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Abs t rac t 

Influence Diagrams ( I D S ) are a graphic formal ­
ism able to provide a compact representation 
of decision problems. IDs are based on the ax­
ioms of probabi l i ty and decision theory, and 
they define a normat ive framework to model 
decision mak ing . Unfor tunate ly , IDs require a 
large amount of in fo rmat ion that is not always 
available to the decision maker. Th is paper in ­
troduces a new class of I D S , called Ignorant In­
fluence Diagrams ( i iDs) , able to reason on the 
basis of incomplete in format ion and to improve 
the accuracy of their decisions as a monotoni -
cally increasing funct ion of the available infor­
ma t ion , I I D S represent a net gain w i t h respect 
to the t rad i t iona l IDs, since they are able to ex­
pl ic i t ly represent lack of in fo rmat ion , w i thout 
loosing any capabi l i ty of t rad i t iona l IDs when 
the required in fo rmat ion is available. Further­
more, I IDs provide a new method to assess the 
rel iabi l i ty of the decisions by replacing the t ra­
d i t iona l sensit ivi ty analysis w i t h a single ana­
ly t ica l measure. 

1 I n t r o d u c t i o n 

Bayesian Belief Networks ( B B N S ) [Pearl, 1988] are a well-
known formal ism to reason under uncertainty and they 
have been successfully appl ied to a variety of problems 
in different domains. A BBN is a direct acyclic graph in 
which nodes represent stochastic variables and arcs rep­
resent condi t ional dependencies among variables. F rom 
a probabil ist ic point of v iew, they provide a straightfor­
ward way to represent independence assumptions among 
variables, thus mak ing easy the representation and the 
acquisit ion of knowledge. BBNs are part icular ly appeal­
ing since they are based on a sound probabil ist ic seman­
tics and they easily extend in to a complete decision the­
oretic fo rmal ism, called Influence Diagrams (IDs). IDs 
[Ho rv i t i et a/., 1988] provide a compact representation 
for decision problems and their sound probabil ist ic se­
mantics guarantees the normat ive character of their de-
cisions, I D S are an appealing complement to more t rad i ­
t ional methods for representing decision problems, such 
as tables of j o i n t probabi l i ty distr ibut ions or decision 

trees, because they exploit the abi l i ty of BBNs to ex­
press condit ional independence assumptions in graphical 
terms, thus dramat ical ly reducing the amount of infor­
mat ion needed to specify a decision problem. 

Nonetheless, a BBN st i l l requires a fixed and poten­
t ia l ly very large amount of probabil ist ic in fo rmat ion , 
tha t is not always available to the decision maker: the 
number of condit ional probabil i t ies needed to specify 
a condit ional dependency grows exponential ly w i t h the 
number of i ts parent variables. Current propagat ion al­
gor i thms require that al l the conditionals probabil i t ies 
defining a condit ional dependency among variables have 
to be known, as well as al l pr ior probabil i t ies for the 
states of the root variables, before any reasoning process 
can star t . Furthermore, these probabi l i ty measures have 
to be assessed as point-valued probabi l i t ies, even when 
the decision maker is not completely sure about them. 
Th is requirement, called Credal Uniqueness [Sti l ing and 
Mor re l , 199 l ] , is one of the most controversial points 
of Bayesian probabi l i ty and decision theory [Levi , 1980; 
K y b u r g , 1983], and it is the reason why BBNs require 
such a large amount of probabil ist ic in fo rmat ion : in or­
der to specify a unique probabi l i ty d is t r ibut ion over the 
stochastic variables of a BBN, we need to know the con­
d i t iona l probabil i t ies relat ing i t w i t h al l i ts parents in 
the network. 

Th is l im i ta t i on becomes even more apparent in the de­
velopment of an ID: when the decision maker is not able 
to specify a single probabi l i ty , he is nonetheless forced 
to provide point-valued probabi l i ty measures, and then 
to per form a costly and t i r ing analysis to assess the sen­
s i t iv i ty of the result ing decisions to al l the possible com­
binations of his imprecise assessment. 

