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Abstract

Influence Diagrams (IDS) are a graphic formal-
ism able to provide a compact representation
of decision problems. IDs are based on the ax-
ioms of probability and decision theory, and
they define a normative framework to model
decision making. Unfortunately, IDs require a
large amount ofinformation that is not always
available to the decision maker. This paper in-
troduces a new class of IDS, called Ignorant In-
fluence Diagrams (iiDs), able to reason on the
basis ofincomplete information and to improve
the accuracy of their decisions as a monotoni-
cally increasing function of the available infor-
mation, 11DS represent a net gain with respect
to the traditional IDs, since they are able to ex-
plicitly represent lack of information, without
loosing any capability of traditional IDs when
the required information is available. Further-
more, | IDs provide a new method to assess the
reliability of the decisions by replacing the tra-
ditional sensitivity analysis with a single ana-
lytical measure.

1 Introduction

Bayesian Belief Networks (BBNS) [Pearl, 1988] are a well-
known formalism to reason under uncertainty and they
have been successfully applied to a variety of problems
in different domains. A BBN is a direct acyclic graph in
which nodes represent stochastic variables and arcs rep-
resent conditional dependencies among variables. From
a probabilistic point of view, they provide a straightfor-
ward way to represent independence assumptions among
variables, thus making easy the representation and the
acquisition of knowledge. BBNs are particularly appeal-
ing since they are based on a sound probabilistic seman-
tics and they easily extend into a complete decision the-
oretic formalism, called Influence Diagrams (IDs). IDs
[Horviti et al/., 1988] provide a compact representation
for decision problems and their sound probabilistic se-
mantics guarantees the normative character of their de-
cisions, IDS are an appealing complement to more tradi-
tional methods for representing decision problems, such
as tables of joint probability distributions or decision

trees, because they exploit the ability of BBNs to ex-
press conditional independence assumptions in graphical
terms, thus dramatically reducing the amount of infor-
mation needed to specify a decision problem.

Nonetheless, a BBN still requires a fixed and poten-
tially very large amount of probabilistic information,
that is not always available to the decision maker: the
number of conditional probabilities needed to specify
a conditional dependency grows exponentially with the
number of its parent variables. Current propagation al-
gorithms require that all the conditionals probabilities
defining a conditional dependency among variables have
to be known, as well as all prior probabilities for the
states of the root variables, before any reasoning process
can start. Furthermore, these probability measures have
to be assessed as point-valued probabilities, even when
the decision maker is not completely sure about them.
This requirement, called Credal Uniqueness [Stiling and
Morrel, 1991], is one of the most controversial points
of Bayesian probability and decision theory [Levi, 1980;
Kyburg, 1983], and it is the reason why BBNs require
such a large amount of probabilistic information: in or-
der to specify a unique probability distribution over the
stochastic variables of a BBN, we need to know the con-
ditional probabilities relating it with all its parents in
the network.

This limitation becomes even more apparent in the de-
velopment of an ID: when the decision maker is not able
to specify a single probability, he is nonetheless forced
to provide point-valued probability measures, and then
to perform a costly and tiring analysis to assess the sen-
sitivity of the resulting decisions to all the possible com-
binations of his imprecise assessment.

To overcome this limitation, and maintain the ap-
pealing features of probabilistic soundness and graphi-
cal nature of BBNs, we have developed a class of BBNs,
called ignorant Belief Networks (iBNs) [Ramoni and
Riva, 1994], able to relax the Credal Uniqueness assump-
tion and to reason on the basis of incomplete proba-
bilistic information. IBNs implement an inference pol-
icy, largely wished in the literature about probabilistic
reasoning systems, called incremental refinement policy
[Horviti, 1989], able to improve the accuracy of the so-
lutions as a monotonically increasing function of the al-
located resources and the available information.

