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Abstract

Non-deductive reasoning systems are often rep-
resentation dependent, representing the same sit-
uation in two different ways may cause such a
system to return two different answers. This is
generally viewed as a significant problem. For
example, the principle of maximum entropy has
been subjected to much criticism due to its repre-
sentation dependence. There has, however, been
almost no work investigating representation de-
pendence. In this paper, we formalize this notion
and show that it is not a problem specific to max-
imum entropy. In fact, we show that any proba-
bilistic inference system that sanctions certain im-
portant patterns of reasoning, such as a minimal
default assumption of independence, must suffer
from representation dependence. We then show
that invariance under a restricted class of repre-
sentation changes can form a reasonable compro-
mise between representation independence and
other desiderata.

1 Introduction

It is well known that the way a problem is represented can
have a significant impact on the ease with which people solve
it, and on the complexity of an algorithm for solving it. We
are interested in what is arguably an even more fundamental
issue: the extent to which the answers that we get depend on
how our input is represented.

To make our discussion more concrete, we discuss this
issue in one particular context: probabilistic inference. We
focus on probabilistic inference both because of the recent in-
terest in using probability for knowledge representation (e.g.,
[Pearl, 1988]) and because it has been the source of many of
the concerns expressed regarding representation. However,
our approach should be applicable far more generally.

Suppose we have a procedure for making inferences from
a probabilistic knowledge base. How sensitive is it to the way
knowledge is represented? Consider the following examples,
which use perhaps the best-known non-deductive notion of
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probabilistic inference, maximum entropy [Jaynes, 1978].!

Example 1.1: Suppose we have no information whatsoever.
What probability should we assign to the proposition colorful!
Symmetry arguments might suggest 1/2: Since we have no
information, it seems that an object should be just as likely
to be colorful as non-colorful. This is also the conclusion
reached by maximum entropy. But now suppose we consider
a more refined view of the world where we have colors, and
by colorful we actually mean red V blue V green. In this case,
maximum entropy dictates that the probability of red V blue V
green is 7/8. Note that, in both cases, the only conclusion
that follows from our constraints is the trivial one: that the
probability of the query is somewhere between 0 and 1. |

Example 1.2: Suppose we are told that half of the birds
fly. There are two reasonable ways to represent this infor-
mation. One is to have propositions bird and fly, and use

a knowledge base KB =g [Pr(fly | bird) = 1/2]. A sec-
ond might be to have as basic predicates bird and flying -bird,

and use a knowledge base KB" — [{flying-bird => bird) A
pT(flying'bird\bird) — 1/2]. Although the first representation
may appear more natural, it seems that both representations
are intuitively equivalent insofar as representing the informa-
tion that we have been given. But if we use an inference
method such as maximum entropy, the first representation
leads us to infer Pr(bird) = 1/2, while the second leads us to
infer Pr(bird) = 3/4. |

Examples such as these are the basis for the frequent
criticisms of maximum entropy on the grounds of repre-
sentation dependence. But other than pointing out these
examples, there has been little work on this problem.
In fact, other than the work of Salmon [Salmon, 1961;
Salmon, 1963], there seems to have been no work on for-
malizing the notion of representation dependence. One might
say that the consensus was: "whatever representation inde-
pendence is, it is not a property enjoyed by maximum en-
tropy." But are there any other inference procedures that have
it? In this paper we attempt to understand the notion of rep-
resentation dependence, and to study the extent to which itis
achievable.

' Although much of our discussion is motivated by the represen-
tation dependence problem encountered by maximum entropy, an
understanding of maximum entropy and how it works is not essen-
tial for understanding our discussion.
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To study representation dependence, we must first under-
stand what we mean by a "representation". The real world is
complex. In any reasoning process, we must focus on certain
details and ignore others. At a semantic level, the relevant
distinctions are captured by using a space X of possible al-
ternatives or states. In Example 1.1, our first representation
focused on the single attribute colorful. In this case, we have
only two states in the state space, corresponding to colorful
being true and false, respectively. The second representation,
using red, blue, and green, has a richer state space. Clearly,
there are other distinctions that we could make. At a syntactic
level, we often capture relevant distinctions using some for-
mal language. For example, if we use prepositional logic as
our basic knowledge representation language, our choice of
primitive propositions characterizes the distinctions that wc
have chosen to make. In this case, wc can take the stales to be
truth assignments to these propositions. Similarly, if we use
belief networks [Pearl, 1988] as our knowledge representation
language, we must choose some set of relevant variables. The
states are then then possible assignments of values to these
variables.

What does it mean to shift from a representation (i.e., state
space) X to another representation Y? For us, this amounts
to associating subsets of A' with subsets of Y. Thus, for ex-
ample, the state where colorful holds can be associated with
the set of states where either red, blue, or green holds. We
capture the notion of representation shift formally by em-
beddings. An embedding f from A' to Y maps subsets of
A to subsets of Y in a way that preserves complementa-
tion and intersection. An embedding is just the semantic
version of the standard logical notion of interpretation [En-
derton, 1972, pp. 157-1621, which has also been used in the
recent literature on abstraction [Giunchigliaand Walsh, 1992;
Nayak and Levy, 1994]. Essentially, an interpretation maps
formulas in a vocabulary ® to formulas in a different vo-
cabulary ® by mapping the primitive propositions in ® (e.g.,
colorful) to formulas over ® (e.g., redVblueV green) and then
extending to complex formulas in the obvious way. The rep-
resentation shift in Example 1.2 can also be captured in terms
of an interpretation, this one taking flying-bird tofly A bird.

