A Simple Formalization of Actions Using Circumscription

G. Neelakantan Kartha and Vladimir Lifschitz
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188, USA
{ kartha,vl }@cs.utexas.edu

Abstract

We present a simple circumscriptive method for
formalizing actions with indirect effects (ramifi-
cations), and show that, in several examples, all
second-order quantifiers can be eliminated from
these formalizations using existing techniques
for computing circumscriptions. One of the two
symbolic computation methods employed here
is a generalization of predicate completion and
the other is based on the SCAN algorithm. The
simplicity of our new approach to representing
actions is due to the use of the formalism of
nested abnormality theories.

1 Introduction

Solving the frame problem—the problem of represent-
ing succinctly what remains unchanged as a result of
performing an action—is one of major challenges in the
logical approach to Artificial Intelligence. This problem
was one of the motivating factors behind the emergence
of several nonmonotonic formalisms in the 1980s. It has
led, in particular, to the development of circumscription
in [McCarthy, 1980] and [McCarthy, 1986]. Circumscrip-
tion is a syntactic transformation that expresses a min-
imality property of models. The idea was to solve the
frame problem by postulating that, whenever an action
is executed, the "difference" between the two states of
the world, before and after the event, is minimal. How-
ever, the straightforward formalization based on this idea
turned out to be inadequate [Hanks and McDermott,
1987].

In this paper, we present a simple formalization of ac-
tions using the framework of nested abnormality theories
(NATs) [Lifschitz, 1995], a formalism based on circum-
scription. The main feature of this framework is that
the effects of various circumscriptions are confined to the
parts of the axiom set called "blocks." As a result, the
circumscriptions that solve the frame problem become
rather simple, and, in several examples, we will be able to
eliminate all their second-order quantifiers using existing
techniques for computing circumscriptions. These exam-
ples involve actions with indirect effects and, in one case,
these effects are nondeterministic. One of the two meth-
ods for computing circumscriptions employed here is a

1970 TEMPORAL REASONING

generalization of predicate completion [Lifschitz, 1993]
and the other is based on the SCAN algorithm [Gabbay
and Ohlbach, 1992].

The idea behind the approach to the frame problem
presented here is closest to that of Winslett [1988]. The
main difference is that Winslett's formalization is in
terms of theory update, and ours includes the full ex-
pressive power of the situation calculus. Combining the
ideas of [Winslett, 1988] with the situation calculus is
achieved by the use of NATs.

Another closely related direction of research is de-
scribed in [Lin and Shoham, 1991] and [Lin and Reiter,
1994], Central to the formalization presented there is a
minimality condition formulated in terms of models. To
obtain meaningful conclusions with their formalization,
Lin, Shoham and Reiter need to impose certain consis-
tency conditions and on include certain "tree axioms"
(that impose a tree structure to the universe of situa-
tions). In contrast, the use of circumscription described
in this paper allows us to dispense with the consistency
conditions and the tree axioms.

Also, this paper differs from earlier work in that we in-
vestigate the applicability of symbolic methods to com-
puting the circumscriptions involved in the solution to
the frame problem—an issue not considered by Winslett
or by Lin, Shoham and Reiter.

The rest of the paper is organized as follows. In the
next two sections, we review the notion of a causal the-
ory introduced in [Lin and Reiter, 1994] and give a few
examples. Section 4 introduces the new formalization.
In Section 5, we illustrate via examples how the effect of
circumscriptions can be computed by syntactic manip-
ulations and using SCAN. In Section 6, we relate this
paper to action languages [Gelfond and Lifschitz, 1993]
and indicate directions for future work.

For the terminology and notation related to circum-
scription, the reader is referred to [Lifschitz, 1993].

2 Causal Theories

For clarity, we will present the new formalization in the
context of a simple class of theories called "causal." This
class of theories is essentially the same as that defined
in [Lin and Reiter, 1994].