The aim of this paper is to extend IBNs into a com-
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plete decision theoretic formalism called Ignorant Influ-
ence Diagrams (ilDs), and to show how | IDs can be useful
to model decision making when the information required
by traditional IDs is not available. The reminder of this
paper will briefly outline the theory and the properties of
the IBNs. Then, it will describe the way in which an IBN
can be extended into an IID and which decision proce-
dures are needed when the available information is not
sufficient to specify point-valued probability measures.
It will also outline a new method, provided by IIDs, to
assess the reliability of decisions without the costly sen-
sitivity analysis required by traditional IDs. A simple
example will illustrate the properties of IIDs and a brief
comparison with some related works will be provided.

2 Ignorant Belief Networks

The representation and use of incomplete information
is a long standing challenge for Al researchers. Dur-
ing the past decade, they have developed a class of
reasoning systems, called Truth Maintenance Systems
(TMSs) [McAllester, 1990], which incrementally record
justifications for beliefs and propagate Boolean truth
values along chains ofjustifications. TMSs are indepen-
dent reasoning modules which incrementally maintain
the beliefs for a general problem solver and enable it
to reason on the basis of temporary assumptions and
incomplete information. TMSs able to propagate proba-
bilistic rather than binaries truth-values are called Be-
lief Maintenance Systems (BMSs) [Falkenhainer, 1986;
Laskey and Leaner, 1989]. IBNS are belief-maintained
BBNs: they exploit a BMS based on probabilistic logic,
and therefore called Logic-based BMS (LBMS) [Ramoni
and Riva, 1993].

2.1 Belief Maintenance

A LBMS uses a standard propositional language £ defined
by a set of atomic propositions & = {a;,a3,...,a,} and
by the standard Boolean operators —, V, A, D,and =. A
Iiteral I is an atomic proposition a; or its negation -aj.
An atomic proposition a; is a positive literal and the
negation of an atomic proposition —a, is a negative lit-
eral. A clause C is a finite disjunction of literals \/;_, 4.
A Conjunctive Normal Form {(CNP) formula f is a finite
conjunction of clauses A:ﬂ C;. Any legal formula of a
propositional language can be converted into a ¢NP for-
mula.

The LBMS relaxes the Credal Uniqueness assumption
by replacing the standard point-valued probability func-
tion p(f) with a convex set of these functions. The re-
sulting evaluation function P(f) of the language £ will
define a real interval between two probability functions

71(f) and pa(f) such that
PO =" Hr () =am{fHH + (1 -a)pm(f)} (1)

where a is a real number and 0 < a < 1. The interval
assigned by the function P(f) to the formulas in £ is
called the label of f and we will denote with P,(f) = .
and P*(f) = »* the lower and the upper bounds of the
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interval P(f) = [x. 7], respectively. A label P(f) =
[, '] is satisfied for any subinterval of [, T*].

The LBMS uses a forward chained unit-resolution
style algorithm called Epistemic Constraint Propagation
(BCP)to propagate labels over a network of propositions!
formulas, BCP can be regarded as an extension to inter-
vals of the Boolean Constraint Propagation (BCP) algo-
rithm [McAllester, 1990] used by the TMSs based on the
propositions! calculus. The intuition behind the BCP is
simple and elegant. The algorithm starts converting any
formulain CNF, that is, a set ofclauses. Bach clause acts
as a constraint on the truth-values of the literals occur-
ring in it. To be satisfied, a clause must contain at least
one literal labeled as true. A clause is violated when
all the literals occurring in it are labeled as false, thus
producing a contradiction. When all literals but one in
a clause are labeled as false BCP forces the unlabeled
literal to be true.

In order to extend the BCP from Boolean to probabilis-
tic truth-values, we derived, from the theory of proba~
bilistic entailment [Nilsson, 1986], a probabilistic inter-
pretation of disjunction able to define which constraints
are imposed by a clause over the (probabilistic) truth-
values of the literals occurring in it [Ramoni and Riva,
1995].