To overcome this l im i ta t i on , and mainta in the ap­
pealing features of probabil ist ic soundness and graphi­
cal nature of BBNs, we have developed a class of BBNs, 
called ignorant Belief Networks (iBNs) [Ramoni and 
Riva, 1994], able to relax the Credal Uniqueness assump­
t ion and to reason on the basis of incomplete proba­
bil istic in fo rmat ion . IBNs implement an inference po l ­
icy, largely wished in the l i terature about probabil ist ic 
reasoning systems, called incremental refinement policy 
[ H o r v i t i , 1989], able to improve the accuracy of the so­
lut ions as a monotonical ly increasing funct ion of the a l ­
located resources and the available in fo rmat ion . 

The a im of this paper is to extend IBNs in to a com-
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plete decision theoretic formal ism called Ignorant I n f l u ­
ence Diagrams ( i IDs), and to show how I IDs can be useful 
to model decision mak ing when the in fo rmat ion required 
by t rad i t iona l IDs is not available. The reminder of this 
paper w i l l brief ly out l ine the theory and the properties of 
the IBNs. Then , i t w i l l describe the way in which an I B N 
can be extended in to an I I D and which decision proce­
dures are needed when the available in fo rmat ion is not 
sufficient to specify point-valued probabi l i ty measures. 
I t w i l l also out l ine a new method , provided by IIDs, to 
assess the re l iabi l i ty of decisions w i thou t the costly sen­
s i t iv i ty analysis required by t rad i t iona l IDs. A simple 
example w i l l i l lustrate the properties of IIDs and a br ief 
comparison w i t h some related works w i l l be provided. 

2 Ignoran t Be l ie f Ne tworks 
The representation and use of incomplete in fo rmat ion 
is a long standing challenge for AI researchers. Dur ­
ing the past decade, they have developed a class of 
reasoning systems, called Truth Maintenance Systems 
(TMSs) [McAllester, 1990], which incremental ly record 
just i f icat ions for beliefs and propagate Boolean t r u t h 
values along chains of just i f icat ions. TMSs are indepen­
dent reasoning modules which incremental ly main ta in 
the beliefs for a general problem solver and enable it 
to reason on the basis of temporary assumptions and 
incomplete in fo rmat ion . TMSs able to propagate proba­
bil ist ic rather than binaries truth-values are called Be­
l ie f Maintenance Systems (BMSs) [Falkenhainer, 1986; 
Laskey and Leaner, 1989]. I B N S are belief-maintained 
BBNs: they exploit a B M S based on probabil ist ic logic, 
and therefore called Logic-based B M S ( L B M S ) [Ramoni 
and R iva , 1993]. 

[Π, Π'] is satisfied for any subinterval of [π, π*]. 
The L B M S uses a forward chained unit-resolut ion 

style a lgor i thm called Epistemic Constraint Propagation 
( B C P ) to propagate labels over a network of proposi t ions! 
formulas, B C P can be regarded as an extension to inter­
vals of the Boolean Constra int Propagat ion ( B C P ) algo­
r i t h m [McAllester, 1990] used by the TMSs based on the 
proposi t ions! calculus. The in tu i t i on behind the BCP is 
simple and elegant. The a lgor i thm starts convert ing any 
fo rmu la in CNF, tha t is, a set of clauses. Bach clause acts 
as a constraint on the truth-values of the l i terals occur­
r ing in i t . To be satisfied, a clause must contain at least 
one l i tera l labeled as t r u e . A clause is violated when 
al l the l i terals occurr ing in it are labeled as false, thus 
producing a contradiction. When al l l i terals but one in 
a clause are labeled as false B C P forces the unlabeled 
l i tera l to be t r u e . 

