynomial-time opera­
tions, operating over datastructures whose size is polyno-
mial in the initial scenario description, so they are polyno­
mial time as well.

1802 QUALITATIVE REASONING AND DIAGNOSIS

5. Empirical Results
S IMG EN M K 3 is fully implemented, and has been tested

successfully on the suite of examples described in [2]. In all
cases it is substantially faster than SIMGEN M K 2 , as Table
I shows. The simulators it produces, like those of SIMGEN
M K 2 , operate at basically the speed of a traditional numeri­
cal simulator, with the only extra run-time overhead being
the maintenance of a concise history for explanation gen­
eration. Currently the compiler's output is Common Lisp
without any numerical declarations, and even with this per­
formance handicap, the simulators it produces run quite
well on even small machines (i.e., Macintosh Powerbooks).

To empirically demonstrate that SIMGEN M K 3 ' S per­
formance is polynomial time, we generated a set of test ex­
amples similar to those used in [2]. That is, a scenario de­
scription of size n consists of an n by n grid of containers,
connected in Manhattan fashion by fluid paths. Figure 3
illustrates for the three by three case. We generated a se­
quence of scenario descriptions, with n ranging from 2 to
10. (The reason we chose 10 as an upper bound is that the
simulator which results contains just over 2,400 parameters,
which is roughly three times the size of the STEAMER en­
gine room numerical model [20].) Extending the domain
theory in [16], contained liquids include mass, volume,
level, pressure, internal energy, and temperature as dynami­
cal parameters, as well as other static parameters (e.g.,
boiling temperature, specific heat, density). Containers can
be either cylindrical or rectangular, with appropriate nu­
merical dimensions in each case. The liquid flow process
affects both mass and internal energy. We then ran the
compiler to produce simulators for each scenario, to see
how its performance scaled. The results are show in Table
2. In an n x n grid scenario, there are n containers and
2[n2~n] fluid paths, so the numbers of parts in these exam­
ples ranges from 8 to 280. The count for quantities includes
both static and dynamic parameters, and the count for boo-
leans includes both conditions controllable by the user (e.g.,
the state of valves) and qualitative state parameters, such as
whether or not a particular physical process is occurring.
The proposition count is the number of statements in the
simulator's explanation system.

The theoretical analysis in previous sections suggests
that the compile time should be polynomial in the number
of parts in the system. A least-squares analysis indicates
that this is correct: A quadratic model {0.017P2 + 0.399P +
4.586, where P is the number of containers and paths) fits
this data nicely, with X2 = 0.03. Additional evidence for
quadratic performance is found in Table 3, which shows the
compiler's performance on examples constructed out of
linear chains of containers. A chain of length N has 2N-1
parts, i.e., N containers and N-l fluid paths. Figure 4 illus­
trates. A least-squares analysis indicates again that a quad­
ratic model (0.018P2 + 0.554P + 0.228, where P is the
number of containers and paths) fits this data well, with X2

= 0.004.

6. Tradeoffs in Self-Explanatory Simulators:
Compilers versus Interpreters
Different applications entail different tradeoffs: Some po-
tential users have powerful workstations and can afford the
best commercial software (e.g., many engineering organi­
zations), and some potential users have only hand-me-down
computers and publicly available software (e.g., most US
schools). Here we examine tradeoffs in self-explanatory
simulation methods with respect to potential applications.

Table 3: SIMGEN Mk 3 data, linear chain of containers (IBM
RS/6000, 64MB RAM, Lucid Common Lisp 4.01)

Broadly speaking, the computations associated with self-
explanatory simulations can be divided into three types: (1)
model instantiation, in which the first-order domain theory
is applied to the ground scenario description, (2) model

FORBUS AND FALKENHAINER 1803

translation, in which the equations associated with a state
are identified, analyzed, and converted into an executable
form, and (3) model execution, in which numeric integration
is used to derive behavior descriptions from initial values.
The choice of compiler versus interpreter is mainly a choice
of how to apportion these computations, with tradeoffs
analogous to those of programming language interpreters
and compilers. Interpreters are more suited for highly inter­
active circumstances, where more effort is spent changing
models than running them. Exploratory and rapid-
prototyping environments for scientists and engineers for­
mulating and testing models of new phenomena, and highly
interactive construction kit simulation environments for
education may be two such applications. Compilers are
more suitable for circumstances where the additional cost of
compilation is offset by repeated use of the model, or when
the environment for model execution cannot support the
resources required by the development environment.
Compilers seem to have the edge in engineering analysis
and design, where a small number of models are used many
times (e.g., in numerical optimization), and most educa­
tional software and training simulators, where maximum
performance must be squeezed out of available hardware.

