Reasoning about actions: Non-deterministic effects, Constraints,

and

Qualification

Chitta

Baral

Department of Computer Science

University of Texas at El Paso

El Paso, Texas 79968,

chitta@cs.utep.edu,

915-747-6952/5030

Abstract

In this paper we propose the language of 'state
specifications' to uniformly specify effect of ac-
tions, executability condition of actions, and
dynamic and static constraints. This language
allow? us to be able to express effects of ac-
tion and constraints with same first order rep-
resentation but different intuitive behavior to
be specified differently. We then discuss how
we can use state specifications to extend the
action description languages A and Lo.

1 Introduction and Motivation

In this paper we consider several aspects of reasoning
about actions: effects (direct, indirect, nondeterministic)
of actions, qualification and executability of actions, con-
straints and their manifestations as ramifications and/or
qualification, and propose a language that facilitates rep-
resenting and reasoning about all of the above in a uni-
form manner.

We follow the notation of situation calculus [McCarthy
and Hayes, 1969] and have three different sets of symbols,
called fluents, actions, and situations, respectively. For
example, in the statement "Shooting causes the turkey to
be dead if the gun was loaded", shoot is an action, dead
and Joaded are fluents, the initial situation is denoted
by so. and the situation after the shoot is performed is
denoted by res(shoot,s;)). The state corresponding to a
particular situation is represented by the set of fluents
true in that situation.

Consider the action "shoot". It is impossible to perform
this action if the agent does not have a gun. 1 will re-
fer to the condition of having a gun as an executability
condition for the action "shoot". Now let us reconsider
the statement "Shooting causes the turkey to be dead
if the gun was loaded". Here, the condition of the gun
being loaded is a precondition for the fluent "dead" to
hold in the situation obtained after performing the ac-
tion "shoot". In the literature related to frame problems
[Brown, 1987] both type of conditions are sometimes con-
sidered as part of the qualification problem. In the plan-
ning literature [Allen et a/., 1990] the second kind of
conditions and the corresponding effects are referred to

U.S.A.
http://cs.utep.edu/chitta/chitta.html
(voicel/fax)

as conditional effects. To avoid confusion we will refer
to them as "executability condition of an action" and
"preconditions of effects" respectively. In other words
the condition of having a gun is an executability con-
dition for the action "shoot" while the condition of the
gun being loaded is a precondition of the effect of having
the turkey dead when the action "shoot" is performed.

We consider two kinds of constraints: dynamic and
static. In this paper we only consider one-step dynamic
constraints which are general statements that are true
about adjacent situations. For example, the statement
that "The salary of a person does not decrease by per-
forming an action" is a dynamic constraint that says the
salary of a person in a situation S is always less than
or equal to the salary of the person in the situation ob-
tained by performing an action in S. The statement “No
action can make a dead person alive" is another example
of an one-step dynamic constraint.

Static constraints are statements about the world that
is true in all situations. For example, the statement that
"a person can not be at two different places at the same
time" is a static constraint.

Now consider the action moveto B. The effect of this ac-
tion is to make the fluent at.B true. Now suppose that
before the action was executed "at_A" was true, i.e. the
agent was at the position A. Not only "at_B" would be
true after executing "moveto_B", but also the constraint.
"a person can not be at two different places at the same
time" will dictate that "at_A" be false in the resulting
situation. We could explicitly state this as an effect of
the action "moveto_B". But there might be several dif-
ferent positions in our world, and also there might be
several different actions (fly_to_B, drive_to_B, jump_to_B
etc.) which have similar interaction with the constraint.
A better approach would be state it as a constraint (i.e.
not to state it explicitly for all those actions), and have a
mechanism that considers the ramification of a directly
specified effect due to the constraints. This is referred
to as ramification in the literature.

It. was pointed out in [Lin and Reiter, 1994] that some
constraints, instead of causing ramifications, affect the
executability of an action. Moreover, sometimes these
constraints are indistinguishable (in a first order repre-
sentation) from the constraints that cause ramifications.

BARAL 2017

For example, consider the action of "marry_B", with the
effect "married_to_B" and the constraint that "a per-
son can not be married to two different persons at the
same time". Now suppose "married_to_A" is true in a
particular situation 5. Intuitively, we would like the ac-
tion "marry-B" to be in-executable in situation S, rather
than have a ramification of the action "marry_ B" that
makes "married_to_A" false.