When doing probabilistic reasoning, we are actually in-
terested in the probability of the various states in A'. We
therefore assume that a user's knowledge base KB consists of
a set of probabilistic assertions, such as Pr(fly \ bird) = 1/2,
that place constraints on distributions over X. A representa-
tion shift from X to Y induces a corresponding shift >from
information about X to information about Y. More formally,
an embedding / from X to Y can be extended to a mapping
/* from constraints on distributions over X to constraints over
distributions over Y in a straightforward way. For example,
if the embedding / maps colorful to red V blue V green, then
I* (?r{colorful) > 2/3) is Pr(red V blue V green) > 2/3.

A probabilistic inference procedure |— takes a probabilis-
tic knowledge base and uses it to reach conclusions about the
probability of various events over the space A'. Such a pro-
cedure is said to be invariant under f if f does not change
the conclusions that we make; that is, if for any KB and 9,
KB @ ifff(KB) f(0). Roughly speaking, Misrepresen-
tation independent if it is invariant under all embeddings. This
captures the intuition that |~ gives us the same answers no
matter how we shift representations. Of course, not all embed-
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dings count as legitimate representation shifts. For example,
consider an embedding / defined in terms of an interpretation
that maps both the propositions p and g to the proposition r.
Then the process of changing representations using / gives
us the information that p and g are equivalent, information
that we might not have had originally. Intuitively, / gives
us new information if it tells us that certain situations—e.g.,
those where p A ->q holds—are not possible. Formally, / is
said to be faithful if f{{x}) = Oforallx € X. We show that
/ is faithful if and only if for any KB and 9, the assertion $§
necessarily follows from KB if and only if f(9) follows from
f(KB). That is, faithful embeddings are precisely those that
give us no new information.

At first glance, representation independence seems like a
reasonable desideratum. However, as we show in Section 3, it
has some rather unfortunate consequences. In particular, we
show that any representation independent inference procedure
must act essentially like logical entailment for a knowledge
base with only non-probabilistic information. In fact, if we
also require that our inference procedure ignore blatantly irrel-
evant information, then it must act like logical entailment for
every knowledge base. Finally, representation independence
is completely incompatible with even the simplest default as-
sumption of independence: Even if we are told nothing about
the basic propositions p and g, representation independence
does not allow us to jump to the conclusion that p and g arc
independent.

This seems to put us in a rather awkward situation: It
seems we must either give up on representation independence,
or make do with an inference procedure that is essentially
incapable of even minimal inductive reasoning (jumping to
conclusions). But things are not quite as bleak as they seem.
In practice, we would claim that the choice of language does
carry a great deal of information. That information is what
gives us the intuition that certain embeddings are legitimate,
while others that have the same abstract structure are not. For
example, suppose that certain propositions represent colors
while others represent birds. While we may be willing to
transform colorful to red V blue V green, we may not be will-
ing to transform red to fly. There is no reason to demand
that an inference procedure behave the same way if we sud-
denly shift to a wildly inappropriate representation, where the
symbols mean something completely different. Given a class
of "appropriate" embeddings (where the notion of appropri-
ate might be application-dependent), we may well be able to
get an interesting notion of representation independence with
respect to that class.

In Section 5, we provide a general approach to constructing
inference procedures that are invariant under a specific class
of embeddings. We assume that the user starts with some set
of initial prior probability distributions that characterize his
beliefs in the absence of information. We show that if the
prior distributions are chosen appropriately, so that they are
invariant under the class of embeddings of interest, then we
can "bootstrap" up to obtain a general inference procedure
that is invariant under the same class of embeddings, by us-
ing cross-entropy [Kullback and Leibler, 1951], a well-known
generalization of probabilistic conditioning. This result can
be used in a number of ways. For example, it shows us how
to construct an inference procedure that is invariant under a
given set of embeddings: we simply choose a class of priors



appropriately. It also allows us to combine some degree of
representation independence with certain non-deductive prop-
erties that we want of our inference procedure. We simply
choose a class of priors that has the desired property, and
determine the set of embeddings under which this class of
priors is invariant. We demonstrate this process by present-
ing an inference method that supports a default assumption
of independence, and yet is invariant under 3 natural class of
cmbeddings.

2 Probabilistic Inference

We begin by defining probabilistic inference procedures. Such
a procedure takes as input a probabilisuc knowledge base
and returns a probabilistic conclusion. We cxpress this in a
semantic framework that we hope can be understood by both
Jogicians and probabilists.

We 1ake both the knowledge hase and the conclusion to
bc probabilistic assertions about the probabilities of events
over some state space .X. Formally, these can be viewed
as statements (or constraints) on distributions over .X. For
cxample, if A 1s a subset of X, 4 statement Pr(4) > 2/3
holds only for distributions where A has probability at least
2/3. Therefore, if Ax 1s the set of all probability distributions
on .X, we can view a knowledge base as a set of constraints
over Ay. We place very few restrictions on the language
uscd to express the constramts. All that we requirc is that the
language 1s closed under conjunction and negation, so that
if KB and K3’ are knowledge bascs expressing constraints,
then so are B A A'B’ and =K' B. Given a knowledge base
KD placing constraints on Ay, we write 4 = KB if prisa
distribution in Ax that satisfies the constraints in A'D, and
we let [A'f3]x denote all the distributions satisfymg thesc
constraints. We say that A'B is consistent f [WKB]x # 0.
1.e., 1f the constraints are satisfiuble. Finally, we say that A'B
entails 0 (where & is another set of constraints on Ay ), writlen
KB Ex 6,1 [WB]x C [€]x. 1., il every distribution that
sansfies A'B also sausties 6. We write =y 6 1f # 15 satisfied
by every distribution in Ay . We omit the subscript .Y from
= if 1t is clear from context.