In order to extend the BCP from Boolean to probabil is­
t ic t ruth-values, we derived, f r om the theory of proba~ 
bilistic entailment [Nilsson, 1986], a probabi l ist ic inter­
pretat ion of d is junct ion able to define which constraints 
are imposed by a clause over the (probabi l ist ic) t r u t h -
values of the l iterals occurr ing in i t [Ramoni and Riva, 
1995]. 

The f irst constraint , imposed by a clause over the l i t ­
erals occurr ing in i t states that the label of a l i tera l / , in 
clause is bounded by: 

* 

" (2) 

where 

and the funct ion is defined as 

The second constraint states tha t the label of the l i teral 
l1 is bounded by: 

(3) 

> 

where { l 1 , . . . , ! , } is a set of l i terals, and { C 1 , . . . , C 2 — » } 
are the clauses bu i l t f rom { / 1 , . . . , 1,} w i t h a l l the possible 
combinat ions of the negated and unnegated l i terals in 
the set { / a , . . . , l , } . 

The propagat ion of these constraints is performed by 
a version of W e l t i ' s propagat ion a lgor i thm [Walts, 1975] 
extended to intervals [Davis, 1987]: each proposi t ion is 
labeled w i t h a set of possible values, and the constraints 
are used to restr ict this set. Th is proper ty , which is 
imp l ic i t in the fo rm of the inequalit ies 2 and 3, implies 
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a monotonic narrowing of the labels, thus ensuring the 
incremental i ty of BCP. 

The most impor tan t feature of BCP is the abi l i ty to 
reason from any subset of the set of clauses representing a 
jo in t probabi l i ty d is t r ibu t ion , by bounding the probabi l ­
i ty of the proposit ions w i t h i n probabi l i ty intervals, and 
incrementally narrowing these intervals as more informa­
t ion becomes available. Fur thermore, BCP is sound: it 
never excludes from i ts intervals any probabi l i ty value 
that could be derived by standard probabi l i ty theory 
f rom the available in fo rmat ion . Even i f incomplete in 
general, BCP is complete w i t h respect to the clauses rep­
resenting a j o i n t probabi l i ty d is t r ibut ion. This means 
that, w i t h respect to this subclass of the language, BCP 
returns the t ightest entailed interval . The incomplete­
ness w i t h respect to other clauses of the language is the 
result of a compromise between expressivity and effi­
ciency, since theoretical analysis and empir ical results 
show tha t the BCP propagat ion runs to complet ion in 
linear t ime w i t h respect to the number of clauses [Ra-
moni and R iva , 1995], thus mak ing easy the est imation 
and the t rad ing off of the computat iona l effort. 

2 .2 R e p r e s e n t a t i o n 

IBNS are bel ief-maintained BBNs based on the LBMS. The 
IBN acts as a knowledge representation formal ism ex­
pressing the assumptions of condit ional independence in 
the domain of appl icat ion and communicates the avail­
able condi t ional probabil i t ies to the LBMS. These condi­
t ional probabi l i t ies are transformed in to clauses relat ing 
the proposit ions of the LBMS which represent states of 
the stochastic variables of the IBN. In this way, any 
computat ion is left to the LBMS and the IBN can exploit 
the incremental character of BCP. The elements of a BBN 
can be easily translated in to a LBMS network. 

N o d e s In a BBN, a node represents a stochastic var i ­
able. A stochastic variable is a set of mutua l ly exclu-
sive and exhaustive states. Therefore, the probabi l i ty 
values assigned to the states in a variable have to sum 
to un i t . In an IBN, when a variable is denned, each 
state is communicated to the L B M S as an atomic propo­
sit ion. Moreover, a set of clauses is installed to ensure 
that the states of the variable are mutua l ly exclusive and 
exhaustive. For a l l proposit ions a 1 , . . . , a n in the L B M S 
representing the states of the variable, the disjunct ion 

and a l l the conjunctions I (w i th 
are asserted as t rue in the LBMS. When a proba­

bi l i ty value is assigned to a proposi t ion a1 representing a 
state of the variable, the LBMS receives the conjunct ion 