One of the goal of this paper is to propose a language
which distinguishes between the above two constraints.

Now let us consider the effect of actions in the absence
of any preconditions, executability conditions and con-
straints. Let S and S' be statesand let us represent the
effect of an action a by a formula E,. Let us also repre-
sent the set of possible states that may be reached after
an action a is performed in a situation with state S be
Res{a,S). Using Winsletts'definition [Winslett, 1989]:

Definition 1 S’ € Res(a, S) if

(a) S' satisfies E, and

(b) There is no other state S" that satisfies E, and that
is closer to S than 5', where closer is defined using sym-
metric difference,

/8" ;. §” satisfies E, and (87 \ S)U (S \ 8"} c
S" \SYU(S\).

In terms of the theory of "updates" [Katsuno and
Mendelzon, 1992], Res{a,S) can be defined as S' £
Res(a, 5) iff S’ is a model of S 0o E,. When the update
operator o is defined in terms of symmetric difference
then this definition coincides with Winslett's definition.

Now let us consider the action of tossing a coin. Intu-
itively, the effect of this action is either "head" or "tail"
(not both) regardless of which of the fluents were true
before the coin was spun. But if we represent this ef-
fect as Epss = (head A -> tail) V (tail A - head) and
use Winslett's definition or the update operator o de-
fined in terms of symmetric difference, then we have
the problem that if the coin was "head" before per-
forming "toss" then it stays "head" after performing
"toss" and similarly if it was "tail" before perform-
ing "toss" then it stays "tail" after performing "toss".
This has also been pointed out in [Crawford, 1994;
Brewka and Hertzberg, 1993; Kartha and Lifschitz, 1994;
Pinto, February 1994; Sandewall, 1992]. Representing,
Ewss — head V tail, does not help either.

Let us now consider a different action "paint" whose ef-
fect is to paint a block "red" or "blue". But this time
the robot is smart and minimizes its job when it realizes
that the block is already either "red " or "blue". Here,
Epoint = (red A -* blue) V (blue A - red) is adequate
when we use Winslett's definition.

Consider the action of "spinning" a coin on a chess
board. Let us consider the fluents "black” and "white"
which mean that the coin touches a black square and
the coin touches a white square respectively. Intuitively,
after the coin is spun the fluent "black", "white" or both
could be true in the resultant situation regardless of what

2018 TEMPORAL REASONING

was true before. But the only way to represent Egyin the
effect of spinning the coin, in first order logic is through
the formula Egi, = black V white, or its equivalent.

Here, we again get unintuitive result if we use Winslett's
definition. Moreover, since E;ss and Epny are equiva-
lent in their propositional representation, any approach
that does not specify the differences in their intended
meaning will be wrong with respect to one of them.

When we examine our formalization we observe that
there are two aspects to it. (i) We use classical logic
to represent effects of actions, (ii) We use a fixed defini-
tion of "closeness" based on symmetric difference. To
distinguish between "toss" and "paint" we have two
choices: (a) to use a more expressive language to rep-
resent Enos and Epsine and/or (b) to use different defi-
nition of "closeness" for "toss" and "paint", i.e. we use
different update operators for "toss" and "paint".

Kartha and Lifschitz [Kartha and Lifschitz, 1994] and
Sandewall [Sandewall, 1992] follow the second approach
by allowing specification of when inertia of a fluent
{w.r.t. an action) is not preserved. (This results in dif-
ferent update operators.)

In this paper we propose to use the first approach of using
a more expressive language (than first order logic) to
represent effects of actions.

Now let us go back to representing constraints and the
resultant ramification and/or qualification. (For simplic-
ity we stay with the assumptions that we do not have
preconditions and executability conditions.) In presence
of constraints C, Res(a,S), the set of situations that can
be possible when a is executed in situation S, is usually
[Kartha and Lifschitz, 1994] defined as

Definition 2 S' E Res{aS) if
(@') S' satisfies E, U C, and

(b') There is no other state 5" that satisfies E,UC and
that is closer to 5 than S', where closer is defined using
symmetric difference,

re. AS” . 8" satisfies £, UC and (8" \S)uU(S5\S") C
('\S)U(S\ S5}

Now let us reconsider the constraints "a person can not
be at two different places at the same time", and "a per-
son can not be married to two different people at the
same time". These two constraints when expressed in
first order logic are equivalent. But as discussed before
they have different intended meanings, the first causes
ramification while the second adds qualification condi-
tions. Here also instead of using different update oper-
ators for different constraints we propose to use a more
expressive language to represent constraints. Moreover,
the condition (a1) suggests that we use the same language
to represent effects of actions and constraints. This is
one of the main theses of our paper.

