
Dependent Fluents

Enr i co G iunch ig l ia
DIST - Universita di Genova

Via Opera Pia 13, 16145 Genova, Italy
Email: enrico@dist.unige.it

Abs t rac t
We discuss the persistence of the indirect ef­
fects of an action—the question when such ef­
fects are subject to the commonsense law of in­
ertia, and how to describe their evolution in the
cases when inertia does not apply. Our model
of nonpersistent effects involves the assumption
that the value of the fluent in question is deter­
mined by the values of other fluents, although
the dependency may be partially or completely
unknown. This view leads us to a new high-
level action language ARD (for Actions, Ram­
ifications and Dependencies) that is capable of
describing both persistent and nonpersistent ef­
fects. Unlike the action languages introduced
in the past, ARD is "non-Markovian," in the
sense that the evolution of the fluents described
in this language may depend on their history,
and not only on their current values.

1 I n t r o d u c t i o n
This paper is about the ramification problem in the the­
ory of commonsense reasoning, that is, about the prob­
lem of determining the indirect effects of an action. More
specifically, we are interested in what Myers and Smith
[1988] called the persistence of derived information—in
deciding whether the indirect effects of an action should
be presumed to persist, or, in other words, whether they
are subject to the commonsense law of inertia.

Compare two examples:

E x a m p l e 1 [Crawford, 1994]. If you are in the lake
then you are wet. Jumping in the lake has an indirect
effect—getting wet.

Examp le 2 [Myers and Smith, 1988]. If an object
is on the table then it is not dangerous for the baby
crawling on the floor. Putt ing an object on the table
has an indirect effect—making it safe.

The examples look similar. Consider, however, what
happens in each case if the action under consideration is
followed by an action with the opposite effect. After you
get out of the lake, you are stil l wet; this conclusion can
be justified by the commonsense law of inertia. After an
object is removed from the table, there is no guarantee

V l a d i m i r L i f s c h i t z
D e p a r t m e n t o f C o m p u t e r Sciences

Un ive rs i t y o f Texas, A u s t i n , T X 78712, U S A
E m a i l : v l@cs.utexas.edu

that it is still safe from baby. Moreover, if we know that
originally the object was not safe, and that now it is
returned to the old location, then common sense tells us
that it is definitely not safe. Somehow, the law of inertia
does not apply.

The ramifications similar to Example 1 are by now
well understood. Formal accounts of this case of the
ramification problem, in various contexts, were given in
[Ginsberg and Smith, 1988], [Winslett, 1988], [Baker and
Ginsberg, 1989], [Baker, 1991], [Lifschitz, 1991], [Lin and
Shoham, 1991], [Kartha and Lifschitz, 1994]. In the more
difficult case of "noninertial ramifications," illustrated
by Example 2, l i t t le progress has been made. Myers
and Smith [1988] identified the problem, gave a few in­
structive examples and sketched an approach based on
default logic. But their paper does not contain an actual
formalization of any of the examples.

In Section 2, we present a new informal analysis of
noninertial ramifications. This discussion leads us, in
Section 3, to a high-level syntax, similar to the one used
in [Gelfond and Lifschitz, 1993] and [Kartha and Lifs­
chitz, 1994], that distinguishes between the two kinds
of ramifications, and then, in Section 4, to an action
language that allows us to formalize both Example 1
and Example 2. The new language extends the ac­
tion language AR from [Giunchiglia et a/., 1994] and
is called ARD-for Actions, Ramifications and Depen­
dencies. The properties of ARD are investigated in Sec­
tion 5.

2 Dependencies
There is nothing peculiar about the fact that some flu­
ents are "inertial" and others are not. For example, the
law of inertia is often restricted to "primitive fluents"
and is not applied to their propositional combinations
in [Myers and Smith, 1988] and [Baker, 1991]. Several
examples when fluents change "by themselves" are given
in [Lifschitz and Rabinov, 1989]. In [Lifschitz, 1990], a
subset of fluents is designated as a "frame," and a fluent
is assumed to be inertial only if it belongs to the frame.