The formalism is based on the situation calculus [Mc-
Carthy and Hayes, 1969]. Consider a first-order language

with object variables for situations and actions, and pos-
sibly variables of other sorts. In this section, by s we will
denote a situation variable, by a an action variable, and
by x, y tuples of distinct variables of other sorts. The
nonlogical constants of the language are

* binary function constant Result; Result(a,s) is the
situation obtained by performing action a in situa-
tion s;

* binary predicate constant Poss; Poss(a, s) expresses
that it is possible to execute a in situation s;

« function constants (some of them possibly of arity
0) called action symbols; for an action symbol A,
A(x) is an action term;

+ predicate constants called fluent symbols; for a flu-
ent symbol F, F(x,s) is an atomic formula.

A language of this kind will be called a causal /language.

Two groups of axioms will be allowed in a causal
theory—"effect axioms" and "ramification constraints."
In order to describe the syntactic form that these axioms
may have, we need the following definition. A formula
® is a simple state formula if every occurrence of a sit-
uation term in ® is an occurrence of the same variable
s as the last argument of a fluent symbol. Clearly, So,
Result and Poss cannot occur in a simple state formula.

A set of axioms in a causal language is a causal theory
if it consists of

e some effect axioms of the forms

Poss(a,s) D {(¥(z,a,s) D F(x, Result(a, 5))],
Poss(a,s) D [¥(x,a,s) D =F(r, Resull(a, s))]

I
where Vf(x, a, s) is a simple state formula, ()
+ some ramification constraints, that are assumed to

be simple state formulas that do not contain action
terms.

3 Examples

We will now illustrate the definitions introduced so far
with a few examples. The first example is reproduced
from [Lin and Reiter, 1994].

Example 1. Consider a blocks world domain in which
the only actions possible are painting blocks with differ-
ent colours. To describe this domain, we first introduce
an action term paint(x,y) that stands for the action of
painting block x with colour y. The following effect ax-
iom describes what this action does:

Poss(paint(x,y),s) D colour (x, y, Result(paint(x, y), s)).

Note that this axiom can be rewritten as

Pos$(a, s) D [a = paint(x, y) Dcolour(x, 'y, Result(a, s))]

so that it will have the form of the effect axioms given
in (1).

The only ramification constraint that we have for this
domain is that a block can have just one colour. This
constraint is expressed by the simple state formula

colour(z,yy,5) A colour(z,y2.6) Dth =¥2- (2

Our intention is that, in view of the ramification con-
straint, the action of painting a block with a new colour
should have the indirect effect of making the old colour
disappear.

Example 2. The "murder mystery" from [Baker, 1991]
can be formalized by the effect axioms

Poss{Load, s) D Loaded(Result(Load, s)),
Poss(Shoot, 5) D

[Loaded(s) D —Alive(Result(Shoot, 5))],
Poss(Shoot, 8) D —Loaded(Result(Shoot, s))

and the constraint

Walking(s) O Alwe(s).

Example 3. Consider a table divided into three sec-
tors F, G and H. A block is always in exactly one of
these three locations. There is an action A, which, if
performed when the block is in location F, moves it out
of that location. Hence, after the action is performed,
the block is in location G or H, but we do not know
which. Thus, this is a domain where the indirect effects
are nondeterministic.

To represent this domain as a causal theory, we intro-
duce three fluents F, G and H. The only effect axiom
is

Poss(A,s) D [F(s) D ~F({Result(A, s)]
The constraints are
F(s) Vv G(s) v H(s),
~F(s) Vv -G(s),
—~F(s)V~H(s),
—~G(s) vV aH(s).

4 Turning a Causal Theory into an
Abnormality Theory

In nested abnormality theories, as defined in [Lifschitz,
1995], parts of the axiom set can be grouped into
"blocks" of the form

{C1,...,Cm

where Cj,. .., C, are function and/or predicate symbols
(said to be "described" by the block) and ®4,...,®y, are
formulas. Typically, some of these formulas contain the
predicate constant Ab. Such a block corresponds to the
circumscription of Ab in @31 A ... A&, with Cy,...,Cy
varied:

L@y, @),

CIRC[®; A ... A®a; Ab; (.. .+ Cm).

