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Abstract

A counterpart to von Neumann and Morgenstern' expected
utility theory is proposed in the framework of possibility
theory. The existence of a utility function, representing a
preference ordering among possibility distributions (on the
consequences of decision-maker's actions) that satisfies a
series of axioms pertaining to decision-maker's behavior, is
established. The obtained utility is a generalization of
Wald's criterion, which is recovered in case of total
ignorance; when ignorance is only partial, the utility takes
into account the fact that some situations are more plausible
than others. Mathematically, the qualitative utility is
nothing but the necessity measure of a fuzzy event in the
sense of possibility theory (a so-called Sugeno integral).
The possibilistic representation of uncertainty, which only
requires a linearly ordered scale, is qualitative in nature.
Only max, min and order-reversing operations are used on
the scale. The axioms express a risk-averse behavior of the
decision maker and correspond to a pessimistic view of what
may happen. The proposed qualitative utility function is
currently used in flexible constraint satisfaction problems
under incomplete information. It can also be used in
association with possibilistic logic, which is tailored to
reasoning under incomplete states of knowledge.

1 Introduction

Standard approaches to decision under uncertainty are based
on maximum expected utility theory. The expected utility
criterion is particularly appealing since it can be justified on
the basis of an axiomatic approach [von Neumann &
Morgenstern, 1944]. However, its application requires that
both numerical probabilities and utilities about the
consequences of actions are available. The representation of
incomplete states of knowledge has led Artificial Intelligence
to introduce non-probabilistic models ot" uncertainty such as
Shafer's theory of evidence, possibility theory, and
nonmonotonic logics. These approaches seem particularly
suitable for the representation of states of partial ignorance
in an unbiased way; see [Dubois et al., 1994c] for a
discussion. On the basis of a careful distinction between
reasoning tasks (where consequences of the actual state of
information are only propagated) and decision tasks (where
choices are elaborated taking into account both uncertainty
and preferences), it can be advocated that the probabilistic
approach can still be used at the decision level even if
another framework is used for knowledge representation and
reasoning purposes; thus Smets [1990] has proposed a so-
called "pignistic" transformation for computing meaningful
probabilities (in a decision-theoretic perspective) from belief
functions representing the available information.

Possibility theory provides a faithful representation of par-
tial ignorance, but its core is also qualitative in nature since
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it only requires a scale where max, min and order-reversing
operations can be defined. This qualitative nature agrees with
the fact that only poor and incomplete information is avai-
lable in many practical situations. In order to cope with such
situations, several proposals for a qualitative decision theory
have been recently presented by Pearl [1993], Tan & Pearl
[1994a,b] on the one hand and by Boutilier [1994] on the
other hand. Both approaches are connected with default rea-
soning for the handling of uncertain pieces of knowledge;
the former, which relates to Spohn [1988] ordinal conditio-
nal "kappa" functions, requires the use of scales where the
sum or the product are meaningful, while the latter some-
what gets rid of uncertainty by considering the most plau-
sible states of the world only, when making a decision. The
possibilistic approach which is presented in this paper is
different in various respects. First, possibilistic utility obeys
a series of axioms which may be regarded as a qualitative
counterpart to von Neumann & Morgenstern [1944] axioms.
Second, uncertainty and preferences are both estimated on
ordinal scales where the only meaningful operations are
max, min and the reversing of the ordering. Third, the
proposed decision theory is closely associated with an
approach to the modelling of uncertainty, here the theory of
possibility introduced by Zadeh [1978]. Fourth, a kind of
commensurateness assumption between possibility levels
and preference levels is made, such that a decision rates all
the better as it makes undesirable states of affairs less possi-
ble. This assumption leads to a framework where decisions
under incomplete information can be completely ordered,
although without resorting to numerical representation.

The next section presents the axioms proposed as a basis
for qualitative utility when uncertainty is modelled by means
of possibility distributions. Section 3 establishes the
existence of a qualitative utility function and explains how
to compute it. Section 4 provides a brief discussion of the
qualitative expected utility which has been obtained. Section
5 illustrates the usefulness of the qualitative utility function
in order to estimate the degree of satisfaction of a flexible
constraint under uncertainty. Section 6 discusses how
uncertainty and preference can be jointly handled using
possibilistic logic and possibilistic utility theory.