In this paper we propose a language to express (i) ef-
fects of actions with their preconditions, (ii) executabil-
ity conditions of actions, and (iii) constraints, such that
the drawbacks of using first order logic (FOL) to express
them (as described in this section) is avoided.

Before we go on to introduce the syntax and semantics
of the language of "state specifications" for specifying
effects of actions and constraints, we briefly discuss dis-
junctive logic programs. We later give the semantics of
"state specifications" through translations to disjunctive
logic programs.

2 Background: Logic Programming
Preliminaries

A disjunctive logic program’ is a collection of rules of
the form

Lov ... V5L~ Ligg,...,Lipynot Ly, ... 0ot L,
(1)
where L;'s are literals. When L;'s are only atoms we
refer to the program as a normal disjunctive program.
When m — n and L;'s are only atoms, we refer to the
program as a positive disjunctive logic program.
Definition 3 [Gelfond, 1994] The answer set of a dis-
junctive logic program Il not containing not is the
smallest (in a sense of set-theoretic inclusion) subset S

of Lit, the set of all literals, such that

(1) for any rule Ly VvV ... V Ly — Leg1,..., L il
Lk+1,....Lm ES, then Sﬁ{Lg,,Lk}-}-"@

{n) if 5 contains a pair of complementary literals, then
S = Lit.

The set of answer sets of a program |l that does not
contain negation as failure is denoted by a(ll). i

It should be noted that for positive disjunctive logic pro-
gram (all L;s are atoms, and the program does not con-
tain not), the answer sets correspond to the minimal
Herbrand models.

Definition 4 [Gelfond, 1994] Let Il be a disjunctive
logic program without variables. For any set S of lit-
erals, let 11° be the logic program obtained from Il by
deleting

(i) each rule that has a formula not

L£S and

(ii) all formulas of the form not
remaining rules.

L in its body with
L in the bodies of the

Clearly, |1° does not contain not , so that then a(lFf)
is already defined in Definition 3. If S E a(ll®), then
we say that S is an answer set of II. 0

2.1 Notational Convenience

In this paper we consider a disjunctive logic program to
be of a set of rules of the form (1), where L., L
are a conjunction of literals. The answer sets of such
programs are defined exactly as in Definition 3 and Def-
inition 4, except that (i) in Definition 3 is replaced by
the following:

for any rule Ly VvV ... V Ly — Liy1. -Im if
Lig1,-..,Lm € S, then there exist i, 0 < i < k, such
that all conjuncts in L; are in S.

' Although we use the answer set semantics [Gelfond and
Lifschitz, 1991; Gelfond, 1994], we use the symbol V instead
of or. Our connective V is not the classical disjunction.

3 State Specifications

For an action a, to specify its effect E,, we need to make
statements about the state reached after 'a' is performed
(we refer to this state as the updated state w.r.t. 'a').
To integrate preconditions and executability conditions
of 'a' we also need to consider the state where 'a'is to
be performed (we refer to this state as initial state w.r.t.
'a). While to represent static constraints we only need
to refer to the updated states of actions, to be able to
represent dynamic constraints we need to able to refer
to both initial states and updated states of actions.

To be able to express the truth and falsity of fluents
in the initial states and updated states of actions we
use four special operators "in", "out", "was_in" and
"was_out". For any fluent /, the intuitive meaning of
in(f) is that / is true in the updated state. The intu-
itive meaning of was_in(f) is that / is true in the initial
state. Similarly the meaning of out(f) is that the flu-
ent / is false in the updated state, and the meaning of
was-out(f) is that the fluent / is false in the initial state.