A r c s In a BBNs, arcs represent condit ional dependen­
cies among nodes. A condi t ional dependency defines a 
dependency re lat ion between a set of parent nodes and 
a child node. A condi t ional dependency is denned by 
the condi t ional probabi l i t ies i 
where a h , . . . , a, is a combinat ion of states of the stochas­
tic variables represented by the parent nodes of the de­
pendency and at is a state of stochastic variable repre­
sented by the chi ld node. Condi t ional dependencies can 

be propagated bo th ways over an IBN, thus emulat ing 
the two main operations involved in the evaluation of a 
BBN: node removal and arc reversal. 

2 . 3 I n f e r e n c e 
There are two main operations involved in the evaluation 
of an ID: node removal and arc reversal. Node removal 
corresponds to propagat ing probabi l i ty values along the 
direct ion of the arcs in the graph, while arc reversal cor­
responds to f lowing backward the direction of the arcs 
and assessing the posterior probabi l i ty of parent nodes 
in a dependency. 

N o d e R e m o v a l In a BBN, node removal corresponds 
to marginal izat ion. When the probabi l i ty values of 
al l states represented by the proposit ions is 
assigned, the two different clauses result ing from the 
appl icat ion of the De Morgan's laws to i 
and are communicated to the L B M S a l -
gor i thm. are cal­
culated according to a version of the chain rule extended 
to intervals: 

The result ing conjunctions are converted in to clauses by 
the LBMS before propagat ing them through BCP. 

A r c R e v e r s a l From a probabil ist ic point o f view, the 
capabi l i ty of performing arc reversal in IBNs is provided 
by the wel l-known Bayes' Theorem: 

<4) 

where . When provided w i t h new evidence 
, we can apply the chain rule to the condi t ional 

probabi l i ty calculated by Formula 4 and p(a1) to obtain 
the conjunct ion: 

Since , we can 
also derive: 

When converted in to clausal f o r m , these conjunctions 
t u r n out to be the same clauses tha t were generated dur­
ing marg ina l i ia t ion . Therefore, arc reversal results in an 
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It is worth noting that the resulting posterior probabil­
i ty set is stil l convex, since it is the result of a linear 
mapping of the extreme values of a probability inter­
val, and BCP was proved to preserve convexity during 
propagations [Ramoni and Riva, 1993]. Furthermore, in 
IBNS, the inversion formula shares with the chain rule 
the appealing property of propagating only the available 
information, thus preserving the incremental refinement 
policy of BCP. 

2.4 P r o p e r t i e s 
From the theory of TMSS, the LB MS inherits the concept 
of consumer [de Kleer, 1986]. A consumer is a forward-
chained procedure attached to a proposition, that is fired 
when the truth-value of the proposition is changed, that 
is, the probability interval associated with a state is 
narrowed. Using consumers, IBNs do not perform any 
computation themselves, but rather act as a high-level 
knowledge representation language, while the propaga­
tion of probabilities is performed by the LBMS. 

There are some properties of the IBNs that wil l be 
crucial in the development of the IIDs. First of all IBNs 
converge toward point valued probabilities, and when all 
the conditionals defining a joint probability distribution, 
they behave as standard BBNS, returning point-valued 
probabilities. Furthermore, an IBN wil l infer the tightest 
intervals from any subset of conditional probability in a 
conditional dependency, since the LBMS is compete for 
clauses representing joint probability distributions and 
the IBN simply minimises and maximise the standard 
rules of node removal and arc reversal. 

Finally, it is worth noting that the LBMS both performs 
and drives the propagation, since consumers are attached 
to the propositions of the LBMS and are fired according 
to the changes occurring in their labels. Therefore, the 
computational cost of a propagation grows linearly in 
space and time with respect to the number of condi­
tional probabilities, even if the number of conditional 
probabilities needed to specify a conditional dependency 
grows exponentially with the number of parent nodes in 
the dependency. However, the incremental character of 
inference policy implemented by the IBNs wil l allow the 
decision maker to trade execution time with precision 
of solutions, since an IBN will propagate only those con­
ditional probabilities explicitly assessed by the decision 
maker. 