Entailment is well-known to be 10 be a very weak method
of drawing conclusions from a knowledge basc. For exam-
ple, it is unable to ignore irrelevant information.  Consider
the knowledge base Pr(fly | bird) > 0.9. Even though wc
know nothing to suggest thal red 15 at all rclevant, entailment
will not allow us to reach any nontrivial conclusion about
Pr(Aly | bird A red). One way to get more powerful conclu-
sions is to consider, not all the distributions that satisfy A’
but a subset of them. Intuitively, given a knowledge base
A'B, an inference procedure picks a subset of the distributions
satisfying KX'B, and infers # if # holds in this subset.

Definition 2.1: An X -inference procedure is a function Ix :
22x 3 28% guch that Iy (A) C Afor A C Ay and Ix (A) =
Biff A = 0. We write KB p~;, 0 if Ix ([KB]x) C [f]x. B

We are typically interested in X -inference procedures not just
for one space X, but for a family X’ of spaces, In cases wherc
X € X isclear from context, we write '3 b~ f, omitting the
subscript X. Clearly entailment is an X -inference procedure
for any X, where Iy is simply the ideatity function. Another
well-known inference procedure is maxinum entropy, which

picks out of [A'B]x the subset of the distributions having the
maximum entropy.

Example 2.2 Given a distribution i over a finite space X, its
entropy H (1) is defined as — >~ 5 u(x)log u(z). Given a
set A of distributionsin Ax , let I5°(A) consist of the distribu-
tions in A that have the highest entropy. 1% clearly defines an
inference procedure, which we denote k-, . Thus, KB pp,, ¢
if # holds in all the distributions of maximum entropy satisfy-
ing KR.

There are, of course, many other inference procedures. In
fact, as the following proposition shows, any binary relation
~ satisfying certain reasonable properties is an inference
procedure of this type.

Proposition 2.3: J is an X -inference procedure if and only if
the following properties hold for every KB, KB' , o, ¢ over X :
¢ Reflexivity: KB |, KB.
s Lecft Logical Equivalence: if KB is logically equivalent
t0 KR, ie., ifl= KB & KB, then KB |~ 0 iffKB' =, 6.
¢ Right Wcakening: if KB P, 0 and |= 6 = + then
KBy o
o And: if KB |~; 0 and KB v, o, then KB }~, 8 A .
e Consistency: if KB is consistent then KB B, faise. |

Interestingly, these properties are commonly viewed as part of
a core of rcasonable properties for a nonmonotonic inference
relation [Kraus ef al., 1990].

Although our basic framcwork puts no constraints on the
state space .Y and very few constraints on the language used
to describe constraints, In practice, we often use a logical
language to describe the possible states, and this language
then determines the state space. Typical languages include
propositional logic, first-order logic, or a language describing
the values for some sct of random vanables. In gencral,
a base logic £ defines a set of formulas £(®) for a given
vocabulary ©. In propositional logic, the vocabulary @ is
simply a set of propositional symbols. In probability theory,
the vocabulary can consist of a set of random variables. In
first-order logic, the vocabulary is a set of constant symbols,
function symbols, and predicate symbols. For simplicity, we
assume that for each base logic all the vocabularies are finite
subsets of one fixed infintte vocabulary b*. Each state in
our state space defines an interpretation for the symbols in
®. Hence, in the case of propositional logic, a state can
be viewed as a model over ¢: a truth assignment to the
primitive propositions; for first-order logic, a state consists of
a domain and an interpretation of the symbols in @; in the
probabilistic setting, a state is an assignment of values to the
random variables. In this case, we often take our state space
to be W(d), the set of all models (or assignments) over the
vocabulary @, o; some subset of it. Note that the truth of any
formula @ in L(®) is determined by a state. If ¢ is true in
some state tr, we write w = . We call formulas in the base
language objective. Objective formulas can be thought of as
describing events.

The probabilistic extension L7 (P) of a base logic £L(P) is
simply the set of probability formulas over £(®). Formally,
for each ¢ € L{D), Pr(p} is a numeric term. The formulas
in £P(®) are defined to be all the Boolean combinations of
arithmetic expressions involving numeric terms. For example,
Pr{fly | bird) > 1/2 is a formula in CP"({fly, bird}) (where
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we interpret a conditional probability expression Pr{¢ | ¥) as
Pr(w A}/ Pr(+) and then multiply to clear the denominator).
We ascribe semantics to £P7(®) via a probability distribution
u over W(d). We interpret the numeric term Pr{y) as u({w €
W(®) : w |= ¢}). Since an objective formula y describes
an event over the space X, a formula 8 in LP/(P) is clearly
a constraint on distributions over X. We write u = @ if the
distribution u satisfies the formula 6. Note that £P” does not
contain objective formulas; we interpret the notation u = »
for an objective formula > as an abbreviation for 4 |= Pr(y) =
1. Thus, an objective formula corresponds to a constraint of
a special form, that says a particular event is certain.

