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Abs t rac t 
We discuss the persistence of the indirect ef­
fects of an action—the question when such ef­
fects are subject to the commonsense law of in­
ertia, and how to describe their evolution in the 
cases when inertia does not apply. Our model 
of nonpersistent effects involves the assumption 
that the value of the fluent in question is deter­
mined by the values of other fluents, although 
the dependency may be partially or completely 
unknown. This view leads us to a new high-
level action language ARD (for Actions, Ram­
ifications and Dependencies) that is capable of 
describing both persistent and nonpersistent ef­
fects. Unlike the action languages introduced 
in the past, ARD is "non-Markovian," in the 
sense that the evolution of the fluents described 
in this language may depend on their history, 
and not only on their current values. 

1 I n t r o d u c t i o n 
This paper is about the ramification problem in the the­
ory of commonsense reasoning, that is, about the prob­
lem of determining the indirect effects of an action. More 
specifically, we are interested in what Myers and Smith 
[1988] called the persistence of derived information—in 
deciding whether the indirect effects of an action should 
be presumed to persist, or, in other words, whether they 
are subject to the commonsense law of inertia. 

Compare two examples: 

E x a m p l e 1 [Crawford, 1994]. If you are in the lake 
then you are wet. Jumping in the lake has an indirect 
effect—getting wet. 

Examp le 2 [Myers and Smith, 1988]. If an object 
is on the table then it is not dangerous for the baby 
crawling on the floor. Putt ing an object on the table 
has an indirect effect—making it safe. 

The examples look similar. Consider, however, what 
happens in each case if the action under consideration is 
followed by an action with the opposite effect. After you 
get out of the lake, you are stil l wet; this conclusion can 
be justified by the commonsense law of inertia. After an 
object is removed from the table, there is no guarantee 
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that it is still safe from baby. Moreover, if we know that 
originally the object was not safe, and that now it is 
returned to the old location, then common sense tells us 
that it is definitely not safe. Somehow, the law of inertia 
does not apply. 

The ramifications similar to Example 1 are by now 
well understood. Formal accounts of this case of the 
ramification problem, in various contexts, were given in 
[Ginsberg and Smith, 1988], [Winslett, 1988], [Baker and 
Ginsberg, 1989], [Baker, 1991], [Lifschitz, 1991], [Lin and 
Shoham, 1991], [Kartha and Lifschitz, 1994]. In the more 
difficult case of "noninertial ramifications," illustrated 
by Example 2, l i t t le progress has been made. Myers 
and Smith [1988] identified the problem, gave a few in­
structive examples and sketched an approach based on 
default logic. But their paper does not contain an actual 
formalization of any of the examples. 

In Section 2, we present a new informal analysis of 
noninertial ramifications. This discussion leads us, in 
Section 3, to a high-level syntax, similar to the one used 
in [Gelfond and Lifschitz, 1993] and [Kartha and Lifs­
chitz, 1994], that distinguishes between the two kinds 
of ramifications, and then, in Section 4, to an action 
language that allows us to formalize both Example 1 
and Example 2. The new language extends the ac­
tion language AR from [Giunchiglia et a/., 1994] and 
is called ARD-for Actions, Ramifications and Depen­
dencies. The properties of ARD are investigated in Sec­
tion 5. 

2 Dependencies 
There is nothing peculiar about the fact that some flu­
ents are "inertial" and others are not. For example, the 
law of inertia is often restricted to "primitive fluents" 
and is not applied to their propositional combinations 
in [Myers and Smith, 1988] and [Baker, 1991]. Several 
examples when fluents change "by themselves" are given 
in [Lifschitz and Rabinov, 1989]. In [Lifschitz, 1990], a 
subset of fluents is designated as a "frame," and a fluent 
is assumed to be inertial only if it belongs to the frame. 

But if we simply declare the fluent Safe(x) noninertial, 
then any action wil l be able to affect its value, even the 
tr ivial action Wait. Common sense tells us that this 
fluent can be affected by an action if that action affects 
the location of x, but not otherwise. 
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I t appears t ha t Safe(x) is simi lar in its behavior to 
the noniner t ia l fluents tha t have an expl ici t def ini t ion 
in terms of the locat ion of x, except tha t we do not 
know what this definition is. If the top of the table 
is one of n possible locations of x then we are free to 
assume about any of the other n — 1 locations that , being 
there, x would or would not be safe. There are 2n-1 

possible " funct ional dependencies" between Safe(x) and 
Location(x), and we seem to imp l ic i t l y assume that one 
of them holds, w i thou t specifying which one. 