3 I n f l u e n c e D i a g r a m s 
IDS [Horvits et a/., 1988] are a natural extension of BBNs. 
They allow the formulation of a decision problem into the 

sound and compact formalism of BBNS. In this section, 
we wil l illustrate how IBNs can be easily extended to a 
complete decision formalism, thus creating a new class 
of IDS called Ignorant Influence Diagrams ( I IDS) . IIDs 
inherit from the IBNs the ability to reason on the basis 
of incomplete information and to incrementally refine the 
accuracy of their decisions as more information becomes 
available. 

3 .1 Representa t ion 

IDs are BBNs containing three different kinds of nodes: 
chance nodes (also called state nodes), decision nodes, 
and value nodes (also called preference nodes). These 
nodes are related by standard conditional dependencies. 
The resulting ID can be transformed into a BBN following 
the method proposed by Cooper [1988]. On this view, 
the decision problem can be solved by determining the 
instantiations of the decisions which maximise the ex­
pectations of the decision maker. 

Chance Nodes A chance node represents a state of 
the world. It is basically a standard stochastic variable. 
BBNs are usually defined as "influence diagrams contain­
ing just chance nodes" [Horvits et a/., 1988]. In Figure 
1, chance nodes are depicted as oval nodes in the graph. 

Decis ion Nodes A decision node identifies a set of 
possible alternative actions available to the decision 
maker. In the IID of Figure 1, the decision node is de­
picted as a square node. A set of actions representing a 
possible solution for a decision problem is called strategy 
or policy. 

Value Nodes Different strategies lead to different out­
comes. Value nodes represent preferences or utilities of 
the decision maker for alternative outcomes. A decision 
problem may be represented as the problem of finding 
the strategy which maximises the preferences expressed 
by the decision maker over the possible outcomes of the 
problem. In Figure 1, the value node is depicted as a 
diamond. 
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when the decision maker is not completely confident 
about them. Since the decision maker cannot specify 
confidence intervals, he will have to perform a tiring and 
costly analysis of the sensitivity of the decisions to all 
the probability values he does not feel sure about. IIDs 
reduce the cost of this procedure by solving the diagram 
just once and producing a sort of "simultaneous" mul­
tivariate sensitivity analysis. An advantage of this ap­
proach is that it provides a straightforward way to eval­
uate the sensitivity of decisions not only to prior prob­
abilities but also to conditional probabilities, which are 
usually difficult to modify and test using traditional sen­
sitivity analysis methods. 

Furthermore, the adoption of the Hurwics criterion 
to discriminate between competing strategies introduces 
a natural measure of the reliability of the decisions. 
When maximin and maxima* criteria conflict, the Hur-
wics value itself becomes a measure of reliability. We 
can analytically identify the decision threshold for the 
Hurwici value in order to assess the sensitivity of the 
discrimination between the strategy s1 and the strategy 
Sj to the boldness attitude of the decision maker, using 
to the following formula: 

In tu i t ive ly , this formula identifies for which Hurwics 
value the decision maker w i l l change his policy, and 
therefore the robustness of the decision reached so far. 
The lower is the decision threshold, the lower w i l l be the 
chance that new in format ion w i l l change the preferred 
strategy, and therefore, the higher w i l l be the qual i ty 
of our decision. The value r w i l l be an Hurwics value 
( that is, 0 < T < 1) as long as one u t i l i t y interval w i l l 
be subset of the other, and therefore the max im in and 
the max imax cri teria w i l l confl ict. When r < 0, bo th 
cri teria w i l l select the same strategy. 

