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Abstract 

Non-deductive reasoning systems are often rep­
resentation dependent, representing the same sit­
uation in two different ways may cause such a 
system to return two different answers. This is 
generally viewed as a significant problem. For 
example, the principle of maximum entropy has 
been subjected to much criticism due to its repre­
sentation dependence. There has, however, been 
almost no work investigating representation de­
pendence. In this paper, we formalize this notion 
and show that it is not a problem specific to max­
imum entropy. In fact, we show that any proba­
bilistic inference system that sanctions certain im­
portant patterns of reasoning, such as a minimal 
default assumption of independence, must suffer 
from representation dependence. We then show 
that invariance under a restricted class of repre­
sentation changes can form a reasonable compro­
mise between representation independence and 
other desiderata. 

1 Introduction 
It is well known that the way a problem is represented can 
have a significant impact on the ease with which people solve 
it, and on the complexity of an algorithm for solving it. We 
are interested in what is arguably an even more fundamental 
issue: the extent to which the answers that we get depend on 
how our input is represented. 

To make our discussion more concrete, we discuss this 
issue in one particular context: probabilistic inference. We 
focus on probabilistic inference both because of the recent in­
terest in using probability for knowledge representation (e.g., 
[Pearl, 1988]) and because it has been the source of many of 
the concerns expressed regarding representation. However, 
our approach should be applicable far more generally. 

Suppose we have a procedure for making inferences from 
a probabilistic knowledge base. How sensitive is it to the way 
knowledge is represented? Consider the fol lowing examples, 
which use perhaps the best-known non-deductive notion of 

probabilistic inference, maximum entropy [Jaynes, 1978]. l 

Example 1.1: Suppose we have no information whatsoever. 
What probability should we assign to the proposition colorful! 
Symmetry arguments might suggest 1/2: Since we have no 
information, it seems that an object should be just as l ikely 
to be colorful as non-colorful. This is also the conclusion 
reached by maximum entropy. But now suppose we consider 
a more refined view of the world where we have colors, and 
by colorful we actually mean red V blue V green. In this case, 
maximum entropy dictates that the probability of red V blue V 
green is 7/8. Note that, in both cases, the only conclusion 
that follows from our constraints is the trivial one: that the 
probability of the query is somewhere between 0 and 1. I 

Example 1.2: Suppose we are told that half of the birds 
fly. There are two reasonable ways to represent this infor­
mation. One is to have propositions bird and fly, and use 
a knowledge base KB =def [Pr(fly | bird) = 1/2]. A sec­
ond might be to have as basic predicates bird and flying -bird, 
and use a knowledge base KBfly —def [{flying-bird => bird) A 
pT(flying'bird\bird) — 1/2]. Although the first representation 
may appear more natural, it seems that both representations 
are intuitively equivalent insofar as representing the informa­
tion that we have been given. But if we use an inference 
method such as maximum entropy, the first representation 
leads us to infer Pr(bird) = 1/2, while the second leads us to 
infer Pr(bird) = 3/4. I 

Examples such as these are the basis for the frequent 
criticisms of maximum entropy on the grounds of repre­
sentation dependence. But other than pointing out these 
examples, there has been litt le work on this problem. 
In fact, other than the work of Salmon [Salmon, 1961; 
Salmon, 1963], there seems to have been no work on for­
malizing the notion of representation dependence. One might 
say that the consensus was: "whatever representation inde­
pendence is, it is not a property enjoyed by maximum en­
tropy." But are there any other inference procedures that have 
it? In this paper we attempt to understand the notion of rep­
resentation dependence, and to study the extent to which it is 
achievable. 

"Research sponsored in part by the Air Force Office of Scien­
tific Research (AFSC), under Contract F49620-91 -C-0080, and by a 
University of California President's Postdoctoral Fellowship. 

1 Although much of our discussion is motivated by the represen­
tation dependence problem encountered by maximum entropy, an 
understanding of maximum entropy and how it works is not essen­
tial for understanding our discussion. 
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To study representation dependence, we must first under­
stand what we mean by a "representation". The real world is 
complex. In any reasoning process, we must focus on certain 
details and ignore others. At a semantic level, the relevant 
distinctions are captured by using a space X of possible al­
ternatives or states. In Example 1.1, our first representation 
focused on the single attribute colorful. In this case, we have 
only two states in the state space, corresponding to colorful 
being true and false, respectively. The second representation, 
using red, blue, and green, has a richer state space. Clearly, 
there are other distinctions that we could make. At a syntactic 
level, we often capture relevant distinctions using some for­
mal language. For example, if we use prepositional logic as 
our basic knowledge representation language, our choice of 
primitive propositions characterizes the distinctions that wc 
have chosen to make. In this case, wc can take the stales to be 
truth assignments to these propositions. Similarly, if we use 
belief networks [Pearl, 1988] as our knowledge representation 
language, we must choose some set of relevant variables. The 
states are then then possible assignments of values to these 
variables. 

