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Abstract

Ever since STRIPS was first introduced (Fikes
and Nilsson [3]), its logical semantics has been
problematic. There have been many proposals
in the literature (e.g. Lifschitz [4], Erol, Nau
and Subrahmanian [2], Bacchus and Yang [I]).
These all have in common a reliance on meta-
theoretic operations on logical theories to cap-
ture the add and delete lists of STRIPS oper-
ators, but it has never been clear exactly what
these operations correspond to declaratively,
especially when they are applied to logically in-
complete theories. In this paper we provide a
semantics for STRIPS-like systems in terms of
a purely declarative situation calculus axiom-
atization for actions and their effects. On our
view, STRIPS is a mechanism for computing
the progression (Lin and Reiter [6], Pednault
[8]) of an initial situation calculus database un-
der the effects of an action. We illustrate this
idea by describing two different STRIPS mech-
anisms, and proving their correctness with re-
spect to their situation calculus specifications.

1 Preliminaries

The language £ of the situation calculus is first-order,
many-sorted, with sorts state for situations, action for
actions, and object for everything else. It has the fol-
lowing domain independent predicates and functions:
a constant Sy of sort stete denoting the initial state;
a binary function do(a,s) denoting the state resulting
from performing the action a in the state s; a binary
predicate Poss(e,s) meaning that the action a is pos-
sible (executable) in state s; and a binary predicate
<: state x state. s < s’ means that s’ can be reached
from s by a sequence of executable actions. We assume
a finite number of state independent predicates with ar-
ity abject™, n > 0, a finite number of state independent
functions with arity object™ — object, n > 0, and a finite
number of fluents which are predicate symbols of arity
object™ x state, n > 0. We denote by £* the second-order
extension of £. Our foundational axioms for the situa-
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tion calculus will be in £? {Lin and Reiter [7]}, because
we need induction on situations (Reiter [12]).

Often, we must restrict the situation calculus to a par-
ticular situation. For instance, the initial database is a
finite set of sentences in £ that do not mention any state
terms except Sy, and do not mention Poss and <. For
this purpose, for any state term st, we define £, to be
the subset of £ that does not mention any other state
terms except st, does not quantify over state variables,
and does not mention Poss or <.

We use £%, to denote the second-order extension of
L4 by predicate variables of arity object™, n > 0. So
the second-order sentence (3Ip)(Vz).p(z} = F(z,Sy) is
in L’%ﬂ, but (Ap)(Vx)(3Is).p(x,s) = F(z, So) is not, since
the latter quantifies over a predicate variable of arity
object x state.

Qur situation calculus theory of actions, 7, will have
the form (cf. Reiter [13] and Lin and Reiter 7)) D =
ZUD,, UD U Dupa U Dg,, where

¢ T is the set of foundational axioms for the situation
calculus {Lin and Reiter {6]). These play no role in
the current paper, so we omit them.

e D, is a set of successor state axioms, one for each
fluent F(&,s), of the form:

Poss(a, 8) D [F(Z,dola, 8)) = ®p(F, 4, s)],

where ® (7, a,s) is in £,. Successor state axioms
embody a solution to the frame problem, as de-
scribed in Reiter [11].

® D,, is a set of action precondition axioms, one for
each action A(f), of the form:

Poss(A(T), 8) = ¥ a(T, 5),

where W4 (%, 5) is in £,.
¢ D... is the set of unique names axioms for actions:

for any two different actions A(Z) and A’(§) we have
A(T) # A' (), and for any action A(Z), we have!

AZ) =A@ DT =17

e Dg,, the initinl database, is a finite set of first-order
sentences in Lg,.

'In what follows, £ = ¢ is an abbreviation for »; = y; A
- AT = Yn-
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Example 1.1 The following blocks world will provide a
running example for this paper:

Actions

e move(r,y,z): Move the block z from block y onto
block z, provided both x and z are clear and block
z i3 on top of block y.

s move fromiable(z,y): Move the block z from the
table onto block y, provided z is clear and on the
table, and block y is clear.

» movetotable(x,y): Move block x from block ¥ onto
the table, provided z is clear and z is on y.

Fluents

» clear(z,s): Block x has no other blocks on top of
it, in state s.

o on{x,y,s): Block z is on (touching) block y, in state
s.

o ontable(xz,s): Block x is on the table, in state s.