2 Axioms for a Qualitative Utility Theory

Let X be a set of situations (states of the world), supposedly
finite. After Savage [1974], an act is a function f from X to
C, the set of possible consequences of the act. This function
is attached to a particular decision and specifies what is the
consequence of being in situation x when the decision is
made; f(x) is sometimes interpreted as the expected pay-off
of the act, when x€ X is the situation. It is supposed that



there exists a linear (i.e., complete partial) ordering > over C
expressing preference. Thus, a given act induces a preference
over X, whereby x2y iff f(x)2f(y). This preference relation
between precisely-known situations will be extended to in-
complete belief states pervaded with uncertainty by means of
a relation obeying a series of axioms given in the following.

Indeed, we may have incomplete information about the
actual situation in X. The belief state about which situation
in X is the actual one is supposed to be represented by a
possibility distribution . A possibility distribution =«
defined on X takes its values on a valuation scale V, where
V is supposed to be linearly ordered. V is assumed to be
bounded and we take supV=1 and infV=0. The inequality
n(x)Sw(x') means that X' is at least as plausible {(normal) as
x as being the actual situation. ft{x)=0 means that x is
impossible, i.e., definitely excluded by © as being the true
siuation. T(x)=| means that x is normal, unsurprizing. We
restrict ourselves to consistent beliel states m which are such
that Ixe X, n(x)=] (i.e., therc exists at least onc situation
which is completely possible); how this closely relates to
the notion of logical consistency can be fully understood in
the framework of possibilistic logic (e.g., [Dubois ¢t al.,,
1994b, c]). The state of total ignorance T4 is represented by
Vxe X, Ro(x)=1 where any siwation is found totally
possible. We shall denote by Pi(X) = {n, X—>V} the set of
consistent possibility distributions over X. The cardinality
of V is supposed to be at least as large as the one of X, so
as (o accour for tolal plausibility orderings on X. Clearly,
XCPi(X) using the identification function X0—=HK{xq) where
n(x)=u{xD}(x)=l if x=xq and u{xo}(x)=0 otherwise. Hixg) is
called a precise belic{ state and we shall write, nt={xg), or
even M=xq for the sake of nolational simplicity. More
generally, if ® is the characteristic function of a subsel A of
X, we write t=A. For instance n, = X.

A possibtlity distribution representing a belief state
involves a set of mutually exclusive alternatives, where each
element can be ranked according to its level of plausibility
to be the true situation. Let x and y be two elements of X,
the possibility distribution T defined by m(x)=A, T(y)=H,
n(2)=0 for z=x, z#y with max(A,n)=1 (in order to have n
normalized), will be called a gualitative fostery and will be
denoted by (A/x, W/y), which means that we are either in
situation x or in situation y with the respective levels of
possibility A and u. More generally, any possibility
distribution T can be viewed as a multiple-consequence
lottery (Ay/X|..... An/x,) where X={x|,...,Xx,} and A;=n(x;).
We will also use the notation (MR, W) (with max(A,u)=
1) for denoting the compound possibility disiribution =
max(min(n|,A),min(ny,1)). This can be viewed as a lottery
over multiple-consequence lotteries corresponding to m; and
Tt,. The lottery (A/x, [1/y) can be viewed as a particular case
of it when r; and ®y are possibility distributions focusing
on singletons. The resulting possibility distribution n=
max(min(x;,A).min(n,.u)), with max(A,p)=1, is here the
qualitative counterpart of probabilistic mixtures Apj+(1-
A)p;y; see [Dubois & Prade, 1990), [Dubois et al., 1993].

Lastly, the decision maker (DM) is supposed to express a

preference between (consistent) belief states. This preference
relation, denoted by ». should be understood in the
following way: m>n' means that DM expects at least as
much in terms of pay-off when he believes 1 than when be
believes n'. We suppose that

Axiom 1: » is a complete partial ordering.

= shall denote the strict relation associated with », and &t ~
' will mean that = n' and ®n'=n. A gualitative utility
SJuncrion is a mapping u from Pi(X) to a linearly ordered
scale U. Thus, u(m®) will denote the ordinal evaluation of an
act in the state of belief . We shall simply write u(x)
{instead of u({x)), when n={x}, for denoting the utility of
the considered act when the situation is precisely known as
being x. We also wrile u(A) instead of u(n) with m=p,
(characteristic function of subset A). As usual, a (qualitative)
utility function u will be said to represent a preference
ordering > if and only if u(m)2u(n )= me-n'.

Together with Axiom 1, we propose the following
axioms as a basis of our decision theory.

Axiom 2 (certainty equivalence):
If the belief state is a crisp set AcX,
then there is x€ A such that {x}~A.