But if we simply declare the fluent Safe(x) noninertial,
then any action wil l be able to affect its value, even the
tr ivial action Wait. Common sense tells us that this
fluent can be affected by an action if that action affects
the location of x, but not otherwise.

1964 TEMPORAL REASONING

mailto:vl@cs.utexas.edu

I t appears t ha t Safe(x) is simi lar in its behavior to
the noniner t ia l fluents tha t have an expl ici t def ini t ion
in terms of the locat ion of x, except tha t we do not
know what this definition is. If the top of the table
is one of n possible locations of x then we are free to
assume about any of the other n — 1 locations that , being
there, x would or would not be safe. There are 2n-1

possible " funct ional dependencies" between Safe(x) and
Location(x), and we seem to imp l ic i t l y assume that one
of them holds, w i thou t specifying which one.

In connection w i t h a simi lar example, Crawford [1994]
wri tes:

If we want derived consequences not to persist
then we probably have to re th ink our approach
to developing semantics. The problem is tha t
the persistence of fluents now seems to depend
on their h is tory—how they came to have the
value they now have. As far as I know no cur­
rent approaches allow this.

Indeed, t rad i t iona l approaches to the semantics of ac-
t ions have a "Markov p roper t y " 1 which can be infor­
mal ly described as follows: If the current values of all
fluents ment ioned in the problem are completely speci­
fied then no addi t ional in format ion about the values of
these fluents in the past w i l l allow us to make addi t ional
predict ions about their fu ture values. (This concept wi l l
be made precise in Section 6.) In Example 2, assume
that al l objects under consideration are current ly on the
table, and consequently safe. Then we know the current
values of al l fluents Location (x) and Safe(x). There is no
way to decide on the basis of this in format ion whether
Heavy Hammer w i l l be safe after we put it on the floor.
Bu t i f we assume, in add i t ion , tha t at some point in the
past HeavyHammer was on the floor and was not safe,
then we can predict tha t the fluent Safe(HeavyHammer)
is going to change its value. We see that a formal ism w i th
the Markov proper ty would not allow us to represent the
Safe example.

The idea of a (possibly unknown) dependency out­
l ined above seems promis ing because it can give rise
to "non-Markov ian" formal isms. From this perspective,
the state vector of an action domain includes both "ex­
p l ic i t " components—the values of the f luents available in
the language—and an " imp l i c i t " par t , the dependencies
that characterize the dependent f luents. This impl ic i t
par t of the state vector does not change as the actions
are per formed, but i t can affect the values of the t ran­
s i t ion funct ion of the system. Add i t iona l informat ion
about the past can be used to learn the values of the
imp l ic i t components, and consequently to arr ive at new
predict ions.

3 Formalization of the Examples
Example 1 can be easily represented in the language AR
[Giunchigl ia et a/., 1994], or even in its dialect ARo f rom
[Ka r tha and Li fschi tz, 1994]. An ARo language is char­
acterized by a set of "act ion names," such as Jumpln and
JumpOut, and a set of "f luent names," such as InLake

: Th is terminology is suggested by a vague analogy with
Markov chains in the theory of probability.

Jumpln

Figure 1: The t ransi t ion diagram for Example 1.

and Wet. Some fluent names are designated as " iner t ia ! "
(or forming a " f rame") ; in this example, both InLake and
Wet are inert ia l .

The condit ion if you are in the lake then you are wet
and the effects of the actions can be represented by the
fol lowing "domain descr ipt ion":

a lways InLake Wet,
Jumpln causes InLake, (1)
JumpOut causes InLake.

The first line of (1) is a "constra int " ; the other two lines
are "effect proposit ions."

According to the semantics of descript ion (1)
represents a certain t ransi t ion system. The input sym­
bols of the system are the act ion names Jumpln and
JumpOut. The states of the system are the valuat ions—
functions f rom f luent names to t r u t h values—that satisfy
the formula InLake Wet. If we agree to represent a
valuation by the set of fluents to which it assigns the
value True then the set of states can be wr i t t en as

. . . .• (2)
The transi t ion diagram of this system is depicted in F ig­
ure 1.