3 Representation independence

As we discussed in the introduction, we capture the idea of
a representation shift using the notion of an embedding. If
X and Y are two different representations, then an embed-
ding from X to Y reflects the correspondence of the states
in X and the states in ¥". This embedding should respect the
logical structure of events. Formally, we require that it be a
homomorphism with respect to conjunction and negation.

Definition 3.1: An embedding f from X to Y is a function
f:2X 3 2Y such that f(AN B) = f(A) N f(B) and
f(A) = f(A) forall A,BC X. I

Clearly, an embedding f induces a map f* : 28% 3 24v
defined as follows: f*(u) = {v € Ay : p(f(5)) =
p(S) forall S C X} and f*(A4) = Upea S (1)

Example3.2: In Example 1.1, we might have X =
{colorful, colorful} and Y = {red, blue, green, colorful}. In
this case, we might have f(colorful) = {red, blue, green} and
f(colorful) = {celorful}. Consider the distribution 1 € Ax
such that u(colorful) = 0.7 and ulcolorful) = 0.3. Then
f7 (1) is the set of distributions v such that the total probabil-
ity assigned to the set of states {red, biue, green} by v is 0.7.
Note that there are uncountably many such distributions. il

Embeddings can be viewed as the semantic analogue o the
notion of interpretation defined in [Enderton, 1972].

Definition 3.3: Let @ and ¥ be two vocabularies. In the
propositional case, a interpretation of @ into ¥ is a function
i that associates with every propositional symbol p € ® a
formulai(p) € L(¥). A more complex definition in the same
spirit applies to first-order vocabuiaries. For example, if R is
a k-ary predicate, then i( R) is a formula with & free variables.

Given an interpretation ¢, we get a syntactic translation from
formulas in £{®) to formulas in £(¥) using 7 in the obvious
way; for example, i((pA—g) Vr) = (i(p) Ai(g)) Vi(r) (see
[Enderton, 1972] for the details). Clearly an interpretation ¢
from & to ¥ induces an embedding from W{®)} 10 W(W¥) (at
least, from the sets of models definable by formulas): we map
[¢e}o—the set of states in W{®D) satisfying p—io [i(©)}p—
the set of states in W{'¥') satisfying ().

If the embedding f is a “reasonable” representation shift,
we would like an inference procedures to return the same
answers if we shift representations using f.

?Strictly speaking, we should write f({u}), not f(zz). However,
here and elsewhere we omit set braces around function arguments
that are singleton sets.
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Definition 3.4: We say that [ is invariant under f if for all
constraints KB and 8, we have KB |~, 8 iff f*(KB) }, f*(6).
|

As we argued in the introduction, not every embedding is
appropriate as a representation shift. The process of changing
representation should not give us any new information. When
does a shift give us new information? One obvious situation
is when the shift makes impossible something which we con-
sidered to be possible. In our example from the introduction,
we had an interpretation ¢ with the property that i(p) = #{g)
for two propositions p and g. Clearly, this interpretation gives
us new information: that p and ¢ are equivalent. Semanti-
cally, the associated embedding f has the following undesir-
able property: it maps the set of states satisfying p A ¢ to
the empty set. This means a state where p A —g holds does
not have an analogue in the new representation. We want to
disallow such embeddings.

Definition 3.5: We say that an embedding f : X = Y 15
faithfulifforanyz € X, f(z) # 0. B

This has the desired consequence of not giving us new
information:

Lemma 3.6: An embedding f : X — Y is faithful if and
only if for all constraints KB and 0, we have KB |= 6 iff
S (KB) = [*(8).

It is clear that our embedding from Example 3.2 is faithful:
fcolorful) = {red, blue, green} and f(colorful) = colorful.
Therefore, an inference procedure which is invariant under
al) faithful embeddings would return the same answers for
Pr(colorful) as for Pr(red V blue Vv green).

The issue 15 somewhat more subtle for Example 1.2, There,
we would like to have an embedding f generated by the inter-
pretation ¢(flying-bird} = fiy A bird and i(bird) = bird. This
is not a faithful embedding, since flying-bird = bird is not a
valid formula, while i(flying-bird => bird) is (fly A bird} =
bird which is valid. Looking at this problem semantically,
we see that the state corresponding to the model where
flying-bird A —bird holds is mapped to . But this is clearly
the source of the problem. According to our linguistic intu-
itions for this domain, this is not a “legitimate” state. Rather
than considering all the states in W({flving-bind, bird}), it
is perhaps more appropriate to consider the subset X con-
sisting of the truth assignments characterized by the formulas
{Alying-bird A bird, ~flying-bird A bird, ~flying-bird A —bird}.
If we now use i to embed X into W({fly, bird}), the resulting
embedding is indeed faithful. So, as for the previous example,
invariance under this embedding would guarantee that we get
the same answers under both representations.

Definition 3.7 We say that |, is representation independent
if p~; 1s invariant under all faithful embeddings. ll

Are there any representation independent inference proce-
dures? It follows trivially from Lemma 3.6 that entailment
is representation independent. Are there others? As we now
show, any such inference procedures are unlikely to be inter-
esting.