The opt imal i ty of these results is guaranteed by the 
abi l i ty of IBNS to re turn the t ightest interval for any state 
f rom any subset of the condit ional probabil i t ies defining 
a condit ional dependency and by the soundness of the 
method developed by Cooper [1988] to t ransform an ID 
in to a BBN. 

4 Example 
In a standard ID, al l the condit ional probabil i t ies 
tha t make up a condit ional probabi l i ty d is t r ibut ion are 
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needed before any reasoning process can star t . We w i l l 
now show w i t h an example how an I I D is instead able 
to reason from incomplete condit ional probabi l i ty dis­
t r ibut ions. Figure 1 shows the IID used as an example. 
It represents the decision problem of tak ing a certain 
a c t i o n in order to prevent a certain e f f e c t of a par­
t icular cause. The a c t i o n has a foreseeable c o s t , and 
the problem consists in t rading-of f the v a l u e gained by 
prevention of the effect w i t h the c o s t o f the a c t i o n . 

The example is composed of two steps. In the 
first step, the system receives only the probabi l i ty 
measures l isted in the first column of Table 1, w i t h 
the preference funct ion over the outcomes defined 
as: v ( [ c o s t = y e s ] [ e f f e c t = y e s ] ) = 0, v ( [ c o s t = y e s ] 
[ e f f e c t = n o ] ) = 0.8, v ( [ c o s t = n o ] [ e f f e c t = y e s ] ) = 
0.2, and v ( [ c o s t = n o ] [ e f f e c t = n o ] ) = 1. Figure 2 
shows the graphical representation of the network gen­
erated in the f irst step of the example. The pop-up w in ­
dows over the nodes graphically report the probabi l i ty 
interval associated to each one of their states. In each 
bar, the area between 0 and P,(a1) is black, the area be­
tween P*(ai) and 1 is whi te , and the area between P,(ai) 
and P*(a1 ) is gray. Thus, the w id th of the gray area is 
proport ional to the ignorance about the probabi l i ty. 

The decision node reports i ts value in a strategy. The 
chances nodes report the probabi l i ty values of each of 
their states for the same strategy. It is wor th not­
ing that the condit ional P ( [ e f f e c t = y e s ] | [cause=no] 
[ a c t i o n = n o ] ) , not reported in the first column of Ta­
ble 1, is actually not included in the def ini t ion of the 
first I ID, and therefore i ts probabi l i ty value is not even 
propagated. The value node v a l u e reports the expected 
u t i l i t y intervals for the possible strategies [ a c t i o n = y » s ] 
and [ a c t i o n = n o ] , namely: U ( [ a c t i o n = y e s ] ) = 
[0.344 0.768] and U ( [ a c t i o n = n o ] ) = [0.2767 0.7993]. 

I t is apparent tha t the Stochastic Dominance crite­
r ion is unable to select only one strategy, and remains 
undecided. The weaker H u r w i c i cr i ter ion is able to pick 
up a unique decision. However, the solution can change 
according to the H u r w i c i value. Using formula 5, we 
can estimate the robustness of the decision by calculat­
ing the decision threshold for the H u r w i c i value. In our 
case, the decision threshold is r — 0.6825. 

When al l the probabi l i ty measures required by a stan­
dard ID are specified, as in the second column of Table 
1, the IID behaves as a standard ID in re turn ing point-
valued probabil i t ies, as shown in Figure 3. Since al l the 
cr i ter ia adopted collapse on the max imum expected u t i l ­
i ty cr i ter ion when they have to rank point-valued ex­
pected ut i l i t ies, also the solut ion provided by the I I D is 
identical to the one suggested by a standard ID. 

5 Rela ted W o r k 
There are at least two l ine of research t r y ing to relax 
the Credal Uniqueness assumption w i th in a coherent 
Bayesian framework and to develop automated decision 
making systems able to reason on the basis of interval 
rather than point-valued probabi l i ty funct ions. 