The first constraint, imposed by a clause over the lit-
erals occurring in it states that the label of a literal /, in
clause V-, & is bounded by:

PL)2 P(\J L) =D P} + F (2)

i=1 s
where
F=Y Y RARY - Ac(ADY

and the function A, is defined as

ac(A 1) =max{o,(D> x) -1}

ixl i=1

The second constraint states that the label of the literal
I; is bounded by:

Y a-pPr(-hvey)
e (3)

Ph) < z'-'—ZP.(ﬂz.vci;

P.(h) 2

where {l4,...,!,} is a set ofliterals, and {C4, ...,C2—»}
are the clauses built from {/4,..., 1,} with all the possible
combinations of the negated and unnegated literals in
the set {/a,...,I,}.

The propagation of these constraints is performed by
a version of Welti's propagation algorithm [Walts, 1975]
extended to intervals [Davis, 1987]: each proposition is
labeled with a set of possible values, and the constraints
are used to restrict this set. This property, which is
implicit in the form of the inequalities 2 and 3, implies



a monotonic narrowing of the labels, thus ensuring the
incrementality of BCP.

The most important feature of BCP is the ability to
reason from any subset ofthe set of clauses representing a
joint probability distribution, by bounding the probabil-
ity of the propositions within probability intervals, and
incrementally narrowing these intervals as more informa-
tion becomes available. Furthermore, BCP is sound: it
never excludes from its intervals any probability value
that could be derived by standard probability theory
from the available information. Even if incomplete in
general, BCP is complete with respect to the clauses rep-
resenting a joint probability distribution. This means
that, with respect to this subclass of the language, BCP
returns the tightest entailed interval. The incomplete-
ness with respect to other clauses of the language is the
result of a compromise between expressivity and effi-
ciency, since theoretical analysis and empirical results
show that the BCP propagation runs to completion in
linear time with respect to the number of clauses [Ra-
moni and Riva, 1995], thus making easy the estimation
and the trading off of the computational effort.

2.2 Representation

IBNS are belief-maintained BBNs based on the LBMS. The
IBN acts as a knowledge representation formalism ex-
pressing the assumptions of conditional independence in
the domain of application and communicates the avail-
able conditional probabilities to the LBMS. These condi-
tional probabilities are transformed into clauses relating
the propositions of the LBMS which represent states of
the stochastic variables of the IBN. In this way, any
computation is left to the LBMS and the IBN can exploit
the incremental character of BCP. The elements ofa BBN
can be easily translated into a LBMS network.

Nodes In a BBN, a node represents a stochastic vari-
able. A stochastic variable is a set of mutually exclu-
sive and exhaustive states. Therefore, the probability
values assigned to the states in a variable have to sum
to unit. In an IBN, when a variable is denned, each
state is communicated to the LBMS as an atomic propo-
sition. Moreover, a set of clauses is installed to ensure
that the states of the variable are mutually exclusive and
exhaustive. For all propositions aq,...,a, in the LBMS
representing the states of the variable, the disjunction
ay V..V @y, and all the conjunctions —{ay A a;]l (with
i # j) are asserted as true in the LBMS. When a proba-
bility value is assigned to a proposition a; representing a
state of the variable, the LBMS receives the conjunction
PlaiA—asA ... A—an) = P(ay)

Arcs In a BBNs, arcs represent conditional dependen-
cies among nodes. A conditional dependency defines a
dependency relation between a set of parent nodes and
a child node. A conditional dependency is denned by
the conditional probabilities P{a4|@ky-++,8s) = [xe _‘l"]i
where ay,..., a, is a combination ofstates of the stochas-
tic variables represented by the parent nodes of the de-
pendency and at is a state of stochastic variable repre-
sented by the child node. Conditional dependencies can

be propagated both ways over an IBN, thus emulating
the two main operations involved in the evaluation of a
BBN: node removal and arc reversal.

2.3 Inference

There are two main operations involved in the evaluation
of an ID: node removal and arc reversal. Node removal
corresponds to propagating probability values along the
direction of the arcs in the graph, while arc reversal cor-
responds to flowing backward the direction of the arcs
and assessing the posterior probability of parent nodes
in a dependency.