In connection w i t h a simi lar example, Crawford [1994] 
wri tes: 

If we want derived consequences not to persist 
then we probably have to re th ink our approach 
to developing semantics. The problem is tha t 
the persistence of fluents now seems to depend 
on their h is tory—how they came to have the 
value they now have. As far as I know no cur­
rent approaches allow this. 

Indeed, t rad i t iona l approaches to the semantics of ac-
t ions have a "Markov p roper t y " 1 which can be infor­
mal ly described as follows: If the current values of all 
fluents ment ioned in the problem are completely speci­
fied then no addi t ional in format ion about the values of 
these fluents in the past w i l l allow us to make addi t ional 
predict ions about their fu ture values. (This concept wi l l 
be made precise in Section 6.) In Example 2, assume 
that al l objects under consideration are current ly on the 
table, and consequently safe. Then we know the current 
values of al l fluents Location (x) and Safe(x). There is no 
way to decide on the basis of this in format ion whether 
Heavy Hammer w i l l be safe after we put it on the floor. 
Bu t i f we assume, in add i t ion , tha t at some point in the 
past HeavyHammer was on the floor and was not safe, 
then we can predict tha t the fluent Safe(HeavyHammer) 
is going to change its value. We see that a formal ism w i th 
the Markov proper ty would not allow us to represent the 
Safe example. 

The idea of a (possibly unknown) dependency out­
l ined above seems promis ing because it can give rise 
to "non-Markov ian" formal isms. From this perspective, 
the state vector of an action domain includes both "ex­
p l ic i t " components—the values of the f luents available in 
the language—and an " imp l i c i t " par t , the dependencies 
that characterize the dependent f luents. This impl ic i t 
par t of the state vector does not change as the actions 
are per formed, but i t can affect the values of the t ran­
s i t ion funct ion of the system. Add i t iona l informat ion 
about the past can be used to learn the values of the 
imp l ic i t components, and consequently to arr ive at new 
predict ions. 

3 Formalization of the Examples 
Example 1 can be easily represented in the language AR 
[Giunchigl ia et a/., 1994], or even in its dialect ARo f rom 
[Ka r tha and Li fschi tz, 1994]. An ARo language is char­
acterized by a set of "act ion names," such as Jumpln and 
JumpOut, and a set of "f luent names," such as InLake 

: Th is terminology is suggested by a vague analogy with 
Markov chains in the theory of probability. 

Jumpln 

Figure 1: The t ransi t ion diagram for Example 1. 

and Wet. Some fluent names are designated as " iner t ia ! " 
(or forming a " f rame") ; in this example, both InLake and 
Wet are inert ia l . 

The condit ion if you are in the lake then you are wet 
and the effects of the actions can be represented by the 
fol lowing "domain descr ipt ion": 

a lways InLake Wet, 
Jumpln causes InLake, (1) 
JumpOut causes InLake. 

The first line of (1) is a "constra int " ; the other two lines 
are "effect proposit ions." 

According to the semantics of descript ion (1) 
represents a certain t ransi t ion system. The input sym­
bols of the system are the act ion names Jumpln and 
JumpOut. The states of the system are the valuat ions— 
functions f rom f luent names to t r u t h values—that satisfy 
the formula InLake Wet. If we agree to represent a 
valuation by the set of fluents to which it assigns the 
value True then the set of states can be wr i t t en as 

. . . .• (2) 
The transi t ion diagram of this system is depicted in F ig­
ure 1. 

Besides constraints and effect proposit ions, ARo has 
also "value proposit ions" tha t represent condit ions on 
the values of fluents in specific situations, such as 

InLake A Wet a f t e r Jumpln, (3) 
-^InLake A Wet a f t e r Jumpln; JumpOut. 

For instance, the second value proposit ion expresses that 
performing the sequence of actions Jumpln; JumpOut in 
the in i t ia l state w i l l br ing the system to a state which 
satisfies ->InLake A Wet. Bo th value proposit ions shown 
above are "entailed11 by domain description (1). 

In order to formalize Example 2, the language AR0 
needs to be extended. We wi l l introduce, besides iner­
t ia l fluent names, a second special category, "dependent" 
fluent names. Thus, in the extended language, a fluent 
name can be designated as inert ia l or dependent, but not 
bo th . The language ARo corresponds to the special case 
when there are no dependent fluent names. 