Besides constraints and effect proposit ions, ARo has
also "value proposit ions" tha t represent condit ions on
the values of fluents in specific situations, such as

InLake A Wet a f t e r Jumpln, (3)
-^InLake A Wet a f t e r Jumpln; JumpOut.

For instance, the second value proposit ion expresses that
performing the sequence of actions Jumpln; JumpOut in
the in i t ia l state w i l l br ing the system to a state which
satisfies ->InLake A Wet. Bo th value proposit ions shown
above are "entailed11 by domain description (1).

In order to formalize Example 2, the language AR0
needs to be extended. We wi l l introduce, besides iner­
t ia l fluent names, a second special category, "dependent"
fluent names. Thus, in the extended language, a fluent
name can be designated as inert ia l or dependent, but not
bo th . The language ARo corresponds to the special case
when there are no dependent fluent names.

For simplici ty, we drop the argument in Safe(x) and
consider only two locations—the top of the table and
the rest of the wor ld . The action names are PutOnTable
and RemoveFromTable. The fluent names are OnTable
and Safe; OnTable is inert ia l and Safe is dependent. The
domain description consists of the fol lowing proposit ions:

Safe d e p e n d s on OnTable,
a lways OnTable Safe, (4)
PutOnTable causes OnTable,
RemoveFromTable causes -OnTab le .

GIUNCHIGLIA AND LIFSCHITZ 1968

Figure 2: The t rans i t ion diagram for Example 2.

The first l ine of (4) is a proposi t ion of a new k ind , a
"dependency propos i t ion . " 2 The fact tha t the domain
descript ion includes this proposit ion and no other de­
pendency proposit ions beginning w i t h Safe tells us that
the value of this f luent in any s i tuat ion is determined
by the value of the fluent OnTable. Th is assumption is
nonmonotonic, in the sense that it can be defeated by
adding other dependency proposit ions to (4).

In the extended language, a "state" is a pair. I ts
"expl ic i t " component is what is considered a state in
ARo—a- valuat ion t ha t satisfies the constraints of the
given domain descr ipt ion. The " imp l i c i t " component, is
a "dependency," i.e. a set of valuations which are con­
sidered to be possible. For instance, the valuations that
satisfy OnTable Safe are

Accord ing to the semantics of the extended language de­
scribed below, two dependencies can be used in this case
as the impl ic i t components of states. The dependency
{v1,V2} represents the case of a do l l , which is safe no
mat ter where it is located. The dependency {v1, v3 } rep­
resents a hammer, which is safe only when it is on the
table. We w i l l see that domain descript ion (4) has the
fol lowing states:

The difference between 1 and 3 is the difference be­
tween a dol l and a hammer tha t are out of reach of the
baby. The expl ic i t components of these states are the
same, but their dependencies are different.

The t rans i t ion d iagram of this system is depicted in
Figure 2. Note that the system is determinist ic; Exe­
cut ing any act ion in any state leads to a uniquely deter­
mined state. However, the values of the fluents OnTable

(5)

2Dependency propositions are somewhat similar to the
formulas INESSENTIAL(p,q) used in [Myers and Smith,
1988]. The authors' intention was to express "that fluent
q is inessential in any justification of fluent p."

and Safe do not determine the state uniquely, and con­
sequently do not predetermine the values of the fluents
in the next state.

4 T h e A c t i o n L a n g u a g e A R D

In this section, we assume tha t the reader is fami l iar w i t h
the descript ion of the language ARO in [Kar tha and Lifs-
chitz, 1994]. Abou t the language AR [Giunchigl ia et ai,
1994] i t suffices to know tha t i t differs f rom AR0 in two
ways. F i rs t , f luents in AR do not have to be proposi-
t ional ; their values can come f rom any domains. Second,
"release" proposit ions are replaced in AR by " indeter­
minate effect proposit ions" whose syntax is simi lar, but
the semantics is somewhat different and is better suited
for the task of formal iz ing nondeterminist ic actions.