There can b'. several such blocks in the theory. More-
over, blocks can be "nested" in the sense that each @, can
be itself a block. This possibility corresponds roughly to
the use of priorities in traditional applications of circum-
scription. In this paper, we discuss abnormality theories
with a particularly simple structure—the circumscrip-
tion operator is applied in them only once, so that no
nesting of circumscriptions is possible. The reader fa-
miliar with the idea of circumscription will find it easy
to understand these examples without a detailed review
of the general formalism.

KARTHA AND LIFSCHITZ 1971

Let us assume that the signature and the axiom set of
the given causal theory T are finite. We will denote the
set of fluent symbols of T by F, the set of its effect propo-
sitions by E and the set of its ramification constraints
by C. The language of the abnormality theory T,, cor-
responding to T includes, in addition to the variables of
the sorts available in T, variables for "aspects." Aspects
will serve as arguments of the abnormality predicate Ab.
This device, proposed in [McCarthy, 1986], allows us to
distinguish between different kinds of abnormality: an
object abnormal in one "aspect" can be normal in an-
other. For every fluent symbol F of T, we will need a
new function symbol Aspe

For every fluent symbol F, Tab will include the axiom
Fr(x,a,s) = F(x,Result(a,s)), (3)

where FR ("F-Result") is a new predicate constant.
These axioms can be viewed as explicit definitions of the
constants FR. Using these constants, the effect axioms
(1) can be rewritten as

Poss(a,s) D [¥(z,a,s) D Fpr(z,a,s)], (4)

Poss(a,s) D [¥(x,a,s) D ~Fgr(z,a,s)] (5)
The set of formulas obtained in this way from the effect
axioms in E will be denoted by Eg.

The "commonsense law of inertia" can be expressed
in this notation by the formulas

-Ab{Aspp(z),a, s)APoss(a,s) D (Fr(z, a,5) = F(z,s))

for all F € F, which formalize the idea of minimal
change. We will denote this set of formulas by I.

Each ramification constraint will have a counterpart,
obtained from it by replacing each atomic part F(ts)
(where t is a tuple of terms) with Fg(i,a,s) for a fixed
action variable a. For instance, the counterpart of the
ramification constraint (2) is

colourg{z,y1,a, 8} A colourg{z,yz,a,5) D ¥ = ya.

The set of formulas obtained in this way from the con-
straints in C will be denoted by CR.

We also introduce unique names axioms for actions
and aspects. They are the formulas

A(z) # A'y),
Alz) = Ay} Dz =1y,
Aspp(z) # Aspp. (),

Aspr(x) = Aspe(y) D x =y

for arbitrary pairs of distinct action symbols A, A’ and
for arbitrary pairs of distinct fluent symbols F, F. We
denote this set of formulas by UNA.

The axioms of the abnormality theory T,, are:

UNA,
C,
Fr(z,a8,s} = F(z, Result{a, 5))
Fgp :
I,
Eg,
Cr

(FeF),

}.

1972 TEMPORAL REASONING

Here FR stands for the list of all predicates FR.

Note the use of Fr instead of Result in the range of cir-
cumscription. The intuition behind this style of describ-
ing actions can roughly be explained as follows. When
we use circumscription to determine the effect of an ac-
tion a on a fluent in a situation s, the only two situations
that are of interest are the situation s and the situation
obtained by performing the action a in s—for instance,
we do not want to consider the sequence of actions that
lead to situation s nor do we wish to consider what hap-
pens afterward. The new formalization achieves this by
"removing" the Result function from the range of cir-
cumscription. In this part of the axiom set, we accept
the local "theory update" view, as in Winslett's work.

According to the semantics of nested abnormality the-
ories [Lifschitz, 1995], the block at the end of the axiom
set stands for the axiom formed as follows. Let ® be the
universal closure of the conjunction of all three groups
of formulas included in the block. Denote the circum-
scription

CIRC|P; Ab; ¥

by C(Ab). The axiom represented by the block is
the formula 3abC(ab), where ab is a predicate variable
that takes the same arguments as Ab. The last step—
replacing the predicate Ab by an existentially quantified
variable—is motivated by the fact that, in an abnormal-
ity theory, Ab 15 an auxiliary constant whose value can
be safely “forgotten.”