For simplici ty, we drop the argument in Safe(x) and 
consider only two locations—the top of the table and 
the rest of the wor ld . The action names are PutOnTable 
and RemoveFromTable. The fluent names are OnTable 
and Safe; OnTable is inert ia l and Safe is dependent. The 
domain description consists of the fol lowing proposit ions: 

Safe d e p e n d s on OnTable, 
a lways OnTable Safe, (4) 
PutOnTable causes OnTable, 
RemoveFromTable causes -OnTab le . 
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Figure 2: The t rans i t ion diagram for Example 2. 

The first l ine of (4) is a proposi t ion of a new k ind , a 
"dependency propos i t ion . " 2 The fact tha t the domain 
descript ion includes this proposit ion and no other de­
pendency proposit ions beginning w i t h Safe tells us that 
the value of this f luent in any s i tuat ion is determined 
by the value of the fluent OnTable. Th is assumption is 
nonmonotonic, in the sense that it can be defeated by 
adding other dependency proposit ions to (4). 

In the extended language, a "state" is a pair. I ts 
"expl ic i t " component is what is considered a state in 
ARo—a- valuat ion t ha t satisfies the constraints of the 
given domain descr ipt ion. The " imp l i c i t " component, is 
a "dependency," i.e. a set of valuations which are con­
sidered to be possible. For instance, the valuations that 
satisfy OnTable Safe are 

Accord ing to the semantics of the extended language de­
scribed below, two dependencies can be used in this case 
as the impl ic i t components of states. The dependency 
{v1,V2} represents the case of a do l l , which is safe no 
mat ter where it is located. The dependency {v1, v3 } rep­
resents a hammer, which is safe only when it is on the 
table. We w i l l see that domain descript ion (4) has the 
fol lowing states: 

The difference between 1 and 3 is the difference be­
tween a dol l and a hammer tha t are out of reach of the 
baby. The expl ic i t components of these states are the 
same, but their dependencies are different. 

The t rans i t ion d iagram of this system is depicted in 
Figure 2. Note that the system is determinist ic; Exe­
cut ing any act ion in any state leads to a uniquely deter­
mined state. However, the values of the fluents OnTable 

(5) 

2Dependency propositions are somewhat similar to the 
formulas INESSENTIAL(p,q) used in [Myers and Smith, 
1988]. The authors' intention was to express "that fluent 
q is inessential in any justification of fluent p." 

and Safe do not determine the state uniquely, and con­
sequently do not predetermine the values of the fluents 
in the next state. 

4 T h e A c t i o n L a n g u a g e A R D 

In this section, we assume tha t the reader is fami l iar w i t h 
the descript ion of the language ARO in [Kar tha and Lifs-
chitz, 1994]. Abou t the language AR [Giunchigl ia et ai, 
1994] i t suffices to know tha t i t differs f rom AR0 in two 
ways. F i rs t , f luents in AR do not have to be proposi-
t ional ; their values can come f rom any domains. Second, 
"release" proposit ions are replaced in AR by " indeter­
minate effect proposit ions" whose syntax is simi lar, but 
the semantics is somewhat different and is better suited 
for the task of formal iz ing nondeterminist ic actions. 

4 . 1 S y n t a x 
An ARD language is characterized by 

• a nonempty set of symbols, tha t are called fluent 
names, 

• a funct ion, associating w i t h every fluent name F a 
nonempty set Dom F of symbols, tha t is called the 
domain of F, 

• two disjoint subsets of fluent names; the elements of 
one are called inertial, and the elements of the other 
dependent, 

• a nonempty set of symbols, tha t are called action 
names. 

An independent f luent name is any fluent name that is 
not dependent; in par t icu lar , all iner t ia l f luent names are 
independent. 

An atomic formula is an expression of the form 

( F is V) 

where F is a fluent name and V E DOMF- A formula is 
a proposit ional combinat ion of atomic formulas. 