This setting can be axiomatized as follows:

Action Precondition Axioms
Poss(move(z,y, ), 5) = clear(x, s) A clear(z,s) A
on(Z, ¥, 8) AT FYAT #F 2 Ay #z,
Poss(move fromtabdle(z,y), s) = clear(z,s) A
clear(y, s) A ontable(z,s) A x # vy,
Poss(movetotable(z, y), s) = clear(z,3) Aon(z,y,s)
AT £ y.
Successor State Axioms
Poss(a, s} O [clear(x,do{a,s)) =
(3y,z)a = move(y, x, z) V (Ty, z)a = move(z,y,2) V

(Fy)a = movetotable(z, y) V (3y)a = movetotable(y,z) v

(Fy)a = move fromtable(z,y) V
clear(z, s) A =(3y, z)a = move(y, z,2) A
=(3y}a = move fromtable(y, z)),

Poss{a, s) D [on(x,y,do(a, s)) =
(3z)a = move(x,z,y) V a = move fromtable{z,y) Vv
on{x,y, s) A a # movetotable(z,y) A
—(3z)a = move(z, y, 2}],
Poss(a,s) D
[ontable(z, do(a, 3)) = (3y)a = movetotable(z, y) Vv
ontable(z, 3) A =(3y)a = move fromiable(z,y)].

The central concept of {Lin and Reiter [6]) is this:
Imagine performing an action a in an initial database
Ds,. Let S, denote the resulting situation do{c, Sp).
Imagine a database, Dg_, which can act as a new initial
database in the sense that

1. Dg, is a set of sentences about state S, only, i.e.,
in Lgs, orin £% .

2. For all queries about the future of S,, D is equiva-
lent (in a suitable formal sense) to ZUD,, UD,, U
Dyna UPs,,.

In other words, Dgs,_ acts like the new initial database
with respect to all possible future evolutions of the the-
ory following o. Dg, is said to be a progression of Dg,
with respect to action «. To define progression formally,
Lin and Reiter first introduce an equivalence relation
over structures. Let M and M’ be structures for £?
with the same domains for sorts action and object. De-
fine M’ ~5_ M iff the following two conditions hold:
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1. M’ and M interpret all predicate and function sym-
bols which do not take any arguments of sort state
identically.

2. M and M’ agree on all fluents at S,: For every
fluent F, and every variable assignment ¢,

M' o = F(Z,dola, S)) iff M,o k= F(Z,do(a, So)).

If M' ~g, M, then M’ agrees with M on S, on fluents
and state independent predicates and functions, but is
free to vary its interpretation of everything else on all
other states, In particular, they can interpret Poss and
do differently.

Definition 1.1 A set of sentences Ds, in £} is @ pro-
gression of the initial database Dg, to S, (with respect
to D) iff for any structure M, M is a model of Dg, ff
there is a model M’ of D such that M ~5, M’

Notice that the new database is defined only up to log-
ical equivalence. The new database is allowed to contain
second-order sentences because, as shown in (Lin and
Reiter {6]), progression is not always first order defin-
able, but Dg, can always be captured by a set of second
order sentences. However, Lin and Reiter specify some
important special cases, which we shall exploit in this
paper, for which progression is first order definable.

Our intuition about the semantics of STRIPS opera-
tors is that they are mechantsms for progressing situation
calculus databases. This is the central idea of this paper,
which is devoted to making this intuition precise.

2 STRIPS

Following Lifschitz ({4]), define an operator description
to be a triple (P, D, A), where P is a sentence of a first
order language LsTgrrps and D (the delete list) and A
(the add list) are sets of sentences of Lsrr;ps. A world
description W is any set of sentences of Lsrrips. A
STRIPS system consists of:

1. A world description Wy, called the initial world de-
scription,

2. A binary relation b C 2557RIPS x LorRIPS,”

3. A set Op of symbols called operators, and

4. A family of operator descriptions
{(Pm Dm Aa)}aEOp-

With each operator « is associated a world description
W, the successor world deseription of Wy, defined by
Wo = (Wy — Dy) U As. A successor world description
W, is admassible iff Wy © P,.

Sometimes, but not always, > will be the standard en-
tailment relation for the first order language LsTrips.
In this case, admissibility simply corresponds to the fact
that the precondition P, is entailed by the initial world
description Wy, in which case, on the standard view of
STRIPS, the operator a is applicable. However, our in-
tuitions about STRIPS are not standard, and we prefer
to leave open the interpretation of the “entailment” re-
lation b>.