For instance, the nested abnormality theory T, cor-
responding to Example 1 has the following axioms:

(¢) point(z1,y1) = paint(zz,32) O
(z1 = z2 Ay = m),
(l!) Aspcalnur (mlsyl) = A‘gpcalnur (zg,yg) 2
(21 = z2 Ayr = 1),
(#43) colour(z, y1, 8) A colour(z,y2,8) D 1 = vz,
(v) colourg(z,y, a, s} = colour(z,y, Result(a, s)),
{colourg :
{(v) -Ab(Asp.yonr(z,¥),a,8) A Poss(a,s) D
colourg(z,y, a, s) = colour(x,y, s},
(vi) Poss{a,s) D
[a = paint(z,y) D colourg(z,y,a, s)),
(vif) colourg(z,y,a,s) A colourg(z,ys,a,8) D
yi=m

5 Computing Ramifications

In this section, we illustrate via examples how exist-
ing methods for computing circumscriptions can be em-
ployed in conjunction with the formalization presented
above.

5.1 Completion

In many case, it is possible to compute the effects of
actions using the syntactic methods for computing cir-
cumscriptions from [Lifschitz, 1993]. As an illustration,
we will consider computing the circumscription from Ex-
ample 1 in some detail.

We will have occasion to use the following propositions
from [Lifschitz, 1993].

Lemma 1. The circumscription CIRC[A(P, Z); P; Z)
is equivalent to

A(P,Z) A CIRC[AzA(P, 2); P).

Lemma 2. If A(z) does not contain p and B(p) is neg-
ative relative to p then

Fplve(A(z) > p(2)) A B(p)]
is equivalent to B{AzA(z)).

Lemma 3. If F(z) does not contain P, then the cir-
cumscription

CIRC[Vz(F(z) D P(z)); P)
is equivalent to Vz(F(x) = P(x)).

Lemma 3 shows that circumscription can be some-
times evaluated by a process similar to the predicate
completion algorithm from [Clark, 1978].

Let ® be the conjunction of the universal closures
of formulas (u), (vi) and (vi) from the nested abnor-
mality theory T,, (Section 4). By the definition of the
semantics of nested abnormality theories, the block at
the end of T,, stands for the formula Bab C(ab) where
C{Ab) stands for CIRC[®;Ab\ colour R]. By Lemma 1,
this circumscription is equivalent to the conjunction of ®
and CIRC[3colour @]’ Using Lemma 2, it is easy
to eliminate the second-order quantifier in the formula
3COIOUR ®. After a few simplification steps, we can use
Lemma 3 to show that, in the presence of axioms (i)-
(iv), C(Ab) is equivalent to the conjunction of ® and the
following explicit definition for Ab:

Ab(z,a,8) =

Poss(a, s) A zylz = Asp.iour (2, YIN
((—vcolour(x,y, 5) A e = pant(z, y))V
(colour(z,y, s) AT Y {a = pamnt{z,y¥) Ay #¥)))]

It follows that T,, is equivalent to the conjunction of
formulas (i)-(iv), (vi), (vil and the result of substi-
tuting this expression for Ab in (v). The result of this
substitution is essentially the conjunction of all "frame
axioms" that are needed in conjunction with the causal
theory of Example 1. We see that syntactic methods of
computing circumscriptions can be employed to generate
the necessary frame axioms.

The effect of the circumscriptions in Examples 2 and
3 can be computed in a similar way.

5.2 SCAN

SCAN [Gabbay and Ohlbach, 1992] is an algorithm for
eliminating second-order quantifiers over predicate vari-
ables P;.. . ,P, in formulas of the form 3P, P, ®
where ©® is a first-order formula. If SCAN terminates,
then the resulting formula is equivalent to the original
formula.