The intuition behind Axiom 2 is the following one. The
decision-maker DM only knows that one of the sitwations in
A is the true situation. Hence, the utility of the act should
lie in the set {u(x), xe A}, where u(x) is the utility of the act
in situation x. The choice of the state x such that u(x)=u(A)
reflects DM's attitude towards risk.

Axiom 3 (risk aversion, or "precision is safer”):
<K' = A=,

The motivation underlying this axiom is that DM prefers
the belief state which are more precise. Indeed if n<® (i.e,,
¥xe X, m(x)ST'(x)), it means thal belief state &' is less
informed than beliel state n (since according to 1’ any
situation x is found to be at least as much possible as
according to m). Thus, 7' is viewed as a more risky belief
state than T, since the worst situation pertaining 1o ®t' is not
less possible than the worst situation pertaining to w.
Behaving in this way DM is cautious. This is a risk-averse
attitude since, for all x in A {x]x> A, i.e., in terms of a
utility function u(x)2u{A). This mcans that DM prefers to
be in sjtuation x for sure, than only knowing that he is in A
and having the possibility of receiving less, in case dye A
and u(y)<u(x). Total ignorance is always the worst situation.
At this point, it should be clear that the utility function we
fook for is in accordance with Wald maximin criterion.

Axiom 4 ("independence”):
If y~no then (;Un]. ') ~ (;U‘l'l'.z. w').

It is assumed that max(A,Ji)=1 in order to ensure that the
new possibility distributions built from mq, %2, &' are still

normalized. Axiom 4 means that if two belicf states are
judged Lo be equivalent from a pay-off point of view, this
equivalence still holds when we substitute one of these
belief states by the other in compound lotteries, thus
expressing a form of independence. Indeed this axiom is a
possibilistic counterpart of the so-called linearity or
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independence axiom in von Neumann & Morgenstern' utility
theory.

Axiom 5 (reduction of lotteries):
(Mx, w(a/x, Bly))~ (max (A, min(,o))/x, min(u,B)y).

This axiom reduces meta lotteries to ordinary ones. Again
it is assumed that max(i,)=1=max(c,B) in order 10
guarantee normalization preservation. This axiom, which is
the counterpart of von Neumann & Morgenstern'
substitutability axiom, can be better understood by
visualizing what i1t expresses in terms of qualitative
lotteries, as shown on Figure 1. Namely, if two steps are
needed to reach situation y, one which succeeds with
possibility f, and 1the next one that succeeds with
possibility B, then the possibility of reaching situation y is
not higher than min{u,p). However, if alternative paths
exist, leading to x, with respective possibility levels A and
L, then the possibility of reaching x is at least max(A.u).

max( A, mm(u,ay\m(u. ®

~ % ¥y

Figure 1

Axiom 6 (conunuity):
If i=7' then JAe V, '~ (1/R, A X).

This axiom 1s reminding of continuity axioms in classical
utility theory. (1/m,A/X) is a meta-lottery whereby it is
slightly possible to be in a state of total ignorance instead of
in belief state ®. Clearly, the lottery (1/m,A/X) corresponds
to the possibility distribution n"=max(x,A) and is a state of
belief less informed than x. When A=1 ®"=n, and we know
by Axiom 3 that u(ne)Su(n), Vre Pi(X). Moving A in V
from O to 1, when 7> T, lcads to decrease the preference
down to a possibility distribution which is not preferred to
w'. The idea behind Axiom 6 is that ®' is hit for some value
of A.

3 Form of the Qualitative Utility Function

Theorem: Given a preference relation = on Pi(X) verifying
Axioms 1 to 6, there exists a fuzzy set F on X and a utility
function u from Pi(X) to a totally ordered set U representing
» such that for each ne Pi(X), we have

u(m)=miny c xy max{n{®{x)}, Lp(x)) (N
where n is an order reversing function from the possibility
scale V to the preference scale U such that n(0)=1 and
n(1)=0 where 1 denotes the top elements of U and V and 0
their bottom elements.

Note that (1) yields u(x)=pp(x).