In his treatment of STRIPS, Lifschitz does not provide
for the relation .



Our semantics for STRIPS systems is indirect; we de-
fine certain classes of theories in the situation calculus
and show how to associate suitable STRIPS systems with
those theories. Only STRIPS systems associated with
such situation calculus theories will, on our account of
STRIPS, be assigned a semantics. This leaves many
STRIPS systems (namely those without an associated
situation calculus theory) without a semantics; we are
not very distressed by this, given that STRIPS systems,
in their full generality, do not currently have coherent
semantics anyway.

3 Two Versions of STRIPS

The STRIPS systems we derive apply only to a restricted
class of situation calculus action theories for which the
successor state axioms have a particular syntactic form,
which we now define. A successor state axiom is context
free iff it has the form:

Poss(a,8) O [F(f,do(a,s)) =
B Na = A (D) v -V (BF™)a = 4, (™) v
F(Z,8) A~(3F0)a = By (A - A
~(3 M )a = B, (7).
(1)
Here the A's and B's are function symbols of sort action,
not necessarily distinct from one another. The E and
ff are sequences of distinct variables which include all
of the variables of x\ the remaining variables of the £
and n are those being existentially quantified by the v
and w, respectively, x could be the empty sequence.’
The successor state axioms of our running blocks world
example are context free. The following successor state
axiom is not context free:

Poss(a, s) D {ontable(z, dola, 5}) = a = putontable(r) v
ontable(z) A a 3 tiptable A a # mckup(rx)).

This is because the action tiptable does not have a: as a
parameter.

The STRIPS systems which we shall characterize will
be for languages L? whose only function symbols of sort
object are constants. Therefore, consider a ground action
term a, and the context free successor state axiom (1)
for fluent F, relativized to the initial state S,- How
does a affect the truth value of fluent F in the successor
state do(a, Sy)? By the unique names axioms for actions,
together with the assumption that the successor state
axioms are context free, this relativized axiom will be
logically equivalent to a sentence of the form:

Poss(a, Sp) O )
[F(Z, do(a,Sp)) = &= XD v.-..vi=XMmy
F(B,So)ANEZVOA AT £ Y]

Here the X and ¥ are tuples of constants of £? obtained
from those mentioned by the ground action term a. If we

3Notice that this is a slightly more restricted deﬁ_nition
for context free successor state axioms than that of (Lin afnd
Reiter [6]). Specifically, we did not require that each action
term A.(€') and B;(7"?) mention all of the variables of #

in the variables £} and 70).

assume further that the action a is possible in the initial
state, 1.e. that D |= Poss(a, Sp), this is equivalent to:

F(Z,do(a,So) = =XMv..vi=Xmy @)
F(@,8)AT#£ YDA AT # Y,
Example 3.1 Consider Example
1.1 under the “generic” ground action move(X,Y, Z).
The corresponding instances of (2) for the fluents clear,
on and ontable are logically equivalent to:
clear{z,do(move(X,Y, Z), Sp)) =
z=Yvz=XVdear(z,So) Az # Z,
on(z,y,do(move(X,Y, Z),Sp)) =
z=XAy=Zvon(z,y,So)A-jx=Xny=Y],
ontable(x, do(move(X,Y, Z), Sp)) = ontable(z, Sp).
For the generic ground actions move fromtable(X,Y)
and movetotable(X,Y) we obtain:
clear(z,do(move fromiable(X,Y), Sp)) =
z=X Vdear(z,S)Arz #Y,
on(z,y, do{move fromiable(X YY), Sp)) =
r=XAy=Y Von(z,y, Sp),
ontable(x, do(move fromiable(X,Y), Sg)) =
ontable(x, Sg) Az # X,
clear(x, do(mouvetotable(X,Y)}, Sp)) =
r=XVz=Y Vvcdear(z, Sp),
on(z,y, do(movetotable(X,Y), Sp)) =
on(zr,y,So)A-[z=XAy=Y],
ontable(z, do(movetotable(X,Y), Sp)) =
= X Vontable(z, Sg).

OCF-STRIPS: Open World, Context
Free STRIPS
QOur point of departure is an action theory D = TUuD, U
Dap U Dyna U Dg,, with the following properties:
1. The only function symbols of sort object that the
second order language £* possesses are constants.?
2. Each state dependent sentence of Dg, is a ground
fluent literal, i.e. of the form F(C, S5) or ~F(C, So)
for fluent. F and constants C of sort object.