Recall that CIRC[A; P; Z], the circumscription of the
predicate P in formula A with the functions and/or pred-
icates in the tuple Z varied, is the sentence

4To simplify notation, we use colourR both as a predicate
constant and predicate variable.

A(P,Z) A-3pz[A(p,z) Ap < P].

Here p is a predicate variable of the same arity as P, z
stands for a tuple of variables which matches the tuple Z
in arities and the sorts of arguments, and p < P stands
for(p < P)A-{(p=P).

Hence to compute circumscriptions using SCAN, we
input the formula 3pz{A(p, z} A p < P) to it, negate the
resulting formula and take its conjunction with the for-
mula A(P, Z). Note that if z includes function constants,
SCAN cannot be applied. For instance, since Baket’s cir-
cumescriptive approach [Baker, 1991} involves varying the
Result function, it cannot be used directly with SCAN.

An implementation of SCAN has been developed by
Engel and Ohlbach®. Consider the application of this
system to computing the circumscriptions from Sec-
tion 4.

In Example 1, the following set of formulas is taken as
input tc SCAN: the variables p and R are eliminated.

(all x all y all xa all xs (
(-p(asp(x,y),xa,xs) ft Poss(xa,xs)) ->
(c(x,y,xs) <-> R(x,y,xa,xs)))).
(all x all y all xa all xs (
(Poss(xa.xs) ft (xa = paint(x.y))) ->
R(x,y,xa,xs))).
(all x all y1 all y2 all xa all xs (
((R(x,yl,xa,xs) ft R(x,y2,xa,xs)) ->
(yl = y2>)).
(all xf all xa all xs (p(xf,xa,xs) ->
Ab(xf,xa,xs))).
(exists xf exists xa exists xs (
-p(xf,xa,xs) ft Ab(xf,xa,xs))).
(all xI all yl all x2 all y2 (
(paint(xl,yl) = paint(x2,y2)) ->
((xI'= x2) ft (yl = y2)))).
(all xI all yl all x2 all y2 (

(asp(xl,yi) = asp(x2,y2)) ->
((xI'= x2) ft (yl = y2)))).
(all x all yl all y2 all xs (
(c(x,yl,xs) ft c(x,y2,xs)) ->
(yl = y2))).

(all x (x = x)).

In the above formulas, R stands for colour® and c
stands for colour. The first three formulas are direct
encodings of (v), (vi and (vi). The next two formulas
express that p < Ab. The next four are not a part of
the circumscription formula; they are included to help
SCAN simplify its output. Of these, the first three are
formulas (i), (i) and (Hi) of the NAT.

SCAN produces the following 14 clauses as its output
(in 1.6 seconds on a Sun 4).

1 paint(x,y)!=paint(z,un)ix=z.
2 paint(x,y)'=paint(z,u)ly=u.
3 asp(x,y)!=asp(z,u)|x=z.

4 asp(x,y)'=asp(z,u)ly=n.

B -c(x,y,2)| -c(x,u,z)|y=u.

2For more information on the implementation, see http:

[lwww.mpi-sb.mpg.de/guide/starT/ohlbach/scan/scan.html

KARTHA AND LIFSCHITZ 1973

Ab($c3,8c2,8ci).

x=x.

-Poss(paint(x,y),z)lc(x,y,2)I

Ab(asp(x,y),paint(x,y),z).

9 -Pose(paint(x,y),$ci)| -Posa($c2,8c1)]|
c(x,y,$cl)|$c3)=asp(x,y) | $c2t=paint(x,y).

10 -Poas(paint(x,y),z)| -Poss(paint(x,u),z)}|
y=ulpaint(x,u)!=paint(x,y).

11 -Poss(paint(x,y),z)| -c(x,u,z)|
Ab(asp(x,u),paint(x,y),z) | y=u.

12 -Poss(paint(x,y),z}| =-c(x,u,z)|
Ab(asp(x,u),paint(x,y),z) lu=y.

13 -Poss($c2,8c1)| =c(x,y,$c1)|$c3t=asp(x,y) !
-Poss(paint(x,z},$cl) |z=y|paint(x,z)!'=8c2.