Proof:
1) u defined by (1) satisfies Axioms [ t0 6.
This is obvious for Axioms 1, 3 and 4
Axiom 2: If mt=li,, Ve A, n(r(x))=0 and Vxeg A,

n{n(x}}=1. Thus u(r)=min,c 4 u({x) and then
Ixe A, u(n)=u(x). Note that %5 is such that
u(n?)ﬂninns Pi(X) u(1'|:)=infxe X u(x).
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Axiom 5: Note that
u((Mx, /y)) = min(max(u(x),n(A)),max(u(y),n(i)))
and that
u((AMfmq, Wno)) = u(max(min(m | A),min(mns,u)))
= min, max{n(max(min(f;(x),A),min(f(x),}1}},u(x))
= min, max|min(max{n(x;(x}).n(A)),

max(n(my(x)),n())).u(x)]
= min, min(max(n{x;(x)),u(x).n(A)),
max(n{%y(x)),u(x),n{n)))
= min(max(u(7;),n(A)), max(u(m;).n(W))). (2)
Then, 1t can be easily checked that
u((Mx, p/ox, Bly))
= min{max(u(x),n(A)),max(u{(ovx, B/y)),n(1)))
= min{max{u(x),n(A)),max(min(max(u(x),n{c)),
max(u(y),n(B)),n{p)))
= min(max(u(x),min{n{A),max(n(p),n(c))}),
max(u(y),n{u),n(B)))
= min{max(u(x), n{max{A,min{yL,cx))),
max{u(y).n(min(,B)))
= u((max(A, min(p, o)) x,min(p,BYy).
Axiom 6: u(mzu(n"). Let A=n~I(u(n")). Then
u(1/m,A/X) = min(u(r),max(u(n'),u(ny)) = u(r').
Remark: Note that we have the following
consequence: T~ = T~ max(x,x').
It means that if two belief states are considered as
equally risky, it is indifferent for the DM to be in any
of these belief states. For instance, it {x}~ {x'], then the
DM does not wish to know whether the situation is x
or x' since his pay-off will be the same in both cases;
hence we shall have u({x,x'})=u(x)=u(x").
Indeed the form (2) of the utility function leads to:
u(max(n,x))= min(u(n),u(n"))=u(rt)=u(n’).
I} Existence of a utility function u of the form (1), given
PitX) equipped with »~.
First, consider the restriction of (Pi(X), ») to (X,>). Let
us map (X,> ) to an ordinal scale U such that inf(X) is
mapped to 0 and sup(X) is mapped to 1.
Let u be a function from X to U such that u(x)2u(y} <
x> y. The proof then goes as follows:

a) extension of the wtility function from X to its
power set 2X. This enables us to compare states
of incomplete information;

b) definition of the utility of the elementary lottery
(t/supX, MinfX) (or equivalently (1/1, A/Q) since
by definition u(supX)=1 and u(in{X)=0), for any
AEV;

¢) computation of the utility of the qualitative
lotiery (1/x, My) for any x, ye X;

d) prove that u({1/x, I/n"))=min(u(r),u(r}});

e) computation of u(n) for any state m of
incomplete information.

a) Function u can be extended to subsets A of X in the
following way u(A)=miny. o U(x). Indeed, if Xa~A,
where x 5 € A, is the certainty equivalent of A (according
to Axiom 2), then Vxe€ A, xzx 4. This can be easily
shown in the following way. Assume Jx€ A, x> X;

then by Axiom 3, x5 > x>=A (since u{x}Sp.A), hence



xa>A which contradicts the hypothesis. Hence u(A)=
u(X A )=min, - o u(x).

Note that A denotes a state of information where the
consequence of the act under evatuation is only known
to lie in A. u(A) is thus the pessimistic utility criterion
proposed by Wald when the probability of cutcomes in
A are not available.

b) Let x=infX such that u(x)=0 and x=supX. such that
u(x)=1. Consider Ae V a level of possibility, and the
lottery (1/x, A/x). Let n be a bijection V—=U such that
Vuyp.use V, ui<us = n(uy)>n(uy), n(0)=1, n(1)=0.
Then let us define u(1/x, A/x)=n(A). This definition
agrees with any preference ordering = on Pi(X). Indeed

if A=0 then (17X, 0/x)~ X, and n{H=1=u( x)

if A=1then (1/x, /)~ { x.x}~ X

(as shown in a)) and n{(1)=0=u(x).

Moreover Axiom 3 enforces (1/x, Mx)=(1/%, A'/x)
whenever A<A’ (since the lottery (1/x,A/x) is more
informed than the other), and we do have that u(i/x,
A/x)Z u(l/x, A'/x). Hence the definition of the
qualitative utility is in agreement with the axioms. It is
clearly a special case of (1) for n(x)=1 if x=X%, & if x=x,
and O otherwise, and Ug(x)=u(x).
c) Now consider the loltery (1/x, Afy) for x, ye X.
* Assume first that u{x)<u(y). Let us prove that u(1/x,