Node Removal In a BBN, node removal corresponds
to marginalization. When the probability values of
all states represented by the propositions a;...a, is
assigned, the two different clauses resulting from the
application of the De Morgan's laws to {ajAG;...a,]
and {-a¢Aa;...a,) are communicated to the LBMS al-
gorithm. F{aiA@s... a,) and P(—e;Aa;...a,) are cal-
culated according to a version of the chain rule extended
to intervals:

P.(ainaj...a,) = I.I P,{au)P.(ailaj,...,8.)

P*(ainaj...a,) = [[ P*(as) P*(ailayy.. . a.)
h=j
P.(-airaj...a,) = ] Po(ar)(i - P*(ailajye..ras))
k=i
P*(—ainaj...ap) = H P*(an){(1 — P.(ailajy.s,a,))

The resulting conjunctions are converted into clauses by
the LBMS before propagating them through BCP.

Arc Reversal From a probabilistic point of view, the
capability of performing arc reversal in IBNs is provided
by the well-known Bayes' Theorem:

plailaj...a.)[],., plax)

p{ai)

p(aj...alai) = <4)
where i € {,-..,8}. When provided with new evidence
p{a;), we can apply the chain rule to the conditional
probability calculated by Formula 4 and p(a{) to obtain
the conjunction:

plaina;...a,) = plajr... Aa,lai)p(ai).

Since p(—ailaj...Aa,) = 1 — plaslazA...Aa,), we can
also derive:

p(—m.»/\.a,;/\ . Aa.) = p{uj)\ cae Ay, |-1a.')£(-!¢.‘).

When converted into clausal form, these conjunctions
turn out to be the same clauses that were generated dur-
ing marginaliiation. Therefore, arc reversal results in an
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updating of the probabilities of a set of already existing
clauses. Extending this definition to intervals, the arc
reveraal formula for BNs is obtained as follows:

P.(ainaj...0,) = P.‘::l P.(ailaj,...,a,) H P.(as)

LD ]
P*(aina;...a.) = 2420 P*(aslay,...,a.) [] P"(as)
b f

It is worth noting that the resulting posterior probabil-
ity set is still convex, since it is the result of a linear
mapping of the extreme values of a probability inter-
val, and BCP was proved to preserve convexity during
propagations [Ramoni and Riva, 1993]. Furthermore, in
IBNS, the inversion formula shares with the chain rule
the appealing property of propagating only the available
information, thus preserving the incremental refinement
policy of BCP.

2.4 Properties

From the theory of TMSS, the LB MS inherits the concept
of consumer [de Kleer, 1986]. A consumer is a forward-
chained procedure attached to a proposition, that is fired
when the truth-value of the proposition is changed, that
is, the probability interval associated with a state is
narrowed. Using consumers, IBNs do not perform any
computation themselves, but rather act as a high-level
knowledge representation language, while the propaga-
tion of probabilities is performed by the LBMS.

There are some properties of the IBNs that will be
crucial in the development of the IIDs. First of all IBNs
converge toward point valued probabilities, and when all
the conditionals defining ajoint probability distribution,
they behave as standard BBNS, returning point-valued
probabilities. Furthermore, an IBN will infer the tightest
intervals from any subset of conditional probability in a
conditional dependency, since the LBMS is compete for
clauses representing joint probability distributions and
the IBN simply minimises and maximise the standard
rules of node removal and arc reversal.

Finally, it is worth noting that the LBMS both performs
and drives the propagation, since consumers are attached
to the propositions of the LBMS and are fired according
to the changes occurring in their labels. Therefore, the
computational cost of a propagation grows linearly in
space and time with respect to the number of condi-
tional probabilities, even if the number of conditional
probabilities needed to specify a conditional dependency
grows exponentially with the number of parent nodes in
the dependency. However, the incremental character of
inference policy implemented by the IBNs will allow the
decision maker to trade execution time with precision
of solutions, since an IBN will propagate only those con-
ditional probabilities explicitly assessed by the decision
maker.

3 Influence Diagrams

IDS [Horvits et a/., 1988] are a natural extension of BBNs.
They allow the formulation of a decision problem into the
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Figure 1: A simple Ignorant Influence Diagram.

sound and compact formalism of BBNS. In this section,
we will illustrate how IBNs can be easily extended to a
complete decision formalism, thus creating a new class
of IDs called Ignorant Influence Diagrams (1IDS). |IDs
inherit from the IBNs the ability to reason on the basis
of incomplete information and to incrementally refine the
accuracy of their decisions as more information becomes
available.