3. Dg, contains unigue names azoms for constants of
sort objeet: For each pair of distinct constant names
C and C’ of sort object, the axiom C # C’.

4. Dg, contains no pair of complementary literals.
5. Each successor state axiom of D, is context free.
6. We are progressing with respect to «a, a ground ac-
tion term, and « is possible initially:
D | Poss(a, Sp)-
7. For each fluent F, the following consistency condi-
tion (Reiter [11]) is satisfied:
Dop U Duna = —(37, a,5). Poss(a, s} A
-+ o — -
Ye(%F.a,8) Avp(Z,a,8),
where F''s successor state axiom has the form
Poss(a,s) D |F(Z,dofa,s)) = (4)
'r;(:r':', a,8) V F(£,s) A g (&, a,s8))

3.1

(3)

4Recall that £2? is the language in which D is expressed.
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The consistency condition (3) deserves a brief expla-
nation. Following Pednault [9] and Schubert [14], Reiter
[I1] provides a solution to the frame problem in the ab-
sence of state constraints which syntactically transforms
a pair of effect axioms for a given fluent F into a succes-
sor state axiom for F. The effect axioms are assumed to
have the syntactic forms:

Pass(a, s) A YE(T,a,5) D F(f,do(a, 5)),
and
Poss(a, s) A vp (£, a,8) D ~F (£, do(a, 5)).

Reiter applies the explanation closure idea of Schubert
[14] to obtain the following frame axioms for F:

Poss(a,s) A —F(Z,s) A F(&,do(a, 5)) D v£ (%, a, s),

Poss(a, ) A F(E,5) A ~F(£,do(a, s)) 2 vp(T,a,s9).

The successor state axiom (4) is logically equivalent to
the conjunction of the above four sentences, whenever
the consistency condition (3) holds. Notice that the
consistency condition makes good sense: If it were vi-
olated, so that for some XAS we have Pos$(AS),
4 (X, A, 8), and v=(X,A,S), then we could derive an
immediate inconsistency from the above two effect ax-
ioms.

It is easy (but tedious) to verify that each fluent of
Example 1.1 satisfies the consistency condition.

In keeping with our intuition that STRIPS systems are
mechanisms for progressing situation calculus databases,
we want now to characterize the result of progressing
Dsy under the effects of the ground action a in the case
of action theories of the above kind. This turns out to
be easy, since the necessary work has already been done
(Lin and Reiter [6), Section 6).

Let S be the following set of sentences:

1. Initialize S to {{p € Ds, | @ is state independent}.

2. For each fluent F do (with reference to the instance
(2) of F's successor state axiom):

(a) Add to S the sentence F(X), do(a, Sp)), & =
[,...,m.

(b) For each ground instanceJF(é,So} € Dg, add
to S the sentence F(C,dola,Sg)), whenever
C is a tuple of constants different from each
?(‘), i =1,...,n. (Here, we invoke the unique
names axioms for constants of sort object).

(c) Add to S the sentence —-F(?[‘},do(a,Su)), i=
[,...,n.

(d) For each ground instance =F(C,S) € Dg,
add to S the sentence —F (&, do(a, So))l, when-
ever C is a tuple of constants different from
each X” =1,...,m. (We again invoke the
unique names axioms for constants of sort ob-
ject) .

The resulting set S enjoys the property that SU Vna
is a progression of Ds, under action @ (Lin and Reiter
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[6], Theorem 4).° Moreover, the state dependent sen-
tences of S are all ground literals, and the results of Lin
and Reiter [6] guarantee that S contains no pair of com-
plementary literals. It follows that S can serve as a new
initial database for the purposes of iterating the above
progression mechanism.

Now we interpret the above construction of the set S
as a STRIPS operator. Imagine suppressing the state
argument So of all the ground literals of Dsp « Now ask
what sequence of deletions and additions of ground lit-
erals must be performed on the state-suppressed version
of Dsy in order to obtain the state-suppressed version of
S (i.e. 5 with the state argument do(a, So) suppressed
in its sentences). The deletions and additions necessary
to achieve this state-suppressed transformation of Dsy
to S will define the delete and add lists for the STRIPS
operator a.