We say that an inference procedure [ is essentially en-
tailmens for KB if KB b, a < Pr(p) < 4 implies KB |=
a < Pr(¢) < fA. Thus, when entailment lets us conclude
Pr(¢) & |a, 3], an inference procedure that is essentially en-
tailment lets us draw only the slightly stronger conclusgion

Pr(¢) € (2, B).




Theorem 3.8: Every representation independent inference
procedure is essentially entailment for every objective KB.

This result tells us that from an objective knowledge base
JB—one asserting only that certain events are known to be
true—we can reach only three possible conclusions about
another event . If ¢ is entailed by the X' ?, we conclude
Pr{y) = 1;if g is entailed by the KB, we conclude Pr{yp) =
0: and if both ¢ and —¢ are consistent with the KB, the
strongest conclusion we can make about Pr(y) is that it is
somewhere between 0 and 1.

This result implies that various inference procedures can-
not be representation independent. In particular, since
true bome Pr(p) = 1/2 for a primitive proposition p, it {ol-
lows that v, is not essentially entailment. It follows that
maximum entropy is not representation independent.

It is consistent with Lhis theorem that there are represen-
1ation independent inference procedures that are not almost
cntailment for probabilistic knowledge bases. For example, as
we show in the full paper, there is arepresentation independent
inference procedure [ such that (Pr(p) > 1/4) b, Prip) >
1/2. However, as we now show, such an inference procedure
is unlikely to be an interesting one. In particular, we show
that if adding “irrelevant™ information to the knowledge base
does not affect our inferences, then every representation in-
dependent inference procedure is essentially entailment. We
define “irrelevant” syntactically here; in the full paper we
give the semantic analogue of the definitions. Syntactically,
“irrelevant” means “in a disjoint vocabulary”.

Definition 3.9: We say that b, enforces minimal irrele-
vance if, whenever @ and ¥ are disjoint vocabulanes, KB, 8 €
LM (@) and KB’ € LP7(W), then KB |~,0 iff KB A KB |-,0.
|

Minimal irrelevance certainly seems like an innocuous and
reasonable property. Adding information about symbols that
do not appear in either KB or 0 should not affect whether we
can infer 0 from KB. Logical entailment, being a monotonic
inference procedure, clearly enforces minimal irrelevance. It
is not hard to show that maximum entropy does too (see [Paris,
1994] for a proof). Unfortunately, minimal irrelevance com-
bined with representation independence forces us to inference
procedures that are essentially entailment.

Theorem 3.10: Any representation independent inference
procedure that enforces minimal irrelevance is essentially en-
tailment.

In the full paper, we show that other desirable properties
are completely inconsistent with representation independence.
As one example, we show that representation independence
is inconsistent with a default assumption of independence.
Again, we define minimal default independence syntactically
here, deferring a semantic definition to the full paper.

Definition 3.11: We say that |, enforces minimal defauit
independence if, whenever @ and ¥ are disjoint vocahularies,
KB € £rr(®), ¢ € L(®), and ¥ € L(¥), then KB b ff
KB p~; Pr(e|¢) = Pr(y). B

Clearly entailment does not satisfy minimal default in-
dependence. Maximum entropy, however, does. Indeed, a
semantic property that implies minimal default independence
is used in [Shore and Johnson, 1980] as one of the axioms in
an axiomatic characterization of maximum-entropy.

Theorem 3.12: Any inference procedure that enforces mini-
mal defauit independence cannot be representation indepen-
dent,

4 Discussion

These results suggest that any type of representation indepen-
dence is hard to come by. They also raise the concern that
perhaps our definitions were not quite right. We can provide
what seems to be even more support for the latter point.

Example 4.1: Let P be a unary predicate and ¢y, .. ., ¢ip0, d
be constant symbols. Suppose that we have two vocabularies
P = {P,d} and ¥ = {P,Cl,. . .,C;m,d]. Consider the
interpretation i from @ to ¥ for which {{d) = dand i(P(z)) =
P{z) A P(e)) A ... Plcio). Tt is fairly straightforward to
verify that the embedding f corresponding to ¢ is faithful.
Intuitively, since all the c,’s may refer to the same domain
element, the only conclusion we can make with certainty
from Pe1) A ... A P(cion) is that there exists at least one
P in the domain. But we can draw this conclusion from
J*{KB) only if P(z) appears positively in KB, in which case
wc already know that there is at least one P. But it does
not seem unrcasonablc that an inference procedure should
assign different degrees of belief to P(d) given 3z P(zx) on
thc one hand and 3z(P{z} A P{ei} A ... A P{cio)) on the
other,® particularly if the domain is small. In fact, many
inductive reasoning systems explicitly adopt a unigue names
assumption, which would clearly force different conclusions
in these two situations. B

This example suggests that, at least in the first-order case,
even faithful embeddings do not always match out our in-
witien for a “reasonable™ representation shift. One might
therefore think that perhaps the problem is with our definition
even in the propositional case. Maybe there is a totally dif-
ferent definition of representation independence that avoids
these problems. While this is possible, we do not believe it to
be the case. The techniques we used to prove Theorem 3,10
and 3.12 seem to apply to any reasonable notion of represen-
tation independence.* To give the flavor of the type of argu-
ments used to prove these theorems, consider Example 1.1,
and assume that true b, Pr{colorfui) = o for a € (0, 1).°
Using an embedding ¢ such that g(celorful) = red, we con-
clude that true t~; Pr{red) = «. Similarly, we can conclude
Pr(blue) = o and Pr(green) = a. But in order for h;
to be invariant under our original embedding, we must have
true b, Pr{red v blue V green) = a, which is completely
inconsistent with our previous conclusions. But the embed-
dings we use in this argument are very natural ones; we would
not want a definition of representation independence that dis-
allowed them.