The first l ine of research is based on the concept of 
probabilistic database, which generalises the standard 
relat ional model by replacing the characteristic funct ion 
of a relat ion w i t h a f ini te probabi l i ty d is t r ibut ion func­
t i on . Using this concept, P i t ta re l l i [1994] proposed a 
model able to represent probabi l i ty intervals and pro­
vided methods for decision mak ing based on i t . The 
analogy between a probabil ist ic database and a table of 
j o i n t probabi l i ty distr ibut ions is apparent. Therefore, 
IID s improve the probabi l ist ic database model as IDs i m ­
prove the t rad i t iona l decision theoretic methods based 
on tables of j o i n t probabi l i ty d ist r ibut ions: I IDs explic­
i t l y represent condi t ional independence assumptions in 
the domain of appl icat ion, thus reducing the amount 
of probabil ist ic in format ion needed to specify a decision 
problem. 

Closer to the a im of I I D S are the efforts addressed by 
Breeze and Pertig [1990] to develop Interval Influence Di­
agrams. They describe procedures for node removal and 
arc reversal in I D S where lower bounds of probabi l i ty i n ­
tervals are stored at each node in the ID. The appealing 
feature of this method is i ts effort to preserve bo th the 
probabil ist ic soundness and the graphical nature of stan­
dard IDs. Unfor tunate ly , the probabi l i ty bounds calcu­
lated by this method quickly degradatc dur ing the propa­
gat ion, thus result ing in the assignment of too wide prob­
abi l i ty intervals and jeopardis ing the normat ive charac­
ter of their decisions: an analog of the classical Du tch 
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Book can be made against an agent making decisions 
on the basis of the probabi l i ty distr ibut ions erroneously 
allowed by too wide probabi l i ty intervals. 

6 C o n c l u s i o n s 
IDs are a powerful formal ism to mechanise decision mak­
ing, and they have been successfully applied to a wide 
range of problems. However, they require a large amount 
of in format ion that is not always available to the de­
cision maker. The acquisit ion of this large amount of 
in format ion , either f r om human experts or f rom statis­
t ical analyses of databases, usually represents one of the 
major challenges in the process of developing decision 
support systems based on IDS. This paper introduced a 
new class of IDs, called IIDs, able to reason on the basis of 
incomplete in fo rmat ion , and to incremental ly refine the 
accuracy of their decisions as more in format ion becomes 
available. However, when they are provided w i t h com­
plete probabil ist ic in fo rmat ion , IIDs behave as standard 
IDS. 

Therefore, IIDs represent a net gain w i t h respect to the 
t rad i t ional I D S , since they are able to expl ic i t ly represent 
the actual lack of in fo rmat ion , w i thout loosing any capa­
bi l i ty of the t rad i t iona l IDs when the required in forma­
t ion is available. Fur thermore, by relaxing the Credal 
Uniqueness assumption, I IDS provide a new method to 
assess the rel iabi l i ty of the decisions by replacing the 
costly and t i r ing sensit ivity analysis w i t h a single an­
alyt ical measure. Final ly , the monotonic, incremental 
character of the refinement process in the IIDs provides 
a way to trade-off the amount of computat ional t ime 
and available in format ion w i t h the accuracy of the deci­
sions. This feature makes IIDs a suitable formal ism for 
real-t ime, resource-bounded decision tasks. 

A c k n o w l e d g m e n t s 
This research was supported in part by the A I M Pro­
gramme of the Commission of the European Communi ­
ties (A2034). I would like to thank A lber to Riva, Greg 
Cooper, Carlo Be r iu in i and Riccardo Bellassi for their 
helpful suggestions, and Mar io Stefanelli for his cont in­
uous support . 

References 
[Breeze and Fert ig, 1990] J. Breese and K . W . Fert ig. 

Decision making w i t h interval influence diagrams. In 
Proceedings of the Conference on Uncertainty in Ar­
tificial Intelligence, pages 122-129, 1990. 