A state specification is a set of rules of the form

in(bo) v ... V in(b) V out{e) V ... V out(c)
—in(dp),...,in(dm}, out(eg}, ..., out(enj
was_in(fo), ..., was_in(fp),
was_out(ge), . . ., was_oul(g,)

where, k, I, m, n, p and q could be 0.
Intuitively, the rule

in(p) <— in(q),out(s),was-in(t),was-out(u)

w.r.t an action a means that if t is true and u is false
in the initial state then if g is true and s is false in the

updated state then p must also be true in the updated
state.

3.1 Using state specifications

For every action a, we have a corresponding state speci-
fication P, that specifies (i) the effect of a together with
the preconditions, and (ii) the executability conditions
of action a. We refer P, as the "update specification" of
the action a.

For example, for the action "shoot", the update specifi-
cation Pgnoot is as follows:

out(alive) — was.in{loaded) p
-— was_aut(has_gun) shoot

Similarly, the update specifications for the actions
"toss", "spin", and "paint" can be given as follows:

in(head) V tn{tail) «—
out(head) — in(tail) } Pross
out(tail) — in(head)

in(white) V in(black) <—
out(white) V in{white) <— in(black) Pain
out{black) V in(black) <- in(white)

BARAL 2019

in(red) V in(blue) — P
— in(red), in(blue) paint

An effect of an action “buy” where we can either buy a
‘candy’ or an ‘ice-cream’ is represented by

in{candy) V in(ice_cream) — } Py,

The difference between Pyyy and Ppgin¢ is due to the fact
that if we have a candy and we buy an ice-cream we have
both candy and ice-cream. On the other hand if we have
the color as blue and we paint it red the resultant color
15 only red.

The set of constraints C is also a state specification.
In the absence of constrainte to reason aboul the exe-
cutability and the effects of an action a we only need
to consider ita update specification F,. But in the pres-
ence of the constraints & we need to consider the state
specification P, UC.

The one-step dynamic constraint “No action can make
a dead person alive” can be represented by the specifi-
cation:

+~ in{alive), was_in{dead)

In presence of concurrent actions {Lin and Shoham, 1992,
Baral and Gelfond, 1993] @, and a; such that they do
not interact, the update specification of {a;,az} can be
given by:

P‘lﬂi.ﬂn} = Pﬂl UPda'

But when a; and a; interact it 18 more complex to de-
termine the executability and effects of {a;,az}. We will
further discuss this in Section 6.1.

3.2 Semantics of State Specifications

We now define Res(a, S), the set of states that may be
reached by performing action a in a situation correspond-
ing to state S, when the effects and constraints are given
as a state specification P.

Our definition of Res(a, S) when effects and constraints
are represented by state specifications will be a fixpoint
definition similar to the fixpoint definition® of McCain
and Turner [McCain and Turner, 1995), and is based
on translating state specifications to disjunctive logic
programs.3

Algorithm 3.1 Translating State Specifications

INPUT - s: state, P: state specification, a: action

*McCain and Turner [McCain and Turner, 1995] show
that the definition of Res{a,S) in Definition 2 is equivalent
to Res(a,8) = {8 :8'={L:LeCn((SNnSYUE.UC)}}].

3Turner conjectures that our semantics is equivalent to
a semantics that can be obtained by directly extending the
definition of P-justified revision in [Marek and Truszczysski,
1994c; Baral, August 1994]. Nevertheless, we consider our
characterization to be more intuitive.

2020 TEMPORAL REASONING

OUTPUT- D, p, :
Step 1. Imitial Database

a disjunctive logic program

For any fluent f if f is true in the state 8 then the pro-
gram contains holds(f,8) ~

else the program contains
—~holds(f, s) —

Step 2. Inertia Rule
(2.1) holds(F,res(a, s)) «~ holds(F, &), not ab(F,a, s)
(2.2) ~holds(F,res(a, 8)) — —holds(F, s), not ab(F, a, s)

These rules are motivated by the minimality considera-
tion that only changes that happens to the imitial knowl-
edge base are the ones dictated by the revision apecifi-
cation.