It is easy to see that the following deletions and addi-
tions, when applied to Dy, the state-suppressed version
of Dsy, yields the state-suppressed version of $:

For each fluent F do (with reference to the instance (2)
of F's successor state axiom):

1. Delete from Do the sentences HF(.)-(.(‘}), S
[,...,m.

2. Delete from Dg the sentences F[?{‘)), t=1,...,1n
3. Add to D, the sentences F(X0)) i=1,...,m.
4. Add to D, the sentences ~F(Y®) i =1,... n.

It is now clear how to define a STRIPS system and its
associated operator for a:°

1. The language L STRIPS is the state-suppressed ver-
sion of £2.7
2. The initial world description is Dy.

3. [» is ordinary logical entailment; for a world de-
seription W and sentence ¢ € Lgrrips, W b o iff
Wikeo.

4. a's precondition is the state-suppressed version of
the right hand side of the equivalence in a's situa-
tion calculus action precondition axiom.

5. For each fluent F, include in a's add and delete lists
those literals specified above for obtaining the state
suppressed version of S.

To our knowledge, OCF-STRIPS is the only variant
of STRIPS which specifically provides for an incomplete
database of ground literals, and which is provably correct
with respect to a logical specification.

Example 3.2 Continuing with our blocks world exam-
ple, we can "read off" the OCF-STRIPS operator schema
for move from the instances of the successor state axioms
given in Example 3.1:

®The consistency condition (3) was inadvertently omitted
from the assumptions underlying Theorem 4 of Lin and Reiter
[6].

®See Section 2 for the relevant definitions.

"We take it as self evident what is meant formally by the
language obtained by suppressing objects of sort state from
the language L2



move(X,Y, Z)®

P: clear(X) A clear(Z) non(X,Y) A
X£ZAXAYAY % Z.
D: —clear(Y), ~cear(X), clear(Z),
-on(X, Z},on(X,Y).
A: clear(Y), clear(X), ~clear(Z),
on(X,Z),-on(X,Y).

The operator description schemas for move fromtable
and movetotable are obtained in the same way:

move fromtable(X,Y)
P: clear(X) A clear(Y)} Aontable(X)A X #Y.
D: ~elear(X), mon(X,Y), onteble(X), clear(V).
A: clear(X),on(X,Y}, ~ontable( X ), ~clear(Y).
movetotable(X,Y)
P:elear(X)Aon(X, YIAX #Y.
D: —clear(X}, -clear(V), on(X,Y), —ontable( X ).
A: clear(X),clear(Y), ~on{X,Y ), ontable( X).

3.2 RCF-STRIPS: Relational, Context
Free STRIPS
This verston of STRIPS derives from action theories

of the form D = X U D, UDpp U Dype U Ds,, with the
following properties:

1. The only function symbols of sort object that the
second order language £% possesses are constants

2. Dg, contains one sentence of the following form, for
each fluent F:

FES)=i=CYv..vi=C", (5

where the (V) are tuples of constant symbols of sort
object. These are the only state dependent sentences
of Ds,. {Initial databases of this form are special
cases of the relatively complete databases defined in
(Lin and Reiter [6]}.) The case n = 0 is permitted,
in which case this axiom is F(Z, Sy) = false. For
example, if an agent’s hand is initially empty:

holding(z, Sp) = false.

If initially, block A is on B, D ison 4, C is on F,
and no other block is on a block:

Oﬂ(m‘, Yy, SO) =

r=AAy=Bvr=DAy=Avz=Cay=FE

3. Ds, contains unique names azioms for constants of
sort object.

4. Each successor state axiom of D, is context free.
5. We are progressing with respect to a, a ground ac-
tion term, and o is possible initially:
D = Poss(t, So).

Notice that the single sentence (5) is logically equivalent
to:
F(EM, Sp),..., F(C™, S), (6)

8Notice that these are schemas, standing for the family
of operators obtained by instantiating the “variables” X,Y
and Z of the schema by constants of our situation calculus
language.

F£CH A AZ#E O™ > ~F(F5,). (7)
Notice also that, given all the positive instances (6) of F,
we can trivially determine the sentence (7). So it is suf-
ficient to represent a database of this form (say for com-
putational purposes) by the set of all positive instances
of F. This, we claim, is what some versions of STRIPS
do (but suppressing the state argument). This is also
what relational databases do; in fact, the unique names
assumption together with the condition (5) on Dg, are
the defining properties for a relational datebase (Reiter
[10]). The relational tables are just the ground instances
of the fluents F. (But bear in mind that logically, the
database consists of the table for F, together with the
axtom (7) and unique names axioms.)