3.1 Representation

IDs are BBNs containing three different kinds of nodes:
chance nodes (also called state nodes), decision nodes,
and value nodes (also called preference nodes). These
nodes are related by standard conditional dependencies.
The resulting ID can be transformed into a BBN following
the method proposed by Cooper [1988]. On this view,
the decision problem can be solved by determining the
instantiations of the decisions which maximise the ex-
pectations of the decision maker.

Chance Nodes A chance node represents a state of
the world. It is basically a standard stochastic variable.
BBNs are usually defined as "influence diagrams contain-
ing just chance nodes" [Horvits et a/., 1988]. In Figure
1, chance nodes are depicted as oval nodes in the graph.

Decision Nodes A decision node identifies a set of
possible alternative actions available to the decision
maker. In the IID of Figure 1, the decision node is de-
picted as a square node. A set of actions representing a
possible solution for a decision problem is called strategy
or policy.

Value Nodes Different strategies lead to different out-
comes. Value nodes represent preferences or utilities of
the decision maker for alternative outcomes. A decision
problem may be represented as the problem of finding
the strategy which maximises the preferences expressed
by the decision maker over the possible outcomes of the
problem. In Figure 1, the value node is depicted as a
diamond.



3.2 Deci'ion Cl‘iteril

A standard 1D is solved by choosing the strategy with
maximal expected utility of its outcomes. In the example
depicted in Figure 1, the expected utility of a strategy
is the value assigned by the network to the value pode.
The optimal strategy s; will be the strategy with the
highest expected utility u(s;). As 11Ds propagate convex
sets of probability distributions, they will also lead to
convex scts of expected utilities for each strategy U(s:).
We will denote with U,(#) and U*(a) the lower and
npper bounds of the convex set of expected utilities for
the strategy s, respectively. There are several criteria
to rank convex sets of expected utilities.

The most conservative criterion is called Stochastic
Dominance [Kyburg, 1983] and dictates that a strategy
3; has to be preferred to a strategy s; if and only if
U.(8) > U"(2;) (i.c. the expected utility intervals do
not overlap). This criterion is extremely safe, because it
provides a decision if and only if there will be no chance
that any additional information will change the ranking
order among s; and s;. However, this criterion is often
unable to discriminate in a variety of decision situations.

When the Stochastic Dominance criterion fails, we
have to resort to a weaker condition of admissibility, able
to discriminate among competing strategies when the
expected utility intervals are not disjoint [Levi, 1980].
Pitturelli [1988] proposes to adopt a generalised version
of the well-know Hurwics criterion. This criterion sug-
gests to rank the possible sirategies according to a weight
average of their minimum and maximum expected util-
ity, using a constant a , with 0 < a < 1. Therefore, the
strategy a; is preferred to the strategy s; if and only if

Uu(ai)a + U (0)(1 ~ @) > Us(ag)a + U (33)(1 - a)

The constant a, called Hurwics value, can be thought
as a baldness index representing the daring attitude of
the decision maker. When a = 1, the Hurwics criterion
reduces to the well-known maximin criterion. The max-
imin criterion prescribes to select the sirategy having the
highest minimum expected utility. Hence, a strategy # is
preferred to a strategy #; if and only if U,(s;) > U, (s5)-
This criterion reflects the behavior of a cautious decision
maker, who wants to be sure that, even if an unfavor-
able state of the world occurs, there is a known minimum
payoff below which he cannot fall.

When a = 0, the Hurwics criterion collapses on
the maximax criterion. The maximax criterion adopts
the opposite point of view than the maximin criterion.
It consider only the maximum expected utility of the
strategies and select the strategy with the highest. Then
a strategy #; is preferred to a strategy s; if and only if
U*(s;) > U*(s;). This criterion reflects the standpoint
of a daring gabler who cares just about the maximum
payoffs of his strategies and can afford to stand possible
losses.