[Cooper, 1988] G .F . Cooper. A method for using belief 
networks as influence diagrams. In Proceedings of the 
Conference on Uncertainty in Artificial Intelligence, 
pages 55-63, 1988. 

[Davis, 1987] E. Davis. Constraint propagat ion w i t h in ­
terval labels. Artificial Intelligence, 32:281-331,1987. 

[de Kleer, 1986] J. de Kleer. Problem solving w i t h the 
A T M S . Artificial Intelligence, 28:197-224, 1986. 

[Falkenhainer, 1986] B. Falkenhainer. Towards a general 
purpose belief maintenance system. In Proceeedings of 

the 2nd Workshop on Uncertainty in A I, pages 71-76, 
1986. 

[Horvi ts et al., 1988] E.J. H o r v i t i , J.S. Breese, and 
M. Henr ion. Decision theory in expert systems and 
art i f ic ial intell igence. International Journal of Approx­
imate Reasoning, 2:247-302, 1988. 

[Horv i ts , 1989] E.J . Horv i ts . Reasoning under varying 
and uncertain resource constraints. In Proceedings of 
the International Joint Conference on Artificial In­
telligence, pages 1121-1127. Morgan Kauf fman, San 
Mateo, C A , 1989. 

[Kyburg , 1983] H.E. K y b u r g . Rat iona l belief. Behav­
ioral and Brain Sciences, 6:231-273, 1983. 

[Laskey and Lehner, 1989] K. B. Laskey and P. E. 
Lehner. Assumptions, beliefs and probabil i t ies. Arti­
ficial Intelligence, 41 ( l ) :65 -77 , 1989. 

[Levi, 1980] I. Lev i . The Enterprise of Knowledge. An 
Essay on Know ledge t Credal Probability and Chance. 
M I T Press, Cambridge, M A , 1980. 

[McAllester, 1990] D. McAl lester. T r u t h maintenance. 
In Proceedings of the National Conference on Artificial 
Intelligence, pages 1109-1115, 1990. 

[Nilsson, 1986] N.J. Nilsson. Probabil ist ic logic. Artifi­
cial Intelligence, 28:71-87, 1986. 

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel­
ligent Systems: Networks of plausible inference. Mor ­
gan Kau fmann , San Mateo, C A , 1988. 

[Pi t tare l l i , 1988] M. P i t ta re l l i . Decision making w i t h l in ­
ear constraints on probabi l i t ies. In Proceedings of the 
Conference on Uncertainty in Artificial Intelligence, 
pages 283-290, 1988. 

[Pi t tare l l i , 1994] M. P i t ta re l l i . An algebra for proba­
bil ist ic databases. IEEE Transactions on Knowledge 
and Data Engineering, 6(2):293-303, 1994. 

[Ramoni and Riva, 1993] M. Ramoni and A. Riva. Be­
l ief maintenance w i t h probabil ist ic logic. In Proceed­
ings of the AAAI Fall Symposium on Automated De­
duction in Non Standard Logics, Raleigh, N C , 1993. 
A A A I . 

[Ramoni and Riva, 1994] M. Ramoni and A. R iva. Be­
l ief maintenance in bayesian networks. In Proceedings 
of Tenth Conference on Uncertainty in Artificial In­
telligence, pages 204-212, 1994. 

[Ramoni and Riva, 1995] M. Ramoni and A. Riva. 
Logic-based belief maintenance. Submi t ted for pub­
l icat ion, 1995. 

[Sti l ing and Mor re l , 1991] W. St i l ing and D. Morre l . 
Covex bayesian decision theory. IEEE Transactions 
on Systems, Man, and Cybernetics, 21:173-183,1991. 

[Walts, 1975] D. Wal ts . Understanding line drawings 
of scenes w i t h shadows. In P.H. W ins ton , editor, 
The Psychology of Computer Vision, pages 19 -91 . 
McGraw-H i l l , New York , 1975. 

RAMONI 1875 