There are five types of propositions in ARD—value 
proposit ions, constraints, determinate and indetermi­
nate effect proposit ions, and dependency proposit ions. 
A value proposition is an expression of the form 

C a f t e r A (6) 
where C is a formula, and A is a str ing of act ion names. 
A constraint is an expression of the fo rm 

a l w a y s C (7) 
where C is a formula. A determinate effect proposition 
is an expression of the form 

A causes C if P (8) 
where A is an act ion, and C and P are formulas. An 
indeterminate effect proposition is an expression of the 
form 

A p o s s i b l y changes F if P (9) 

where A is an action name, F an iner t ia l fluent name, 
and P a formula. Final ly, a dependency proposition is 
an expression of form 

F d e p e n d s on F' i f P (10) 
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where F is a dependent fluent name, F' any fluent name, 
and P a formula. 

A domain description is a set of propositions. 
The following abbreviations wil l be used. In formu­

las, some parentheses wil l be omitted, as customary in 
propositional logic. If A in a value proposition (6) is 
empty, we wil l write this proposition as 

i n i t i a l l y C. 

Otherwise, the members of A will be separated by semi­
colons. In effect propositions (8), (9) and in dependency 
propositions (10), the part if P wil l be dropped if P is the 
propositional formula True. A fluent F is propositional 
if DomF — {False, True}; for a propositional fluent F, 
we will abbreviate the atomic formula 

F is True 

by F. 
With these notational conventions, (1) and (4) become 

domain descriptions in the language ARD. The follow-
ing enhanced formalization of Example 2 illustrates the 
use of nonpropositional fluents. Let L1,... ,Ln (n > 1) 
be distinct symbols. Replace the propositional fluent 
OnTable in the language of (4) by the fluent Location, 
whose domain is { L 1 , . . . , L n } ; OnTable will be treated 
as an alternative notation for L1. The new domain de-
scription is 

Safe depends on Location, 
always (Location is OnTable) Safe, 
PutOnTable causes (Location is OnTable), 
Remove From Table causes -( Location is OnTable). 

(H ) 
If n = 2 then (11) is essentially the same as (4). 

Here is a further enhancement, illustrating the use of 
P in dependency propositions (10). We would like to 
express that the closet is a safe location if its door is 
closed. Specifically, if the object is in the closet, then its 
safety depends on whether or not the door is closed; if 
it is then the object is definitely safe. This can be done 
by extending (11) as follows. We add to the language 
the inertial propositional fluent name DoorClosed and 
the action names CloseDoor, OpenDoor. The following 
propositions are added to (11): 

Safe depends on DoorClosed if (Location is InCloset), 
always (Location is InCloset) A DoorClosed ) Safe, 
CloseDoor causes DoorClosed, 
OpenDoor causes -DoorClosed 

(InCloset stands for L2)- In this new domain descrip­
t ion, Safe depends on Location and DoorClosed if the 
object is in the closet, and only on Location otherwise. 
Opening the door may affect the safety of the object only 
if it is in the closet. 

4.2 S e m a n t i c s : D e p e n d e n c i e s a n d S ta tes 
A valuation is a function v defined on the set of fluent 
names such that, for every fluent name F, v(F) € DOMF-
Any valuation v can be extended to atomic formulas as 
follows: 
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A value proposition is entailed by a domain description 
D if it is true in every model of D. 

For instance, value propositions (3) are entailed by 
domain description (1) in the sense of this definition. 
Consider the corresponding propositions for the second 
example: 
OnTable A Safe a f ter PutOnTable, 
-OnTable A Safe a f ter PutOnTable; Remove FromTable. 

(13) 
The first of them is entailed by domain description (4), 
but the second is not. If we add the "initial condition" 

i n i t i a l l y -OnTable A Safe (14) 
to (4) then the extended domain description will entail 
both propositions in (13). 

5 Some Propert ies of ARD 
It is not difficult to verify that, in the absence of depen­
dent fluents, the semantics of ARD is equivalent to the 
semantics of AR. In this case, the set of all states in the 
sense of AR, is the only maximal coherent dependency. 

Several properties of AR0 established in [Kartha and 
Lifschitz, 1994] can be proved for ARD as well. Clearly, 
adding a value proposition to a domain description can 
only make the set of its models smaller, and hence the set 
of value propositions entailed by it bigger (a "restricted 
monotonicity property" in the sense of [Lifschitz, 1993]). 
Any formula can be replaced by an equivalent formula 
without changing the set of models, and explicitly de­
fined fluent names can be eliminated. 

A constant in a domain description D is a dependent 
fluent F such that no dependency proposition in D be­
gins wi th F. In any model of D, the value of a constant 
after executing any sequence of actions is the same as in 
the init ial situation. 
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