As we did in the previous section, we want now to
characterize the result of progressing Dg, under the ef-
fects of the ground action @ in the case of action theories
of the above kind. To do so, we appeal to the results in
(Lin and Reiter [6], Section 5). Consider the context
free successor state axiom (2) for fluent F which we rel-
ativized to the initial state Sp. By our assumption (5)
on the syntactic form of Dg,, (2) is equivalent to:

F(&,do(a,Sp)) =F=XWv..vi=Xmvy
[Z=CVv. . vE=COAZ# VO A AZ£Y)

Let G, ... G be all the C*) that are different tuples
than all of the ¥*), Then, by unique names axioms for
constant symbols of sort object, the above sentence will
be logically equivalent to

F(Z,do{a,Sp)) ==XV v..vi=Xmv
2=CWv...vg=30,
Let & be the following set of sentences:
1. Initialize S to {¢ € Dg, | ¢ is state independent}.
2. For each fluent F do: Add the sentence (8) to &.

The resulting set & enjoys the property that S U Dyn, i8
a progression of Dg, under action o (Lin and Reiter [6],
Theorem 3). Moreover, & has the same syntactic form
as Dg,, and so can serve as a new initial database for the
purposes of iterating the above progression mechanism.

Now we interpret the above construction of the set S
as a STRIPS operator. Imagine representing the state
dependent sentences

F(E S)=2=Clv...vi=_CM (9)

by the state-suppressed relational database of ground
instances F(CM), ..., F(C™)). We emphasize that this
representation is merely a shorthand for the sentence
{9). Now ask what sequence of deletions and additions
of ground literals must be performed on Dy, the state-
suppressed reiational database version of Dg, in order to
obtain the state-suppressed relational version of 8. The
deletions and additions necessary to achieve this trans-
formation of Dy to the corresponding representation of
S will define the delete and add lists for the STRIPS
operator a.

It is easy to see that the following deletions and ad-
ditions, when applied to Dy, yield the state-suppressed,
relational database representation of &:

For each fluent F do (with reference to (2)):

(8)
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1. Delete from Dy the sentences F(Y{¥), i =1,...,n.

2. Add to D, the sentences F(X®),i=1,...,m.

It is now clear how to define a STRIPS system and its
associated operator for a:®

1. The language LsTrips is the state-suppressed ver-
sion of £2.

2. The initial world description is Dp.

3. For a sentence o € Lorprps, W Do iff R(W) Fo.
Here, W is a world description in relational database
form for all its fluents, i.e. the only sentences in
W that mention a fluent are ground atoms of that
fluent. R(W) is the translation of the relational
database part of W to its full logical form as follows:
R(W) consists of the sentences of W that do not
mention a fluent, together with those sentences of
the form

F(:E')E;E'zé'(l)v...vfzé(ﬂ)

where F(C), ..., F(C™)) are all the ground in-
stances of a fluent ¥ in W.

4. a’s precondition is the state-suppressed version of
the right hand side of the equivalence in a's situa-
tion calculus action precondition axiom.

5. For each fluent F', include in a’s add and delete lists
those literals specified above for obtaining the state
suppressed relational database representation of S.

Example 3.3 Consider the same actions, fluents and
axioms as in Example 1.1, except treat this setting now
as an instance of an RCF-STRIPS situation calculus
specification. In this case, as before, we can “read off”
the RCF-STRIPS operator schema for move from the
instances of the successor state axioms of Example 3.1:

move(X, Y, 2)
P: dear(X) A clear(Z) Aon(X,Y) A
X#FZAXZFZYAY #2Z.
D: clear(Z),on(X.,Y).
A: clear(Y),clear{X),on(X, Z).
The operator description schemas for move fromiable
and movetotable are obtained in the same way:

move fromtable(X,Y)
P: clear(X) A clear(Y) A ontable(X) A X # Y.

D: clear(Y), ontable(X).

A: cdear(X),on{X,Y).
movetotable(X |V}

P:clear(X)Aon(X, Y} AX #Y.

D: on(X,Y).

A: clear(X),clear(Y),ontable(X).