4 . 1 S y n t a x
An ARD language is characterized by

• a nonempty set of symbols, tha t are called fluent
names,

• a funct ion, associating w i t h every fluent name F a
nonempty set Dom F of symbols, tha t is called the
domain of F,

• two disjoint subsets of fluent names; the elements of
one are called inertial, and the elements of the other
dependent,

• a nonempty set of symbols, tha t are called action
names.

An independent f luent name is any fluent name that is
not dependent; in par t icu lar , all iner t ia l f luent names are
independent.

An atomic formula is an expression of the form

(F is V)

where F is a fluent name and V E DOMF- A formula is
a proposit ional combinat ion of atomic formulas.

There are five types of propositions in ARD—value
proposit ions, constraints, determinate and indetermi­
nate effect proposit ions, and dependency proposit ions.
A value proposition is an expression of the form

C a f t e r A (6)
where C is a formula, and A is a str ing of act ion names.
A constraint is an expression of the fo rm

a l w a y s C (7)
where C is a formula. A determinate effect proposition
is an expression of the form

A causes C if P (8)
where A is an act ion, and C and P are formulas. An
indeterminate effect proposition is an expression of the
form

A p o s s i b l y changes F if P (9)

where A is an action name, F an iner t ia l fluent name,
and P a formula. Final ly, a dependency proposition is
an expression of form

F d e p e n d s on F' i f P (10)

1966 TEMPORAL REASONING

where F is a dependent fluent name, F' any fluent name,
and P a formula.

A domain description is a set of propositions.
The following abbreviations wil l be used. In formu­

las, some parentheses wil l be omitted, as customary in
propositional logic. If A in a value proposition (6) is
empty, we wil l write this proposition as

i n i t i a l l y C.

Otherwise, the members of A will be separated by semi­
colons. In effect propositions (8), (9) and in dependency
propositions (10), the part if P wil l be dropped if P is the
propositional formula True. A fluent F is propositional
if DomF — {False, True}; for a propositional fluent F,
we will abbreviate the atomic formula

F is True

by F.
With these notational conventions, (1) and (4) become

domain descriptions in the language ARD. The follow-
ing enhanced formalization of Example 2 illustrates the
use of nonpropositional fluents. Let L1,... ,Ln (n > 1)
be distinct symbols. Replace the propositional fluent
OnTable in the language of (4) by the fluent Location,
whose domain is { L 1 , . . . , L n } ; OnTable will be treated
as an alternative notation for L1. The new domain de-
scription is

Safe depends on Location,
always (Location is OnTable) Safe,
PutOnTable causes (Location is OnTable),
Remove From Table causes -(Location is OnTable).

(H)
If n = 2 then (11) is essentially the same as (4).

Here is a further enhancement, illustrating the use of
P in dependency propositions (10). We would like to
express that the closet is a safe location if its door is
closed. Specifically, if the object is in the closet, then its
safety depends on whether or not the door is closed; if
it is then the object is definitely safe. This can be done
by extending (11) as follows. We add to the language
the inertial propositional fluent name DoorClosed and
the action names CloseDoor, OpenDoor. The following
propositions are added to (11):

Safe depends on DoorClosed if (Location is InCloset),
always (Location is InCloset) A DoorClosed) Safe,
CloseDoor causes DoorClosed,
OpenDoor causes -DoorClosed

(InCloset stands for L2)- In this new domain descrip­
t ion, Safe depends on Location and DoorClosed if the
object is in the closet, and only on Location otherwise.
Opening the door may affect the safety of the object only
if it is in the closet.

4.2 S e m a n t i c s : D e p e n d e n c i e s a n d S ta tes
A valuation is a function v defined on the set of fluent
names such that, for every fluent name F, v(F) € DOMF-
Any valuation v can be extended to atomic formulas as
follows:

GIUNCHIGLIA AND LIFSCHITZ 1967

A value proposition is entailed by a domain description
D if it is true in every model of D.

For instance, value propositions (3) are entailed by
domain description (1) in the sense of this definition.
Consider the corresponding propositions for the second
example:
OnTable A Safe a f ter PutOnTable,
-OnTable A Safe a f ter PutOnTable; Remove FromTable.