Step §. Translating the updale rules

Each revision rule of the type (2) in the state specifica-
tion P is translated to the rule

(holds(by, res{a,s)) A ab(bg, a,8)) V... V
(holds(by,res(a,5)) A ab(br,a,5)) v
(—holds(co, res{a, s)) A ablep,a,8)) V ... V
(~holds(ecy, res(a, 8)) A ab(cy, a, 8))

— holds(dp, res(a, s)), ..., holds{dn, res(a, 5)),
~holds(eg, res(a, 5)), . .., ~holds{(en, res(a, s}),
holds(fo,s), ..., holds(f,. 5)),

—holds(go, 5),...,~holds(g,, 5)

Definition 5 Let S be a state and P be a state spec-
ification corresponding to action a. Let Dgp, be the
translation of S and P to a disjunctive logic program
abtained by Algorithm 3.1.

If Ais a consistent answer set of D, p, then S' = {f :
holds(f,res(a,s)) € A} € Res(a,).

If Res(a,S) is an empty set we then say that a is not
executable in the situations whose state is S,

The definition of executability of an action in a state S in
Definition 5 allows us Lo specify executability conditions,
effect of actions and constraints in a single framework.

4 Examples

Proposition 1 Consider the action “toss”, its update
specification F,,, and § = {h}. (For convenience we
use ‘h’ for head and ‘t’ for ‘tail’.)

Res(loss, S) = {{h}, {1}} o

Proof(sketch)

Let I, be the program obtained using Algorithm 3.1.
It 15 easy to show that II; has the two anawer sets
{holds(h, 8), ~holds(t, 8), holds(h, res(toss, 5)),

ab(h, toss, 8}, ~holds(t, res(ioss, 8)), ab(t,t0ss, 5)} and
{holds(h, 8}, ~holds(i, s}, holds(t, res(toss, s)},
ab(1,10s5, 8), ~holds(h,res(toss, 8)), ab(h, toss, 8)}.

The above two answer sets corresponds to the states {h}
and {t} Hence, Res(toss, S) = {{h}.{t}}. o

Proposition 2 Consider the action “spin’, its update
specification Ppin and § = {w}. (For convenience we
use ‘w’ for white and ‘b’ for ‘black’.)

Res(toss, S) = {{w}, {b},{w, b}}]

Example 1 It is easy to see that for the action ‘paint’
with the effect specified by Ppgine in Section 3.1,
Res(paint, {blue}) = {{blue}}, Res(paint, {red}) =
{{red}}, and Res(paint, {}) = {{red}, {biue}}.

On the other hand for the action ‘buy’ with the effect
specified by Py, in Section 3.1,

Res(buy, {candy}} = {{candy}, {candy, ice_cream}},
Res(buy, {ice_cream}) =
{{ice_cream}, {candy, ice_cream}}, and

Res(buy, {}) = {{candy}, {ice_cream}}. m]

Example 2 Consider the the action “shoot” in YSP
[Hanks and McDermott, 1987) and the update specifi-
cation Piaoo:.

Consider 51 = {has_gun, loaded, alive},
Sz = {has_gun,alive}, and 53 = {loaded, alive).

Res(shoot, Sy) = {{has_gun, loaded}}

Res(shoot, S3) = {{has_gun, alive}}

Moreover, Res(shoot,53) = {}, implying that shoot is
not executable in a situation whose state is Sy. o
Example 3 Let us consider the constraint (', which
says “a person can not be at two different places at the

same time”, the action “moveto B”, and let us assume
that our world consist of only iwo places, A and B4,

The update specification of “moveto B”, denoted by
Pmoveto_ﬁ iS giVE‘n by

in(at.B) —
The constraint C; is denoted by the following state spec-
ification

out(at_A) — in{at_B)
out(at_B) — in(at_A)

It is easy to see that Res(movelo.B,{ai_4}) =

{{at_B}}.

Now let us consider the constraint Cy which says that
“a person can not be married to two different persons
at the same time”. the action “marry B", and let us
assume that our world consist of only two marriageable
persons, A and B.

The update specification of “marry.B”, denoted by
Prrarry_p 18 given by

in(married_to_B) —

The constraint C; is denoted by the following state spec-
ification

— in{married_to_B), in(married_to.A)

It is easy 1o see that Res(marry.B, {married_to_A}) =
{}, implying that the action marry-B is not executable
in a situation whose state is {married_lo_A}. o

‘We generalize this in section 5.1 when we use variables.