But if we cannot avoid our negative results by moving to a
better definition, where does that leave us? One approach is 1o
declare that representation dependence is justified; the choice
of an appropriate representation is indeed a significant one,
which does encode some of the information at our disposal. In

YActually, s( P(d)) = P(d) A P(c1) A ... P{cum), but the latter
is equivalent to P(d) given our knowledge base.

“They applied to all of the many definitions that we tried.

*In fact, it suffices to assume that true b, Pr{colorful) € [a, 8],
aslongasar > Qor 8 < 1.
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particular, it encodes the bias of the know ledge-base designer
about the world. Researchers in machine learning have long
realized that bias is an inevitable component of effective in-
ductive reasoning. So we should not be completely surprised
if it turns out that other types of leaping to conclusions (as in
our context) also depend on the bias.

Bias and representation independence are two extremes in
a spectrum. If we accept that the knowledge base encodes the
user's bias, there is no obligation to be invariant under any
representation shifts at all. On the other hand, if we assume
the representation used carries no information, coherence re-
quires that our inference procedure give the same answers for
all "equivalent" representations. We believe that the right an-
swer lies somewhere in between. There are typically a number
of reasonable ways in which we can represent our informa-
tion, and we might want our inference procedure to return
the same conclusions no matter which of these we choose. It
thus makes sense to require that our inference procedure be
invariant under embeddings that take us from one reasonable
representation to another. But it does not follow that it must be
invariant under all embeddings, or even all embeddings that
are syntactically similar to the ones we wish to allow. We may
be willing to refine colorful to red V blue V green or to define
flying-bird as fly A bird, but not to transform red to fly. In the
next section, we show how to construct inference procedures
that are representation independent under a limited class of
representation shifts.

5 Selective invariance

As discussed above, we wan! to construct an inference pro-
cedure 7 that is invariant only under certain embeddings. In
order to do this, it is important to understand the conditions
under which [ is invariant under a specific embedding f from
XY,

When do we conclude # from A8 C Ax? Recall that
an inference procedure I picks a subset Dy = J/x(A'B),
and concludes & iff @ holds for every distribution in Dy .
Similarly, when applied to f*{KB) C Ay, I picks a subset
Dy = Iy (f*(KB)). For I to be invariant under f with re-
spect to A'B, there has to be a tight connection between D x
and Dy . To understand this connection, first consider a pair
of distributions u over X and v over Y. When do these dis-
tributions generate the same probabilities for corresponding
events? That is, when do we have that ;¢ |= 8 iff v = f*(8) for
every 87 Clearly, this happens if and only if u(A) = v(f(A4))
forany event A C X, i.e., if v € f*(p). In this case, we say
that 4 and & correspond. In order to understand how to apply
this idea to sets Dx and Dy, consider the following example:

Example 5.1: Consider our embedding f of Example 3.2,
and let Dx = {yu, p'} where u(colorful) = 0.7 as in Exam-
ple 3.2, while y’{colorful) = 0.6. How do we guarantee that
we reach the corresponding conclusions from Dy and Dy ?
Assume, for example, that Py contains some distribution »
that does not correspond to either x or u’, e.g., the distribu-
tion that assigns probability 1/4 to all four states. In this case,
the conclusion Pr{colorful) < 0.7 holds in Dx, because it
holds for both these distributions; but the corresponding con-
clusion Pr{red Vv blue Vv green) < 0.7 does not hold in Dy .
Therefore, every distribution in Dy must cotrrespond to some
distributionin D x . Conversely, every distribution in D x must
correspond to a distribution in Dy . For suppose that there is
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no distribution ¥ € Dy comresponding to . Then we get the
conclusion Pr{blue V red v green) # 0.7 from Dy, but the
corresponding conclusion Pr{colorful) # 0.7 does not follow
from Dx . Note that these two conditions do not imply that
Dy must be precisely the set of distributions corresponding
to distributions in D . In particular, we might have Dy con-
taining only a single distribution » corresponding to u (and at
least one corresponding to u’), e.g., one with v(red) = 0.5,
v(blue) = 0, v(green) = 0.2, and v(colorful} = 0.3.

We say that Dx and Dy correspond under f if for all for
all » € Dy there exists a corresponding 4 € Dy, and for al}
1 € Dy, there exists a corresponding distribution v € Dy.

Proposition 5.2: Let f be an embedding of X inte'Y, and
consider Dy C Ax and Dy C Ay. Then Dx | 0 iff
Dy = f*(0) for all 8 exacily when Dx and Dy correspond
under f.

We say that [ is invariant under [ with respect to KB
il KB b, 6 iff f*(KB) ~,; [*(0) for all constraints 8. By
definition, / is invariant under f iff it is invariant under f
with respect to every A'B. By Proposition 5.2, in order for
1 to be invariant under f, we must have a correspondence
between /x (AWB) and [y (f* (N B)), for each KB. At first
glance, it seems rather difficult to guarantee correspondence
for every knowledge base. Ii turns out that the situation is
not that bad. In this section, we show how, starting with a
comrespondence for the knowledge base frue—that is, starting
with a correspondence between [x (Ax ) and Iy (Ay)—we
can bootstrap to a correspondence forall A'2’s, using standard
probabilistic updating procedures.