What does it mean to shift from a representation (i.e., state 
space) X to another representation Y? For us, this amounts 
to associating subsets of A' with subsets of Y. Thus, for ex­
ample, the state where colorful holds can be associated with 
the set of states where either red, blue, or green holds. We 
capture the notion of representation shift formally by em-
beddings. An embedding f from A' to Y maps subsets of 
A to subsets of Y in a way that preserves complementa­
tion and intersection. An embedding is just the semantic 
version of the standard logical notion of interpretation [En-
derton, 1972, pp. 157-1621, which has also been used in the 
recent literature on abstraction [Giunchigliaand Walsh, 1992; 
Nayak and Levy, 1994]. Essentially, an interpretation maps 
formulas in a vocabulary Φ to formulas in a different vo­
cabulary Φ by mapping the primitive propositions in Φ (e.g., 
colorful) to formulas over Φ (e.g., redVblue\/ green) and then 
extending to complex formulas in the obvious way. The rep­
resentation shift in Example 1.2 can also be captured in terms 
of an interpretation, this one taking flying-bird to fly A bird. 

When doing probabilistic reasoning, we are actually in­
terested in the probability of the various states in A'. We 
therefore assume that a user's knowledge base KB consists of 
a set of probabilistic assertions, such as Pr(fly \ bird) = 1/2, 
that place constraints on distributions over X. A representa­
tion shift from X to Y induces a corresponding shift >from 
information about X to information about Y. More formally, 
an embedding / from X to Y can be extended to a mapping 
/* from constraints on distributions over X to constraints over 
distributions over Y in a straightforward way. For example, 
if the embedding / maps colorful to red V blue V green, then 
/* (?r{colorful) > 2/3) is Pr(red V blue V green) > 2 /3 . 

A probabilistic inference procedure |— takes a probabilis­
tic knowledge base and uses it to reach conclusions about the 
probability of various events over the space A'. Such a pro­
cedure is said to be invariant under f if f does not change 
the conclusions that we make; that is, if for any KB and 9, 
KB Φ iff f (KB) f(0). Roughly speaking, Misrepresen­
tation independent if it is invariant under all embeddings. This 
captures the intuit ion that |~ gives us the same answers no 
matter how we shift representations. Of course, not all embed­

dings count as legitimate representation shifts. For example, 
consider an embedding / defined in terms of an interpretation 
that maps both the propositions p and q to the proposition r. 
Then the process of changing representations using / gives 
us the information that p and q are equivalent, information 
that we might not have had originally. Intuitively, / gives 
us new information if it tells us that certain situations—e.g., 
those where p A ->q holds—are not possible. Formally, / is 
said to be faithful if f{{x}) = 0 f o r a l l x € X. We show that 
/ is faithful if and only if for any KB and 9, the assertion $ 
necessarily fol lows from KB if and only if f(9) fol lows from 
f(KB). That is, faithful embeddings are precisely those that 
give us no new information. 

At first glance, representation independence seems like a 
reasonable desideratum. However, as we show in Section 3, it 
has some rather unfortunate consequences. In particular, we 
show that any representation independent inference procedure 
must act essentially l ike logical entailment for a knowledge 
base with only non-probabilistic information. In fact, if we 
also require that our inference procedure ignore blatantly irrel­
evant information, then it must act l ike logical entailment for 
every knowledge base. Finally, representation independence 
is completely incompatible with even the simplest default as­
sumption of independence: Even if we are told nothing about 
the basic propositions p and q, representation independence 
does not allow us to jump to the conclusion that p and q arc 
independent. 

This seems to put us in a rather awkward situation: It 
seems we must either give up on representation independence, 
or make do with an inference procedure that is essentially 
incapable of even minimal inductive reasoning (jumping to 
conclusions). But things are not quite as bleak as they seem. 
In practice, we would claim that the choice of language does 
carry a great deal of information. That information is what 
gives us the intuit ion that certain embeddings are legitimate, 
while others that have the same abstract structure are not. For 
example, suppose that certain propositions represent colors 
while others represent birds. Whi le we may be wi l l ing to 
transform colorful to red V blue V green, we may not be w i l l ­
ing to transform red to fly. There is no reason to demand 
that an inference procedure behave the same way if we sud­
denly shift to a wi ld ly inappropriate representation, where the 
symbols mean something completely different. Given a class 
of "appropriate" embeddings (where the notion of appropri­
ate might be application-dependent), we may well be able to 
get an interesting notion of representation independence with 
respect to that class. 