The cost of model generation is dominated by the ex­
pressiveness of modeling language and the amount of
simulator optimization performed. In SIMGEN Mk3, the
order of computation is specified as an inherent part of the
domain theory due to the causal ordering imposed by
Qualitative Process theory influences. Thus, no algebraic
manipulation is required at model generation time. Other
systems allow a domain theory to contain equations in an
arbitrary form. Thus, the equations must be sorted (using a
causal ordering algorithm [7]) and symbolically reformu­
lated to match that sort. This technique provides the ease of
using arbitrarily arithmetic expressions, but can lead to ex­
pensive processing for some classes of equations. Further­
more, the time taken to switch models (0.1 seconds for a
small model on a fast workstation) even with PIKA's in­
cremental constraint algorithm suggests that switching de­
lays for large models (e.g., training simulators) could be
unacceptable.

Another way in which the modeling language affects
potential applications is in the kinds of explanations that can
be generated. Domain theories that explicitly represent
conceptual entities as well as equations can provide better
explanations than those which do not. While in a few do­
mains (e.g., electronics) expert causal intuitions are not
strongly directional, in many domains (e.g., fluids, mechan­
ics, thermodynamics, chemistry, etc.) expert causal intui­
tions are strongly directed [21], and there is no a priori
guarantee that the accounts produced by causal ordering
wil l match expert intuitions [22]. Using equation-based
models reduces the overhead of formalizing expert intui­
tions, but at the cost of reduced explanation quality. Using
explicit qualitative representations provides an additional
layer of explanations, but at the cost of increased domain
theory development time. Interestingly, TGIZMO accounts
for less than 15% of SIMGEN M K 3 ' S time, so the penalty
for using rich, compositional domain theories appears to be
quite small.

7. Discussion
Previous work on self-explanatory simulation produced
software that could compile systems up to a few hundred
parameters. This paper describes a new algorithm for
compiling self-explanatory simulators that extends the tech­
nology to systems involving thousands of parameters. We
have shown, both theoretically and empirically, that self-
explanatory simulators can be compiled in polynomial time,
as a function of the size of the input description and the
domain theory. This advance was made possible by the
observation that minimizing inference could substantially
improve performance [4]. These gains are not without
costs: SIMGEN M K 3 does less self-monitoring and less
compile-time error detection than previous versions, and the
simulators produced can contain dead code. However, no
explanatory capability is lost, and the ability to scale up to
very large systems outweighs these drawbacks for most
applications. Even our current research implementation of
SIMGEN M K 3 can, running on a PowerBook, compile new
simulators for small systems reasonably quickly.

One open question concerns the possibility of recover­
ing most, if not all, of the self-monitoring and error check­
ing of previous compilers by the judicious use of hints.
Many programming language compilers accept advice in
the form of declarations. Qualitative representations can be
viewed as declarations, providing advice to self-explanatory
simulators at the level of physics and mathematics rather
than code. Perhaps domain-specific and example-specific
hints could replace the functionality provided by inference
in earlier compilers.

We now believe that the remaining hurdles to using self-
explanatory simulators in applications are building domain
theories and software engineering. We are working on two
applications. First, we are building an articulate virtual
laboratory for engineering thermodynamics, containing the
kinds of components used in building power plants, refrig­
erators, and heat pumps, using a domain theory developed
in collaboration with an expert in thermodynamics [9]. Sec­
ond, we are also developing a tool for building training
simulators, such as a self-explanatory simulator for a ship-
board propulsion plant, to finally fulfi l l one of the early
goals of qualitative physics [23].