14 -Poes($c2,8c1)| =c(x,y,$c1)i8c3=asp(x,y)|

-Poss(paint(x,z),8$ct) ly=z[paint(x,z) '=§c2.

G~]

In the set of clauses above, the expressions beginning
with $ are Skolem constants introduced by SCAN in the
process of converting the input into clauses, and the sym-
bol | stands for V.

By unskolemizing (that is, appending an existential
quantifier to) this set of clauses, negating them, conjoin-
ing them with the axioms outside the block and simplify-
ing them, we can get an explicit definition of Ab identical
to the formula obtained in Section 5.1, and consequently
the frame axioms.

Some of this process of simplification of the set of
clauses and elimination of Ab can be automated. For
instance, to eliminate the redundant clauses, SCAN can
be directed to try to derive each newly generated clause
from the others for a fixed amount of time. In addi-
tion, SCAN can eliminate Ab from the simplified set of
clauses.

The causal theory corresponding to Example 2 is

UNA,
Walking(s) D Alive(s),
Walking p(a, s) = Walking(Result{a, 5)),
Aliveg(a, 8) = Alive(Resuit(a, s)),
Loadedg(a, s) = Loaded(Result(a, s)),
{Walking g, Aitven, Loadedp :
Poss(a, s) A ~Ab{Aspectw aiking. @,5) D
Walkingp(a, s) = Walking(s),
Poss(a, s) A 2 Ab(Aspect glive,a,8) D
Alivegr(a, s) = Alive(s),
Poss(a, s) A ~Ab(Aspectyseded, @, 5) D
Loaded p(a, 5s) = Loaded(s),
Poss(Load, s) O Loaded g(Load, s),
Poss(Shoot, 5) A Loaded(s) D ~Alwer(Shoot, s),
Poss(Shoot, 5) D ~Loaded g(Shoot, s),
Walking(a, 8) O Aliveg(a, 5).
}

When the corresponding formulas were input to
SCAN, it produced 16 clauses in 1.8 seconds. Here again,
we can further eliminate Ab and produce the frame ax-
ioms. For this example, SCAN helped in the automation
of this process even better than in the previous case. For
instance, consider the following clauses among the ones
generated by SCAN:

x=L|Lo(y)| -Poas(x,y)| -Lor(x,y).
Lo(x)| -Poas(y,x)|Alr(y,x)}| -al(x).

1974 TEMPORAL REASONING

In these clauses, L stands for Load, Lo for Loaded and Lor
for Loaded R, Al for Alive and Air for Alive R. Rewriting
the first one as

Poss(a, 8) A a # Load A ~Loaded(s) D
- Loaded(Result(a, s})

makes it clear that this a negative frame axiom for
Loaded. Similarly, the second one can be rewritten as

Poss(a, s) A—Loaded(s) A Alive(s) D Ahve(Result(a, s)),

a positive frame axiom for Alive. Frame axioms of a
similar and easy to comprehend form were generated for
the other fluents also.

In Example 3, SCAN was used to generate the frame
axioms in a similar way.

6 Discussion

In [Giunchiglia et al, 1995], the method for represent-
ing actions from Section 4 is used to define a translation
from the high-level action language .AR to NATs. In
some ways, AR is more expressive than the language
of causal theories from Section 2; for instance, it in-
cludes nonpropositional fluents. In other ways, it is less
expressive—in AR, actions have no parameters, such as
x and y in paint (x, y). The main difference between AR
and the language of causal theories, however, is that the
former has a semantics, based on the notion of a transi-
tion function. The translation from [Giunchiglia et al,
1995] is complete relative to this semantics.

We have presented evidence that this approach to for-
malizing actions leads, in some cases, to the circumscrip-
tions that can be evaluated using the predicate comple-
tion method or the SCAN algorithm. One of these ex-
amples (Example 3) involves a "ternary state constraint"
in the sense of Section 3.1 of [Pinto, 1994] and thus is
not amenable to the methods developed there for the
generation of successor state axioms in the case when all
constraints are binary.