Myy=u(x). Indeed  (1/x. AMy) > {xy]  (Axiom 3)
{xy}-x (Axiom 2)
x> (1/x, Aly) (Axiom 3)

hence (1/x. A/y)~x and they have thc same utility
values.
* Assume now that u(x)2u(y). First note that y~(lli.
n"{u(y))lx). Indeed u(y)=no n‘l(u(y)) by definition. 1f
x=x, then
(17X, My) ~ (1%, MUK, o Hu(y)a))
(independence Axiom 4)
~ (1/x, max(n~l(u(y)A¥x)  (Axiom 5).
u(1/%, My) = n(max(n='(u(y).A)
= min{u{y),n{i)).
* In the general case, if x2y then y~(1/x, w/X) (Axiom
6) for some e V and since X contains x (at worst x=y),
X~x. Hence, using the independence Axiom 4, y~ (1/x,
Wx). Now we note that x~(1/%, n=!(u(x))/x), and we
can subslitute:
y -~ (%), 07l wOa)vy), Wx)
~ {1/ %, max(n~1(u(x)), p), x) using Axiom 5
on the lottery below
Hence u(y)=min(u(x),n(p))=n(y) since x2y. Hence p=
n‘l(u(y)). So y~( Ifx,n‘](u(y))fa) (note the presence of
x, and no longer x).

Hence

Now (1/x, My) ~ (I/x, M(1/x, n=u(y)¥/x))
(Axiom 4)
~ (1/x, min{A, n~1(u{y)¥x)
(Axiom 5)
~ (1%, 0= (ux))/x),
min(x, n~lu(y))/x) (Axiom 4)
~ (x, max(n=l(u(x)),
min{A, n~!(u(y))/x) (Axiom 5)
Hence u(1/x, A/y)=min(u(x),max{n{i),u(y))) when
x2y. Note that if x<y, the above expression yields u(x);
it is thus valid regardless of the preference on {x,y}.
d) Consider two possibility distributions xt, &' with =
1. Then from Axiom 6, dAe V, '~ (1/n,A/X), hence
(I/m, /nYy ~ (=, 1/(A/m, A/X))  (Axiom 4)
~(lm, Xy ~ &, (Axiom 5)
Hence u(max(n,n"))=u(n'} when u{n")<u(m), noticing
that the lottery (1/m, 1/n') encodes the possibility
distiibution max(r,xn').
¢) Lastly we can compute u(n) for any ne Pi(X). Let
ne Pi(X), and assume that (x| )=12R(x4)Z...2%(xy).
Let m;€ Pi(X) be such that 7;(x|)=1, m;(x;)=n(x;), and
Ri(x)=0if x& {x,x;}. Then "~ (1/%{,1/R4,...,1IR,),
since M=max;_ y %;. Hence u(m)=min;_; , u(m;) from
d). Now u(m)=min{u(x),max(n(n{x;)).u(x;))) from c).
Hence
uim) = mini=|‘n min{u(xy),max{n(a(x)),u{x)))
= minj-y , Mmax(n(m(x;)}u(x;)) noticing that ®(x;)=1.
The fuzzy set F is such that up(x)=u(x), ¥xe X.

4 Properties of the Qualitative Expected Utility

Interestingly enough the qualitative utility introduced in the
previous section, u{x)=min, . x max(n(m(x)),u(x)) is the
necessity of a fuzzy event [Dubois & Prade, 1980] in the
sense of possibility theory, namely u(n)=Nn(F) where F is
the fuzzy set of preferred situations (Rp(x)=u(x)},
¥ xe X} and Np is the necessity measure based on the
possibility distribution ®. Usually, when V=U=[0,1],
n(t)=1-t in the above expression. N {F) can be viewed as a
degree of inclusion of the fuzzy set of more or less possible
situations in the fuzzy set F of preferred outcomes, i.e., it
eslimates the certainty that the belief state ® corresponds to
the preferred situations described by F. As already said. therc
is a commensurability assumption madec between the
uncertainty scale and the preference scale, since possibility
degrees and utility degrees are aggregated in the expression of
u(m). Note thw

* N (Fr=u(m)=1 iff {xe X, n(x)>{(] ¢ {xe X, u(x)=1 }

i.c., the utility of m is maximum if all the more or less
possible situations encompassed by 7 are among the most
preferred ones.

e N, (F)=u(m)=0 ifl {xeX,n(x)=1] N (xeX, u(x)=0 1#D
i.e., the utility of & is minimum if there is one of the most

plausible situations whose pay-off is minimum (we
recognize the risk-aversion of the approach). Ng(F)=u(n) is

all the greater as there is no situations with a high
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plausibility and low utility value.