3.3 Sensitivity Analysis

Traditional decision theoretic formalisms require the
assessment of point-valued probabilily measures, even

Probability — - ~ 1 2
[ P{ [cause=yes]) [0.50.7] | 0.6
P( [effect=yes]| [cause=yes] [action=yes]) | [0.3 0.5 0.4
P( [effect=yes)| [canse=yes] [action=no]) | [0.50.8 0.8
P( [effect=yes]| [cause—no} [action=yes]) | [0.10.3] | 0.1
i P( [effect=yes]| [cause=no Lction:no — | 0.2
PE ;mt=ye|]| (action=yes)) [0.80.9) | 0.9
P({ [cost=yes]| [action=no]) 0.01 | 0.01

Table 1: The probability measures defining the 11D of
the example.

when the decision maker is not completely confident
about them. Since the decision maker cannot specify
confidence intervals, he will have to perform a tiring and
costly analysis of the sensitivity of the decisions to all
the probability values he does not feel sure about. IlIDs
reduce the cost of this procedure by solving the diagram
just once and producing a sort of "simultaneous” mul-
tivariate sensitivity analysis. An advantage of this ap-
proach is that it provides a straightforward way to eval-
uate the sensitivity of decisions not only to prior prob-
abilities but also to conditional probabilities, which are
usually difficult to modify and test using traditional sen-
sitivity analysis methods.

Furthermore, the adoption of the Hurwics criterion
to discriminate between competing strategies introduces
a natural measure of the reliability of the decisions.
When maximin and maxima* criteria conflict, the Hur-
wics value itself becomes a measure of reliability. We
can analytically identify the decision threshold for the
Hurwici value in order to assess the sensitivity of the
discrimination between the strategy s; and the strategy
Sj to the boldness attitude of the decision maker, using
to the following formula:

~ Ua(ai) = Ualsy)
T ) Ol 2 U Oy )

Intuitively, this formula identifies for which Hurwics
value the decision maker will change his policy, and
therefore the robustness of the decision reached so far.
The lower is the decision threshold, the lower will be the
chance that new information will change the preferred
strategy, and therefore, the higher will be the quality
of our decision. The value r will be an Hurwics value
(that is, 0 < T < 1) as long as one utility interval will
be subset of the other, and therefore the maximin and
the maximax criteria will conflict. When r < 0, both
criteria will select the same strategy.

The optimality of these results is guaranteed by the
ability of IBNS to return the tightest interval for any state
from any subset of the conditional probabilities defining
a conditional dependency and by the soundness of the
method developed by Cooper [1988] to transform an ID
into a BBN.

4 Example

In a standard ID, all the conditional probabilities
that make up a conditional probability distribution are
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Figure 2: The 11D defined by the probability measures
reported in the first column of Table 1.

needed before any reasoning process can start. We will
now show with an example how an IID is instead able
to reason from incomplete conditional probability dis-
tributions. Figure 1 shows the IID used as an example.
It represents the decision problem of taking a certain
action in order to prevent a certain effect of a par-
ticular cause. The action has a foreseeable cost, and
the problem consists in trading-off the value gained by
prevention of the effect with the cost of the action.

The example is composed of two steps. In the
first step, the system receives only the probability
measures listed in the first column of Table 1, with
the preference function over the outcomes defined
as: v([cost=yes] [effect=yes]) = 0, v([cost=yes]
[effect=no]) = 0.8, v([cost=no] [effect=yes]) =
0.2, and v([cost=no] [effect=no]) = 1. Figure 2
shows the graphical representation of the network gen-
erated in the first step ofthe example. The pop-up win-
dows over the nodes graphically report the probability
interval associated to each one of their states. In each
bar, the area between 0 and P,(a;) is black, the area be-
tween P*@@) and 1is white, and the area between P,(a)
and P*(a4) is gray. Thus, the width of the gray area is
proportional to the ignorance about the probability.