8 . A c k n o w l e d g m e n t s
This research was supported by grants from NASA Langley
Research Center and from the Computer Science Division
of the Office of Naval Research. We thank Franz Amadu
for supplying us with a sample PIKA domain theory.

9. References

1 Forbus, K. and Falkenhainer, B. Self-explanatory simula­
tions: An integration of qualitative and quantitative
knowledge, Proceedings ofAAAJ-90.

2 Forbus, K. and Falkenhainer, B. Self-Explanatory Simu­
lations: Scaling up to large models, Proceedings ofAAAI-
92.

3 Iwasaki, Y. & Low, C. Model generation and simulation
of device behavior with continuous and discrete changes.
Intelligent Systems Engineerings 1(2), 1993.

1804 QUALITATIVE REASONING AND DIAGNOSIS

4 Amador, F., Finkelstein, A. and Weld, D. Real-time self-
explanatory simulation. Proceedings o/AAAI-93.

5 Forbus, K. Towards Tutor Compilers: Self-explanatory
simulations as an enabling technology, Proceedings of the
Third International Conference on the Learning Sciences,
August, 1991.

6 Nevil le, D., Notkin, D., Salesin, D, Salisbury, M.,
Sherman, J., Sun, Y., Weld, D. and Winkenbach, G.
Electronic 'How Things Work' Articles: A Preliminary
Report. IEEE Transactions on Knowledge and Data En­
gineering, August 1993.

7 Gautier, P. and Gruber, T. Generating explanations of
device behavior using compositional modeling and causal
ordering. Proceedings of AAAI-93.

8 Forbus, K. Self-Explanatory Simulators: Making comput­
ers partners in the modeling process. In Carrete, N. P. &
Singh, M.G. (Eds.), Qualitative Reasoning and Decision
Technologies, C I M N E , Barcelona, Spain, 1993.

9 Forbus, K. and Whalley, P. (1994) Using qualitative
physics to build articulate software for thermodynamics
education. Proceedings ofAAAI-94, Seattle.

10 Sgouros, N. Integrating qualitative and numerical models
in binary distillation column design, Proceedings of the
1992 AAA! Fall Symposium on Design of Physical Sys­
tems, October, 1992.

11 Amador, F. 1994. Self-Explanatory Simulation for an
Electronic Encyclopedia. Ph.D. dissertation, Department
of Computer Science and Engineering, University of
Washington.

12Forbus, K. The Qualitative Process Engine. In Weld, D.
and de Kleer, J. (Eds.) Readings in qualitative reasoning
about the physical systems, M organ-Kaufmann, 1990, pp
220-235.

13de Kleer, J. An assumption-based truth maintenance system.
Artificial Intelligence, 28(1986): 127-162.

14 DeCoste, D. and Collins, J. CATMS: An ATMS which
avoids label explosions. Proceedings ofAAAI9I.

15 Forbus, K. Qualitative Process theory. Artificial Intelli­
gence, 24, 1984

16 Forbus, K. and de Kleer, J. Building Problem Solvers,
M I T Press, 1993.

17 Woods, E. The Hybrid Phenomena theory. In Proceed­
ings oflJCAl-91, Sydney, Australia.

18 Forbus, K. Pushing the edge of the (QP) envelope. In
Recent Progress in Qualitative Physics, Fallings, B. and
Struss, P. (Eds.), M I T Press, 1992.

19 Forbus, K. and Falkenhainer, B. Self-explanatory simula­
tors. Manuscript in preparation.

20 Roberts, B. and Forbus, K. The STEAMER mathemati­
cal simulation. B B N Technical Report No. 4625, 1981.

21 Forbus, K. and Gentner, D. Causal reasoning about
quantities. Proceedings of the Eighth annual conference of
the Cognitive Science Society, Amherst, Mass., August,
1986

22 Skorstad, G. Finding stable causal interpretations of

equations. In Faltings, B. and Struss, P. (Eds.), Recent
advances in qualitative physics, M I T Press, 1992.

23 Hollan, J., Hutchins, E., & Weitzman, L. STEAMER: An
interactive inspectable simulation-based training system.
AI Magazine, 5(2), 15-27.

FORBUS AND FALKENHAINER 1806