When T is the characteristic function of an ordinary subset
A of X, i.e.,, when all the situations encompassed by the
belief state are equally plausible, as already said the utility
u(m) simplifies into u()=min, . o u(x) where we recognize

Wald [1950]'s pessimistic criterion which leads to decisions
maximizing the minimal pay-off. In the general case, u(m)
takes into account the fact that all the situations arc not
equally plausible in the set {x€ X, n(x)>0}

Several authors have proposed definitions of utility
functions in the presence of possibilistic uncertainty,
including the form described in the theorem. Yager [1979]
has introduced the possibilistic extension of the optimistic
maximax criterion of the form dual to (1), i.e., u(m)=
maXy e x Min{7(x),LE(X)} which is the degree of possibility

of a fuzzy set [Zadeh, 1978]. The possibilistic counterpart of
Wald maximin criterion of the form proposed here, has been
introduced by Whalen [1984], in terms of "disutility"
function D(m)=n—1(u(r)) where u{r) is given by (1). D(m)
takes the form of the degree of possibility of the fuzzy set F
(the fuzzy complement of F) of less preferred situations.

As already pointed out (e.g., [Inuiguchi et al., 1989]), the
expression of the necessity of a fuzzy event is a particular
case of a fuzzy integral in the sense of Sugeno [1974].
Namely Ng(F) can be shown to be equal to (for V=

u=[0,1])

N (F)=supge (0,1 Min(0Ny(Fy))
with Fp={xe X, p(x)2a.}, which is a particular case of
Sugeno integral

/f x 0 ° g()=supge (g,1] min(a,g{H))
with Hy={x€ X, h(x)2a} and g is a set function monotonic

with respect to set inclusion, such that g(#)=0 and g(X)=1
Sugeno integrals can be regarded as gulalitative counterparts

to Choquet integrals of the form JD g(Ha)da. Sugeno

integrals in general have been recently considered by
Hougaard & Keiding [1994] for the utility representation of
preferences on the set of non-additive set functions.

The utility function advocated in this paper relies on the
notion of possibilistic mixture (as it can be seen in
particular in Axiom 5), the result of the possibilistic
mixture of 7y and Ty, with max{@,B)=1, being equal to =
max(min(m,x),min(n,,B)). Namely if[]; is a possibility
measure such that for all events A, B, [I.(AUB)-=
max(IT;(A).IT;(B)), then max(min([],,),min(I1,.8)) is
again a possibility measure; see Dubois & Prade [1990].
This is a particular case of extended mixtures of decompo-
sable measures (which are a family of set functions encom-
passing probability measures and necessity and possibility
measures as particular cases), as studied in [Dubois et al.,
1993] where application to utility theory is pointed out.

Lastly, it should be emphasized that the proposed
approach to qualitative utility closely parallels von
Neumann & Morgenstern' theory and that there is some
similarity between the two sets of axioms underlying the
two approaches. Clearly, there are other ways of "distorting"
classical utility theory. For instance, one of the authors
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[Dubois, 1986] has relaxed the reduction of lotteries axiom
in a purely probabilistic framework by using a special
family of operators in place of multiplication for expressing
a relaxation of probabilistic independence. We might also
think of using the multiplication instead of the min
operation when simplifying numerical possibilistic lotteries,
i.e., using mixtures of the form max(c-my, B-®,) with
max(c,B)=1. This would lead to a utility function of the
form u(m)=min, ¢ x [1-(1-u(x)}7w(x)].

5 Handling Uncertainty in Flexible Constraint
Satisfaction Problems

A constraint satisfaction problem is defined as a set V=
{v{....,vy} of decision variables, where D, is the range of
v;, for all i, and a set of constraints {C,,...,C,}. Each
constraint Cj refers to a relation Rj that links a subset Vj;\f
of variables, i.e., Rj is a subset of the Cartesian produci
Xyie v; D;, such that the restriction (Vl’-"'"n)-l\’j of

(v{....,vy) to the variables in Vj shouid belong to Rj for all
constraints Cy,...,Cy,. The constraint satisfaction problem
consists in finding a feasible solution {d,....,d,) to the set
of constraints {Cy,....C,}.