Consider first the problem of updating with objective infor-
mation. The standard way of doing this update is via condi-
tioning. For a distribution ¢ € Ay and an event 8 C X,
define u|B to be the distribution that assigns probability
p(w)/1(B) 10 every w € B, and zero to all other states.
For a set of distributions Py C Ay, define Px|B to be
{ulB : peDx}

Proposition 5.X Let B C X be an event. If Dy and Dy cor-
respond under f, then Dy |B and Dy | f{B) also correspond
under f.

What if we want to update on a constraint which is not
objective? The standard extension of conditioning to this
case is via cross-entropy [Kullback and Leibler, 1951].

Definition 5.4 The cross-entropy of p’ relative to p, denoted
C(u', i) isdefinedas 3 oy #'(w) log(p'(w)/p(w)). Fora
distribution g over X and a constraint 8, let ;2|8 denote the set
of distributions p’ satisfying # for which C(y', u) is minimal.
[

Intuitively, C(g', ) measures the “distance™ from g to g’
The distribution ' satisfying & for which C(g’, ) is minimal
can be thought of as the “closest™ distribution to g that sat-
isfies 6. If # denotes an objective constraint, then the unique
distribution satisfying # for which C (g, 1) is minimal is the
conditional distribution u|#. That is why we have deliber-
ately used the same notation here as for conditioning. We
also define Dy |# as we did for conditioning.

We can now apply a well-known result (see, e.g., [Sei-
denfeld, 1987]) to generalize Proposition 5.3 to the case of
Cross-entropy.



Theorem 5.5: Let & be an arbitrary constraint over Ay . If
Dx and Dy correspond under f, then Dx|B and Dy |f(B)
also correspond under f.

As we now show, Theorem 5.5 gives us a way 10 “boot-
strap” invariance. We construct an inference procedure (hat
uses cross-entropy starting from some set of prior probability
distributions. Intuitively, these encode the user’s prior beliefs
about the domain, As information comes in, these distribu-
tions are updated using cross-entropy. If we design our priors
so that certain invariances hold, Theorem 5.5 guarantees that
these invariances continue o hold throughout the process.

Formally, a prior function P takes a space X' and returns
a set of probability distributions in Ay.. We now define an
inference procedure /* as follows. We define /5 (KB) =
{#|KB : u € P(X)}. Note that I (true) = P(X), so that
when we have no constraints at all, we use P(X) as the basis
for our inference. Most of the standard tnfercnce procedures
are of the form /7 for some prior function P, It is fairly
straightforward (o verify, for example, that entailment is o,
for P{X) = Ax. Standard Baycsian conditioning is of this
form (at least for objective knowledge bases), where we take
P(X) to be a single distribution for each space .Y. More
interestingly, it is well-known {Kullback and Leibler, 1951]
that maximum entropy is /7 where P, (.Y) is the singleton
set containing only the uniform prior on X

So what can we say about the robustness of I¥ (o represen-
tation shifts? By Theorem 5.5 and Proposition 5.2, we obtain
the following corollary:

Corollary 5.6: 7 is invariant under the embedding f from
XY if P(X)and P(Y) correspond under f.

Thus, Corollary 5.6 tells us that if we want ZF to be invariant
under some sct F of embeddings, then we must ensurc that
our prior function has the right correspondence property.

This result sheds some hight on the maximum entropy infer-
ence procedure. As we mentioned, pve isprecisely the infer-
ence procedure based on the prior function P,,. The corollary
asserts that poy,. is invaniant under f preciscly when the uni-
form priors on X' and ¥ correspond under f. This shows
that maximum entropy’s fack of representation independence
is an immediate consequence of the identical problem for a
uniform prior. Is there a class F of embeddings under which
maximum entropy is invariant? Clearly, the answer is yes. It
is easy to see that any embedding that takes the clements of ¥
to {disjoint} sets of equal cardinality has the correspondence
property required by Corollary 5.6. 1t follows that maximum
entropy is invariant under all such embeddings. In fact, the
requirement that maximum entropy be invariant under a sub-
set of these embeddings is one of the axioms in a weli-known
axiomatic characterization of maximum-entropy [Shore and
Johnson, 1980].

If we do not like the hehavior of maximum entropy under
representation shifts, Theorem 5.6 provides a solution. We
should simply start out with a ditferent prior function. Of
course, if we want to maintain invariance under all represen-
tation shifts, we are forced to use the class of all priors, which
Eives us entailment as an inference procedure. If, however, we
have prior knowledge as to which embeddings encode “rea-
sonable” representation shifts, we can often make do with a
smaller class of priors, resulting in an inference procedure
that is more prone to leap to conclusions. Given a class of

“reasonable” embeddings F, we can ofien find a prior func-
tion P which is “closed” under each f € F. That is, for each
distribution # € P(X) and cach embedding f € F from X
to Y, we make sure that there is a corresponding distribution
v € P(Y'), and vice versa. Therefore, we can guarantee that
P has the appropriate structure using a process of closing off
under each f in F.