4 Pednault’s ADL

The only prior literature similar to our progression se-
mantics for STRIPS-like systems is by Pednault ({9], [8]).
Like us, Pednault relates a STRIPS database to the ini-
tial state of a situation calculus axiomatization. But

¥See Section 2 for the relevant definitions.

2006 TEMPORAL REASONING

our interpretation of such a database, namely as a state-
suppressed situation calculus theory, distinguishes our
approach from Pednault's, in which these databases are
first order structures. So for Pednault, STRIPS is a map-
ping from first order structures to first order structures,
where this mapping is defined by the addition and dele-
tion of tuples applied to the relations of the structure.
ADL, Pednault's generalization of STRIPS, is just such
a mapping between structures. For us, as for Lifschitz
[4], STRIPS is a mapping from first order theories to
(possibly second order) theories, where this mapping is
effected by add and delete lists of sentences applied to
the theory. The problem with the ADL view on STRIPS
is that it does not provide a feasible mechanism for ap-
plying a STRIPS operator in the case that the database
is a logically incomplete theory (e.g. OCF-STRIPS of
Section 3.1). For in such a case, every model of this
theory must be mapped by an ADL operator into its
transformed structure, and it is the set of all such trans-
formed structures which represents the effect of the ADL
operator. When there are infinitely many such models,
or even when they are finite in number but numerous,
ADL becomes an unattractive STRIPS mechanism. In
contrast, our focus is on STRIPS mechanisms that oper-
ate on logical theories, and hence operate on the single
sentential representations of these many models.

5 Conclusions

1. On our view STRIPS is a mechanism for progress-
ing a situation calculus theory, and its semantics can
best be understood with reference to a suitable sit-
uation calculus axiomatization of actions and their
effects.

2. With this notion of progression in hand, it becomes
possible to formulate various STRIPS-like systems,
and prove their correctness with respect to our pro-
gression semantics. In this paper we have done just
that for two different STRIPS systems (OCF and
RCF-STRIPS). In this connection OCF-STRIPS is
of particular interest because it provides for a (lim-
ited) form of logical incompleteness of the database.

3. Notice that it is a completely mechanical process
to obtain the OCF-STRIPS operators from a situa-
tion calculus axiomatization of some domain. Simi-
larly for RCF-STRIPS. In other words, these purely
declarative situation calculus specifications can be
compiled into appropriate STRIPS systems.

4. The connection of RCF-STRIPS to relational
databases (Section 3.2) suggests a natural gener-
alization of STRIPS operators to allow for arbi-
trary relational algebra operators (not just adds and
deletes) in defining the operator's effects. This can
indeed be done, and an appropriate semantics de-
fined in terms of a situation calculus axiomatization
that relaxes the context free restriction on successor
state axioms of Section 3.2 (Lin and Reiter [5]: the
full version of this paper).

5. We have considered only STRIPS systems that com-
pute the full result of progression. Sometimes, for



instance for computational purposes, it may be bet-
ter to compute only that part of the progression that
is relevant to the goals of interest. For example, if
our blocks world includes a fluent for the colors of
blocks, then there are no need to progress this fluent
if our goals have nothing to do with colors.

Formally, we say that a given STRIPS system is
sound with respect to a consistent action theory
P = EuDssUP,s,U Vyna U Vs iff: For any fi-
nite (including empty) sequence 6 of operators in
the STRIPS system, there is a corresponding finite
sequence T of action in the situation calculus such
that if the world description W, after performing
6 on W, is admissible, then T is executable in Sy
and Dt |= Th(W,), where D+ is the result of sup-
pressing states in the progression of Ds, to Sy, and
Th(W,) = {®).

Generally, ifa STRIPS system is sound with respect
to an action theory, then any goal that is achievable
in the STRIPS system is also achievable in the ac-
tion theory. However, the converse is not, true in
general. We say a STRIPS system is adequate for a
given goal if the converse is true, i.e. whenever the
goal is achievable in the situation calculus theory
by a sequence of actions, it is also achievable by a
sequence of operators in the STRIPS system.

With these definitions in hand, we can show (Lin
and Reiter [5]: the full version of this paper) that,
with respect to a suitable action theory, the main
example STRIPS system considered in (Fikes and
Nilsson [3]) is both sound, and adequate for the
class of goals considered there. This is of interest
because it shows that our semantics is sophisticated
enough to handle the concepts of non-literal and/or
non-essential formulas considered in Lifschitz's (4]
analysis of this same example.
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