Our plans for the future include the development of
an experimental program that uses SCAN for the com-
pletely automated generation of frame axioms. For this
purpose, the simplification procedure used currently in
SCAN will need to be enhanced.

The set of formulas produced by SCAN is equivalent
to the formula input to SCAN, if the algorithm termi-
nates. Hence, even if we know that a given second-order
formula is equivalent to some first-order formula, there
is no guarantee that SCAN will ever find it. It would be
interesting to isolate classes of action domains for which
it can be proved that SCAN terminates when applied to
the corresponding circumscriptive theory.

Acknowledgements

We would like to thank Enrico Giunchiglia, Fangzhen
Lin, Norman McCain, Ray Reiter and Hudson Turner
for useful discussions on the topic of reasoning about ac-
tions. Special thanks to Thorsten Engel and Hans Juer-
gen Ohlbach for making the implementation of SCAN
available to us. This research was supported in part by
National Science Foundation under grant IRI-9306751.

References

[Baker, 1991] And rew Baker. Nonmonotonic reasoning
in the framework of situation calculus. Atrificial In-
telligence, 49:5-23, 1991.

[Clark, 1978] Keith Clark. Negation as failure. In Herve
Gallaire and Jack Minker, editors, Logic and Data
Bases, pages 293-322. Plenum Press, New York, 1978.

[Gabbay and Ohlbach, 1992] Dov Gabbay and Hans J.
Ohlbach. Quantifier elimination in second-order pred-
icate logic. In Bernhard Nebel, Charles Rich, and
William Swartout, editors, Proc. of the Third Intl
Conf. on Principles of Knowledge Representation and
Reasoning, 1992.

[Gelfond and Lifschitz, 1993]
Michael Gelfond and Vladimir Lifschitz. Represent-
ing action and change by logic programs. Journal of
Logic Programming, 17:301-322, 1993.

[Giunchiglia et al, 1995] Enrico Giunchiglia, G. Nee-
lakantan Kartha, and Vladimir Lifschitz. Actions with
indirect effects (extended abstract). In Working Notes
of the Symposium on Extending Theories of Actions,
1995.

[Hanks and McDermott, 1987] Steve Hanks and Drew
McDermott. Nonmonotonic logic and temporal pro-
jection. Artificial Intelligence, 33(3):379-412, 1987.

[Lifschitz, 1993] Vladimir Lifschitz. Circumscription. In
D.M. Gabbay, C.J. Hogger, and J.A. Robinson, ed-
itors, The Handbook of Logic in Al and Logic Pro-
gramming, volume 3, pages 297-352. Oxford Univer-
sity Press, 1993.

[Lifschitz, 1995] Vladimir Lifschitz. Nested abnormality
theories. Artificial Intelligence, 1995. To appear.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Re-
iter. State constraints revisited. Journal of Logic and
Computation, Special Issue on Actions and Processes,
4(5):655-678, 1994.

[Lin and Shoham, 1991] Fangzhen
Lin and Yoav Shoham. Provably correct theories of
action. In Proc. of the Ninth National Conference of
Artificial Intelligence, pages 349-354, 1991.

[McCarthy and Hayes, 1969]
John McCarthy and Patrick Hayes. Some philosoph-
ical problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463-502. Edinburgh Uni-
versity Press, Edinburgh, 1969.

[McCarthy, 1980] John McCarthy. Circumscription—a
form of non-monotonic reasoning. Artificial Intelli-
gence, 13(1-2):27-39, 1980.

[McCarthy, 1986] John McCarthy. Applications of cir-
cumscription to formalizing common sense knowledge.
Artificial Intelligence, 28(1):89-116, 1986.

[Pinto, 1994] Javier A. Pinto. Temporal reasoning in the
situation calculus. Ph. D. thesis, University of Toronto
(available as Technical Report KRR-TR-94-1), 1994.

[Winslett, 1988] Marianne Winslett. Reasoning about
action using a possible models approach. In Proc. of

AAAI-88, pages 89-93, 1988.

KARTHA AND LIFSCHITZ

1975