A flexible constraint is a constraint that can be violated to
some extent. A flexible constraint can be modelled as a set
of ordinary relations R!...RK, such that RIgR2c...cRK.
Namely R? is a relaxation of R!, R3 is a relaxation of R,
etc. [Freuder, 1989]. An equivalent modelling consists in
viewing a flexible constraint as a fuzzy relation R, where
HR(d;....,dp) is the degree of satisfaction of solution (dy,...,
d,)) [Zadeh, 1975). The two views arc equivalent if we attach
satisfaction weights u;. j=1.k to RJ such that up=l2u,2...2
uy >0, all weights belonging to a totally ordered scale U.
Then define pp(d|,....d,,) as follows pp(dy,....d,)=max{u;,
(dy.....d)e Rl}. Conversely Ri={(dy,....d).ug(d}.....dp)2
u;}. It is possible to view the set {R] , ..‘.Rk} as k

prioritized constraints, where Ri has a higher priority than
R! when j<i [Dubois et al., 1994a].

It often happens that uncertain parameters are involved in
constraint satisfaction problems. For instance, in scheduling
problems, the starting time of an activity is controlable and
is a decision variable, but the ending time of the activity is
partially unknown even if the starting time has been decided
and is known, because the duration of the activity is
partially uncontrollable. If there is a flexible constraint on
the ending time of the activity, the degree of satisfaction of
the decision consisting in the choice of a starting time is not
precisely known. Let zq,... 'Zp be a set of uncertain

parameters involved in a constraint satisfaction problem. A
constraint C (a flexible one, generally) relates decision
variables v,...,v, and uncertain parameters zy,....2p. Let

E) the domain of z;. Then the lack of knowledge on the
parameter z, is modelled by a possibility distribution 7y,
and the possibility distribution = attached to
(2)...,2p) is B=miny_; , My {Dubois & Prade, 1988]. Let
2=(z{,....2p) and d=(d),...,dp). The degree of satisfaction of



C by (d.z) is {lg(d,z) and is ill-known, because so is z. A
robust solution to the constrainl C is d such that (d,z)
satisfies C for all possible values of z.

In the non-flexible case, and assuming that the possible
values of z form a subset A of Ejx...xEp, v=d is a robust

solution to constraint C if and only if Vze A, (d,2)eR that
is, de R(v)={d.{d ]xAcR}.

In the general case let Al={zn(z)=1] be the set of normal
values of z and A be the set of possible values of z (i.e., no
value is possiblc outside 4). Similarly let R! be the set of
preferred values of (v,z) and R be the set of feasible values of
(v.z). Then a completely robust solution d is one that totally
satishies C for all possible values of Z, i.c.,

Vze A, (d,2)eR!.
A partially robusr solution d is one that partially satisfies C
for all normal values of z, i.e.,

Vze Al (d.z)eR.
The qualitative utility function enables a degree 1o which d
is a robust solution to C to he computed as folows

He(d)=N,(R{v))=inf, max(n(n(z)),1p(d,z)).

Accepting a solution such 1hai Uc(d)za, where ae U,
mecans that
- one accepls 1o assume that the actual value of z will lie in

AMO)=(4ln(z)=n(o0)} where n is the order-reversing

function that maps degrees of preference o€ U to degrees

of possibility in V
— taking this assumption for granted, any solution such that

Ue(d)za satisfies for sure the constraint C to level « for

any eventual value of z in AN,
Again, the gualitative utility function trics 10 compromise
betwecen uncertainty and preference via 4 commensuraieness
assumption. A solution is all the better it it can cope with
more implausible values of uncertain parameters.

Example: Tom wants to attend a mecting thal starts al
cight o'clock, and wants 1o decide when to get up 50 as 1o
arrive on time. He has 1o take a bus, and the ride takes about
1 hour. He does not want to leave his home too early, say
before 7 but not before 6.30. This is modelled by a fuzzy
interval M such that M=[6.5. 7] and M!={7}. The constraint
on the arrival time is that not more than 1/4 hour delay is
acceptable, so that it is a fuzzy interval N with N1=i7, 8]
and N=[7, 8.25]. The uncertainty about the trip duration is
modelled by a possibility distribution =l with Al={1)
and A=[0.75, 1.25] because if Tom is Jucky (no wail, no
traffic) the trip takes 3/4 hour, while if he is unlucky, 1t
may take 1/2 hour more. The problem is to {ind a starting
time s for the trip, such that s lies in M {constrainl about
getting up), and so that whatever the duration z of the trip
the arrival time s+z is acceptable, i.c., lies in N. Applying
the above qualitative utility thecory with U=V=|0,1], and
n{)=1-c, it comes down to finding s which maximizes
min(ppg(s), inf, max(1-pa(z)uN(s+2)) where Ly, Mo, BN
are membership functions. To understand this expression, it
is enough to see it as a multiple-valued evaluation of the
sentence s, se M and Vz if ze A then s+te N. The
maximization and the minimization are multiplc-va}lued
counterparts of the universal and the exisiential quantifiers