Of course, we can also execute this process in reverse.
Say we want to support a certain reasoning pattern that re-
quires leaping to conclusions. The classical example of such
a reasoning pattern is, of course, a default assumption of in-
dependence. What is the “most” representation independence
that we can get without losing this rcasoning pattern? As we
now show, Theorem 5.6 gives us the answer.

An independence structure Il over ®* (our fixed infinite
vocabulary) is a partition of the symbols in @” into a collection
of disjoint sets or cells @, ®s, . . .. Adistribution g on W(®d)
respects the independence structure I if, for any formulas
we € L(D; D} and ¢, € L(DP; NP) withi # §, we have
mlwy A ) = plpi)p(p;). Thus, p makes the denotations
of the symbols in different cells independent. Let PT(d) be
the class of all distributions 2 over W(®) that respect I'T. We
can prove that pp, enforces minimal default independence
for symbols in diffcrent cells. In fact, it satisfies a somewhat
stronger property.

Theorem 5.7: Let ¥y and Wy be disjoint vocabularies each
of which is the union of cells in TI. If KB, € LP1(\¥),
6y, € L(¥), KBy € LV (Y,), 62 € L(¥2), then KB A
KBZ I‘v.pn Pr(Gl |92) = PT(Q] ]

Theorem 3.12 shows that p~p_ cannot be invariant under
all embeddings. Theorem 5.6 tells us that it is invariant under
preciscly those embeddings for which Pp is invariant. To
characierize these embeddings, suppose that p is in one cell
and ¢ and r arc in another. Since p and ¢ are in different cells,
we have true b, Prp|g) = Pr(p). However, since ¢ and r
are in the same cell, we do not have true b~ Pr(r|q) = Pr{r}).
Hence, 7)) is not invariant under an embedding f that maps
7 to . Intvitively, the problem 1s that f is “crossing cell
boundaries”. If we restrict to embeddings f that do not cross
cell boundaries, i.e., thuse that for any p € &, have f(p) €
L{®;), then we avoid this problem.

Proposition 5.8: The inference pmcedure |~'Pn is invariant
under any embedding f that is faithful and does not cross cell
boundaries.

Theorem 5.6 allows us to define an inference procedure
Y->r that enforces minimal default independence (for formulas
in different cells), and at the same time is invariant under a
large and natural class of embeddings. Given our negative
result in Theorem 3.12, this is the best that we could possibly
hope for. In general, Theorem 5.6 allows us to understand the
tradeoffs between inductive reasoning patterns and invariance
under representation shifts.

6 Related Work

Given the importance of representation in reasoning, partic-
ularly inductive reasoning, and the fact that one of the main
criticisms of maximum entropy has been its sensitivity to rep-
resentation shifts, it is surprising how little work there has
been on the problem of representation dependence. Indeed,
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to the best of our knowledge, the only work on representa-
tion independence in the logical sense that we have consid-
ered here is that of Salmon. Salmon [Salmon, 1961] defined
a criterion of linguistic invariance, which seems essentially
equivalent to our notion of representation independence. He
tried to use this criterion to defend one particular method of
inductive inference but, as pointed out by Barker in the com-
mentary at the end of [Salmon, 1961], his preferred method
does not satisfy his criterion either. Salmon then tried to find a
modified inductive inference method that did satisfy his crite-
rion [Salmon, 1963], but itis not clear that it does; in any case,
our results show that his modified method certainly cannot be
representation independent in our sense.

Although statisticians have not considered representation
independence in the sense we have defined it here, Bayesian
statisticians have been very concerned with related issue of
invariance under certain transformations of parameters. For
example, we would expect that our beliefs about a person's
height should be invariant under a transformation from feet
to meters. Their hope is that once we specify the transfor-
mation under which we want a distribution to be invariant,
the distribution will be uniquely determined [Jaynes, 1968;
Kass and Wasserman, 1993]. In this case, the argument goes,
the uniquely determined distribution is perforce the "right"
one. This idea of picking a distribution using its invariance
properties is in the same spirit as the approach we take in Sec-
tion 5. But unlike the standard Bayesian approach, we do not
feel compelled to choose a unique distribution. This enables
us to explore a wider spectrum of inference procedures.

Another line of research that is relevant to representation
independence is the work on abstraction [Giunchiglia and
Walsh, 1992; Nayak and Levy, 1994]. Although the goal of
this work is again to make connections between two different
ways of representing the same situation, there are significant
differences in focus. In the work on abstraction, the two ways
of representing the situation are not expected to be equivalent.
Rather, one representation typically abstracts away irrelevant
details that are present in the other. On the other hand, their
treatment of the issues is in terms of deductive entailment,
not in terms of general inference procedures. It would be
interesting to combine these two lines of work.

7 Conclusions

This paper takes a first step towards understanding the is-
sue of representation dependence in probabilistic reasoning,
by defining notions of invariance and representation indepen-
dence, showing that representation independence is incom-
patible with most types of inductive inference, and defining
limited notions of invariance that might that allow a com-
promise between the desiderata of inductive reasoning and
representation independence. Our focus here has been on in-
ference in probabilistic logic, but the notion of representation
independence isjust as importantin many other contexts. Our
definitions can clearly be extended to non-probabilistic logics.
It is interesting to see in what circumstances our results also
carry over. Are there any non-deductive logics that are repre-
sentation independent? We intend to examine this question in
future work.
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