The decision node reports its value in a strategy. The
chances nodes report the probability values of each of
their states for the same strategy. It is worth not-
ing that the conditional P([effect=yes]| [cause=no0]
[action=no]), not reported in the first column of Ta-
ble 1, is actually not included in the definition of the
first 11D, and therefore its probability value is not even
propagated. The value node value reports the expected
utility intervals for the possible strategies [action=y»s]
and J[action=no], namely: U([action=yes]) =
[0.344 0.768] and U([action=no]) = [0.2767 0.7993].

It is apparent that the Stochastic Dominance crite-
rion is unable to select only one strategy, and remains
undecided. The weaker Hurwici criterion is able to pick
up a unique decision. However, the solution can change
according to the Hurwici value. Using formula 5, we
can estimate the robustness of the decision by calculat-
ing the decision threshold for the Hurwici value. In our
case, the decision threshold is r — 0.6825.
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Figure 8: The 11D defined by the probability measures
reported in the second column of Table 1.

When all the probability measures required by a stan-
dard ID are specified, as in the second column of Table
1, the IID behaves as a standard ID in returning point-
valued probabilities, as shown in Figure 3. Since all the
criteria adopted collapse on the maximum expected util-
ity criterion when they have to rank point-valued ex-
pected utilities, also the solution provided by the IID is
identical to the one suggested by a standard ID.

5 Related Work

There are at least two line of research trying to relax
the Credal Uniqueness assumption within a coherent
Bayesian framework and to develop automated decision
making systems able to reason on the basis of interval
rather than point-valued probability functions.

The first line of research is based on the concept of
probabilistic database, which generalises the standard
relational model by replacing the characteristic function
of a relation with a finite probability distribution func-
tion. Using this concept, Pittarelli [1994] proposed a
model able to represent probability intervals and pro-
vided methods for decision making based on it. The
analogy between a probabilistic database and a table of
joint probability distributions is apparent. Therefore,
IID s improve the probabilistic database model as IDs im-
prove the traditional decision theoretic methods based
on tables ofjoint probability distributions: 1IDs explic-
itly represent conditional independence assumptions in
the domain of application, thus reducing the amount
of probabilistic information needed to specify a decision
problem.

Closer to the aim of 1IDs are the efforts addressed by
Breeze and Pertig [1990] to develop Interval Influence Di-
agrams. They describe procedures for node removal and
arc reversal in IDS where lower bounds of probability in-
tervals are stored at each node in the ID. The appealing
feature of this method is its effort to preserve both the
probabilistic soundness and the graphical nature ofstan-
dard IDs. Unfortunately, the probability bounds calcu-
lated by this method quickly degradatc during the propa-
gation, thus resulting in the assignment oftoo wide prob-
ability intervals and jeopardising the normative charac-
ter of their decisions: an analog of the classical Dutch



Book can be made against an agent making decisions
on the basis of the probability distributions erroneously
allowed by too wide probability intervals.

6 Conclusions

IDs are a powerful formalism to mechanise decision mak-
ing, and they have been successfully applied to a wide
range of problems. However, they require a large amount
of information that is not always available to the de-
cision maker. The acquisition of this large amount of
information, either from human experts or from statis-
tical analyses of databases, usually represents one of the
major challenges in the process of developing decision
support systems based on IDS. This paper introduced a
new class ofIDs, called |IDs, able to reason on the basis of
incomplete information, and to incrementally refine the
accuracy of their decisions as more information becomes
available. However, when they are provided with com-
plete probabilistic information, IIDs behave as standard

IDS.

Therefore, IIDs represent a net gain with respect to the
traditional IDS, since they are able to explicitly represent
the actual lack ofinformation, without loosing any capa-
bility of the traditional IDs when the required informa-
tion is available. Furthermore, by relaxing the Credal
Uniqueness assumption, | IDS provide a new method to
assess the reliability of the decisions by replacing the
costly and tiring sensitivity analysis with a single an-
alytical measure. Finally, the monotonic, incremental
character of the refinement process in the IIDs provides
a way to trade-off the amount of computational time
and available information with the accuracy of the deci-
sions. This feature makes |IDs a suitable formalism for
real-time, resource-bounded decision tasks.
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