In Section 5, we provide a general approach to constructing 
inference procedures that are invariant under a specific class 
of embeddings. We assume that the user starts wi th some set 
of initial prior probability distributions that characterize his 
beliefs in the absence of information. We show that if the 
prior distributions are chosen appropriately, so that they are 
invariant under the class of embeddings of interest, then we 
can "bootstrap" up to obtain a general inference procedure 
that is invariant under the same class of embeddings, by us­
ing cross-entropy [Kullback and Leibler, 1951], a well-known 
generalization of probabilistic conditioning. This result can 
be used in a number of ways. For example, it shows us how 
to construct an inference procedure that is invariant under a 
given set of embeddings: we simply choose a class of priors 
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Minimal irrelevance certainly seems like an innocuous and 
reasonable property. Adding information about symbols that 
do not appear in either KB or 0 should not affect whether we 
can infer 0 f rom KB. Logical entailment, being a monotonic 
inference procedure, clearly enforces minimal irrelevance. It 
is not hard to show that maximum entropy does too (see [Paris, 
1994] for a proof). Unfortunately, minimal irrelevance com­
bined with representation independence forces us to inference 
procedures that are essentially entailment. 

Theorem 3.10: Any representation independent inference 
procedure that enforces minimal irrelevance is essentially en­
tailment. 

In the ful l paper, we show that other desirable properties 
are completely inconsistent wi th representation independence. 
As one example, we show that representation independence 
is inconsistent wi th a default assumption of independence. 
Again, we define minimal default independence syntactically 
here, deferring a semantic definition to the ful l paper. 
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Clearly entailment does not satisfy minimal default in­
dependence. Maximum entropy, however, does. Indeed, a 
semantic property that implies minimal default independence 
is used in [Shore and Johnson, 1980] as one of the axioms in 
an axiomatic characterization of maximum-entropy. 



particular, it encodes the bias of the know ledge-base designer 
about the world. Researchers in machine learning have long 
realized that bias is an inevitable component of effective in­
ductive reasoning. So we should not be completely surprised 
if it turns out that other types of leaping to conclusions (as in 
our context) also depend on the bias. 

Bias and representation independence are two extremes in 
a spectrum. If we accept that the knowledge base encodes the 
user's bias, there is no obligation to be invariant under any 
representation shifts at all. On the other hand, if we assume 
the representation used carries no information, coherence re­
quires that our inference procedure give the same answers for 
all "equivalent" representations. We believe that the right an­
swer lies somewhere in between. There are typically a number 
of reasonable ways in which we can represent our informa­
tion, and we might want our inference procedure to return 
the same conclusions no matter which of these we choose. It 
thus makes sense to require that our inference procedure be 
invariant under embeddings that take us from one reasonable 
representation to another. But it does not fol low that it must be 
invariant under all embeddings, or even all embeddings that 
are syntactically similar to the ones we wish to allow. We may 
be wi l l ing to refine colorful to red V blue V green or to define 
flying-bird as fly A bird, but not to transform red to fly. In the 
next section, we show how to construct inference procedures 
that are representation independent under a limited class of 
representation shifts. 
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Theorem 5.6 allows us to define an inference procedure 
Y->T that enforces minimal default independence (for formulas 

in different cells), and at the same time is invariant under a 
large and natural class of embeddings. Given our negative 
result in Theorem 3.12, this is the best that we could possibly 
hope for. In general, Theorem 5.6 allows us to understand the 
tradeoffs between inductive reasoning patterns and invariance 
under representation shifts. 

6 Related Work 
Given the importance of representation in reasoning, partic­
ularly inductive reasoning, and the fact that one of the main 
criticisms of maximum entropy has been its sensitivity to rep­
resentation shifts, it is surprising how litt le work there has 
been on the problem of representation dependence. Indeed, 
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to the best of our knowledge, the only work on representa­
tion independence in the logical sense that we have consid­
ered here is that of Salmon. Salmon [Salmon, 1961] defined 
a criterion of linguistic invariance, which seems essentially 
equivalent to our notion of representation independence. He 
tried to use this criterion to defend one particular method of 
inductive inference but, as pointed out by Barker in the com­
mentary at the end of [Salmon, 1961], his preferred method 
does not satisfy his criterion either. Salmon then tried to find a 
modified inductive inference method that did satisfy his crite­
rion [Salmon, 1963], but it is not clear that it does; in any case, 
our results show that his modified method certainly cannot be 
representation independent in our sense. 