respectively, and max(l-a,b) is a multiple-valued
implication. The term inf, {max(1-ji4(z),kN(s+2)) is the
qualitative utility of choosing s as a starting time decision,
in a situation where the incomplete knowledge about z is
defined by =yt 5, and where the preference level of decision s

in situation z is pp(z)=pp(s+2) (evaluating to what extent

the arrival time constraint is violated). With linear member-
ship functions it is found that Tom should leave his home at
6:52'30" am; then provided that the trip does not exceed
1:11°20", it ensures that Tom will not be more than 3'50"
late. Note that the trip length estimate is rather safe. See
Dubois et al. [1995] for a full treatment of this example, and
the application of this approach to job-shop scheduling.

6 Decision with Generic Knowledge and Generic
Preference Information

Belief states are ofien incompletely specified through the use
of pieces of knowledge and information, some of which
being uncertain. In other words, a possibility distribution
over the possible sitwations 1s not always explicitly
specified. Besides, preferences might also be incompletely
specified. An instance of such problems is given by the
following motivating example used in [Tan & Pearl, 1994b]
and Boutilier [1994]. An agent is supposed i} to know that
“if T have the umbrella, then I will be dry", u—d; "if it rains
and 1 do not have the umbrella, then 1 will be wet",
rAmu—~d; and "typically if it is cloudy, it will rain”, c—r,
(the latter rule is uncertain) ii) to observe that the sky is
cloudy, iii) to prefer being dry rather being not dry d>=d and
carrying no umbrella —u>u. It is further assumed that "being
dry is morc important than not carrying an umbrella”
(d>=w). The problem is then for the agent to decide whether
or not to take an umbrelia.

Interpreting rules via material implication, knowledge
expressed by (i) can be encoded in possibilistic logic
[Dubois et al., 1994b] by assuming N{(-uvd)=1,
N(=rvuv-d)=1, N(-cvr)=1-A<] and N{(c)=1, where N is a
necessity measure. The least informative possibility distri-
bution {on interpretations) obeying these constraints 1s such
that the situations rauad and rA-ua=d have possibility 1,
~raund and -ra-uad and =ra ~ua-d have a smaller
possibility, say A, with O<A<], while the other situations
are virtually impossible. Note that the precise value of level
A remains unknown in our example. We have also to define
the fuzzy sets of preferences F,, and F_;, associated with the
actions ‘taking an umbrella’ and 'not taking an umbrella’,
over the set of relevant situations. F, will be a non-
normalized fuzzy set (Wrauad, w-rauad) with u<1 caused
by agent's reluctance 1o carry an umbrella. F_; will be the
fuzzy set (orra—ua—d, B/-ra-ua d, afara=ua=d) with
B>c.. Moreover, a<p since it is more important to be dry
than not to carry an umbrella. It can be checked that

Ng(F,)=min(jt.max{p.n(i))=p
and NE(F_'U)=min(a,max(n(k),ﬁ),max(n(?\.),a)=a<Nn(Fu).
1t leads to the decision: “take an umbrella". The value of A
does not influence the resultl since the important point in
this very elementary example is that it is strictly more
plausible that it rains rather than it does not rain, and our
approach is risk-averse (that is, here, rain-averse). Note that
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in the above example, the rules are not conflicting. In the
case of conflicting rules one may use the method developed
by Benferhat et al. [1992] for encoding exception-prone rules
in possibilistic logic.

7 Concluding Remarks

We have proposed a utility-based, axiomatically-grounded,
decision theory which only requires ordinal scales for the
assessment of uncertainty and preferences. The proposed
approach opens the road to a genuine decision theory in the
framework of possibility theory, a long term goal which
was already at the basis of the work of the English econo-
mist Shackle [1961]. It can be applied in problems where
the information is very rough and qualitative, including
decision-theoretic planning. If we can afford scales with a
somewhat richer structure, we may, for instance, as
suggested at the end of Section 4, use a product-based rather
than a min-based approach. Due to the equivalence between
"max-product" possibility theory and Spohn [1988]'s ordinal
conditional "kappa" functions up to a rescaling (see [Dubois
& Prade, 1991]), it would lead to a decision-theoretic
framework for kappa functions, whose axiomatization could
be investigated both in the possibilistic setting and in the
von Neumann-Morgenstern framework (with infinitesimal
lotteries). This is a topic for further research.
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