(13)
The first of them is entailed by domain description (4),
but the second is not. If we add the "initial condition"

i n i t i a l l y -OnTable A Safe (14)
to (4) then the extended domain description will entail
both propositions in (13).

5 Some Propert ies of ARD
It is not difficult to verify that, in the absence of depen­
dent fluents, the semantics of ARD is equivalent to the
semantics of AR. In this case, the set of all states in the
sense of AR, is the only maximal coherent dependency.

Several properties of AR0 established in [Kartha and
Lifschitz, 1994] can be proved for ARD as well. Clearly,
adding a value proposition to a domain description can
only make the set of its models smaller, and hence the set
of value propositions entailed by it bigger (a "restricted
monotonicity property" in the sense of [Lifschitz, 1993]).
Any formula can be replaced by an equivalent formula
without changing the set of models, and explicitly de­
fined fluent names can be eliminated.

A constant in a domain description D is a dependent
fluent F such that no dependency proposition in D be­
gins wi th F. In any model of D, the value of a constant
after executing any sequence of actions is the same as in
the init ial situation.

Acknowledgements
We are grateful to Michael Gelfond, Matthew Ginsberg,
Neelakantan Kartha, Norman McCain, David Smith and
Hudson Turner for useful discussions related to the sub­
ject of this paper. This work was partially supported by
National Science Foundation under grant IRI-9306751.

References
[Baker and Ginsberg, 1989] Andrew Baker and

Matthew Ginsberg. Temporal projection and expla-
nation. In Proc. of IJCAI-89, pages 906-911, 1989.

[Baker, 1991] Andrew Baker, Nonmonotonic reasoning
in the framework of situation calculus. Artificial In­
telligence, 49:5-23, 1991.

[Crawford, 1994] James Crawford. Three issues in ac­
tion. Unpublished note for the Fifth International
Workshop on Nonmonotonic Reasoning, 1994.

[Gelfond and Lifschitz, 1993]
Michael Gelfond and Vladimir Lifschitz. Represent­
ing action and change by logic programs. Journal of
Logic Programming, 17:301-322, 1993.

[Ginsberg and Smith, 1988] Matthew L. Ginsberg and
D.E Smith. Reasoning about action I: a possible
worlds approach. Artificial Intelligence, 35:165-195,
1988.

1963 TEMPORAR REASIONING

[Giunchiglia et ai, 1994] Enrico Giunchiglia, G. Nee­
lakantan Kartha, and Vladimir Lifschitz. Actions with
indirect effects. Working notes of the AAA I Spring
Symposium on Extending Theories of Action, 1994.

[Kartha and Lifschitz, 1994] G. Neelakantan Kartha
and Vladimir Lifschitz. Actions with indirect effects
(preliminary report). In Proc. of the Fourth Int'l
Conf. on Principles of Knowledge Representation and
Reasoning, pages 341-350, 1994.

[Lifschitz and Rabinov, 1989] Vladimir Lifschitz and
Arkady Rabinov. Things that change by themselves.
In Proc. of IJCAI-89, pages 864-867, 1989.

[Lifschitz, 1990] Vladimir Lifschitz. Frames in the space
of situations. Artificial Intelligence, 46:365-376, 1990.

[Lifschitz, 1991] Vladimir Lifschitz. Towards a metathe-
ory of action. In James Allen, Richard Fikes, and Erik
Sandewall, editors, Proc. of the Second Int'l Conf. on
Principles of Knowledge Representation and Reason­
ing, pages 376-386, 1991.

[Lifschitz, 1993] Vladimir Lifschitz. Restricted mono-
tonicity. In Proc. AAAI-93, pages 432-437, 1993.

[Lin and Shoham, 1991]
Fangzhen Lin and Yoav Shoham. Provably cor­
rect theories of action (preliminary report). In
Proc. AAAI-91, pages 349-354, 1991.

[Myers and Smith, 1988] Karen Myers and David
Smith. The persistence of derived information. In
Proc. AAAI-88, pages 496-500, 1988.

[Winslett, 1988] Marianne Winslett. Reasoning about
action using a possible model approach. In
Proc. AAAI-88, pages 89-93, 1988.