Although statisticians have not considered representation 
independence in the sense we have defined it here, Bayesian 
statisticians have been very concerned with related issue of 
invariance under certain transformations of parameters. For 
example, we would expect that our beliefs about a person's 
height should be invariant under a transformation from feet 
to meters. Their hope is that once we specify the transfor­
mation under which we want a distribution to be invariant, 
the distribution w i l l be uniquely determined [Jaynes, 1968; 
Kass and Wasserman, 1993]. In this case, the argument goes, 
the uniquely determined distribution is perforce the "r ight" 
one. This idea of picking a distribution using its invariance 
properties is in the same spirit as the approach we take in Sec­
tion 5. But unlike the standard Bayesian approach, we do not 
feel compelled to choose a unique distribution. This enables 
us to explore a wider spectrum of inference procedures. 

Another line of research that is relevant to representation 
independence is the work on abstraction [Giunchiglia and 
Walsh, 1992; Nayak and Levy, 1994]. Although the goal of 
this work is again to make connections between two different 
ways of representing the same situation, there are significant 
differences in focus. In the work on abstraction, the two ways 
of representing the situation are not expected to be equivalent. 
Rather, one representation typically abstracts away irrelevant 
details that are present in the other. On the other hand, their 
treatment of the issues is in terms of deductive entailment, 
not in terms of general inference procedures. It would be 
interesting to combine these two lines of work. 

7 Conclusions 

This paper takes a first step towards understanding the is­
sue of representation dependence in probabilistic reasoning, 
by defining notions of invariance and representation indepen­
dence, showing that representation independence is incom­
patible wi th most types of inductive inference, and defining 
l imited notions of invariance that might that allow a com­
promise between the desiderata of inductive reasoning and 
representation independence. Our focus here has been on in­
ference in probabilistic logic, but the notion of representation 
independence is just as important in many other contexts. Our 
definitions can clearly be extended to non-probabilistic logics. 
It is interesting to see in what circumstances our results also 
carry over. Are there any non-deductive logics that are repre­
sentation independent? We intend to examine this question in 
future work. 

References 
[Enderton, 1972] H. B. Enderton. A Mathematical Introduc­

tion to Logic. Academic Press, New York, 1972. 
[Giunchiglia and Walsh, 1992] F. Giunchiglia and T. Walsh. 

A theory of abstraction. Artificial Intelligence, 56(2-
3):323-390, 1992. 

[Jaynes, 1968] E. T. Jaynes. Prior probabilities. IEEE Trans­
actions on Systems Science and Cybernetics, SSC-4:227-
241, 1968. 

[Jaynes, 1978] E. T. Jaynes. Where do we stand on maximum 
entropy? In R. D. Levine and M. Tribus, editors, The 
Maximum Entropy Formalism, pages 15-118. M I T Press, 
Cambridge, Mass., 1978. 

[Kass and Wasserman, 1993] R. E. Kass and L. Wasserman. 
Formal rules for selecting prior distributions: A review 
and annotated bibliography. Technical Report Technical 
Report #583, Dept. of Statistics, Carnegie Mel lon Univer­
sity, 1993. 

[Kraus etai, 1990] S. Kraus, D. Lehmann, and M. Magidor. 
Nonmonotonic reasoning, preferential models and cumu­
lative logics. Artificial Intelligence, 44:167-207, 1990. 

[KuDback and Leibler, 1951] S. Kullback and R. A. Leibler. 
On information and sufficiency. Annals of Mathematical 
Statistics, 22:76-86, 1951. 

[Nayak and Levy, 1994] P. P. Nayak and A. Y. Levy. A se­
mantic theory of abstractions. 1994. 

[Paris, 1994] J. B. Paris. The Uncertain Reasoner's Compan­
ion. Cambridge University Press, 1994. 

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent 
Systems. Morgan Kaufmann, San Francisco, Calif., 1988. 

[Salmon, 1961] W. Salmon. Vindication of induction. In 
H. Feigl and G. Maxwel l , editors, Current Issues in the 
Philosophy of Science, pages 245-264. Holt , Rinehart, and 
Winston, New York, 1961. 

[Salmon, 1963] W. Salmon. On vindicating induction. In 
H. E. Kyburg and E. Nagel, editors, Induction: Some Cur­
rent Issues, pages 27-54. Wesleyan University Press, M id -
dletown, Conn., 1963. 

[Seidenfeld, 1987] T. Seidenfeld. Entropy and uncertainty. 
In I. B. MacNeil l and G. J. Umphrey, editors, Foundations 
of Statistical Inferences, pages 259-287. 1987. 

[Shore and Johnson, 1980] J. E. Shore and R. W. Johnson. 
Axiomatic derivation of the principle of maximum en­
tropy and the principle of min imimum cross-entropy. 
IEEE Transactions on Information Theory, IT-26(1):26-
37, 1980. 

1860 REASONING UNDER UNCERTAINTY 