5 Further Extensions

5.1 Extending State Specifications:
variables, evaluable predicates

Consider the one-step dynamic constraint which says
that the salary of a person does not decrease by perform-
ing an action. This can be represented as an extended
state specification that allows variables and evaluable
predicates {<,<,>,>,=,#), in the following way:

— in(salary(P, X)), was_in{salary(P, X')), X < X'

It is straight forward to characterize the semantics of
extended state specifications. We first instantiate the
variables in the extended state specifications. We then
evaluate the evaluable predicates in the body of the rules
and throw away the rules whose body has an evaluable
predicate that evaluates to false, and only consider the
rest ofthe rules with the evaluable predicates eliminated.
This gives us a state specification whose semantics is
defined in Definition 5.

5.2 Extending A and Ly

The language A was introduced by Gelfond and Lifschitz
in [Gelfond and Lifschitz, 1992], to express actions and
their effects. It was later extended to L, [Baral et al,
1994] to include actual situations and to AR [Kartha
and Lifschitz, 1994] to include static constraints.

In A, LO and AR., effects of actions were specified
through propositions of the following two forms

IPT'I"U_1 m+1|-'-l_'Pﬂ!
A causes -Fif P, ... o

When using update specifications to express effects and
preconditions of actions, propositions of the above form
are translated to rules of the following two forms respec-
tively.

Acauses Iif Py, ...

1Pﬂ'h-‘ mets---

in(F) — was_in(P),...,wasan(Pp),

was_out{Pmt1), ..., was.oul(Fy),
out(F) « was_in(Py), ..., was.in(Pp),
was.oul(Pmyy), . .., was.oul{Py)

respectively, and added to the update specification of A.

The languages A and Co can be extended by having ef-
fects and preconditions of actions being represented by
updated specifications. Moreover, the translations of A
[Lifschitz and Turner, 1994] and L, to disjunctive logic
programs can be easily adapted to the proposed exten-
sions by following Algorithm 3.1 to translate the update
specifications of actions.

In AR static constraints® are represented as first order
theories. Our proposal is to represent constraints us-
ing state specifications. To translate a domain descrip-
tion description in the resulting language to a disjunctive
logic program we use Algorithm 3.1 w.r.t. every action a
and the corresponding state specification P,UC, where,
P, is the update specification of a, and C is the con-
straint.

AR does not allow representation of dynamic constraints.

BARAL 2021

6 Future Work

Some of the questions that need to be answered are:

1. How expressive is the language of state specifications?
Can an arbitrary first order theory be expressed using
state specifications?

From the fact that any logic program can be represented
as a state specification [Marek and Truszczyriski, 1994al],
and from the expressibility of logic programs, the answer
is yes. But an efficient algorithm that can translate a
first order theory to a state specification still need to be
developed. One result that may help is in [Kosheleva
and Kreinovich, 1992], where Kosheleva and Kreinovich
propose an algorithm to syntactically translate a first-
order theory to a logic program.

2. How easy is to express something using "State Spec-
ifications"?

The answer is "as easy as specifying something using
disjunctive logic programs”. This is clear from the defi-
nition of Res(a,S) which uses a straight forward trans-
lation from state specifications to disjunctive logic pro-
grams.

Some researchers have expressed concern about the in-
tuitiveness of the language of disjunctive logic program-
ming vis-a-vis first order logic. We believe that one rea-
son fisrt-order logic is more intuitive to most of us is
because we are more familiar with it. It is quite possible
that as we become more familiar with disjunctive logic
programming it will appear more intuitive.

Also, why should we expect first-order logic to be the
language for all our needs? In deductive databases, logic
programming is the language of choice. The similarity
between 'deductive databases' and 'reasoning about ac-
tions' is amazing and will be discussed in a future paper.

6.1 Effects of Concurrent Actions

In [Baral and Gelfond, 1993], Baral and Gelfond ex-
tend the language A to allow concurrent actions. Let
us consider the execution of actions a and 6, with cor-
responding update specifications P, and P, If a and 6
are completely independent of each other then the ef-
fect of executing a and b concurrently can be given by

P{a,b) = P,UP,.

But in general actions executed concurrently are not al-
ways independent of each other. In that case, one way
would be to explicitly specify the effect of each possi-
ble sets of actions. This leads to a frame problem in
another direction. In [Baral and Gelfond, 1993], Baral
and Gelfond suggest that a compound action (a set of
actions executed concurrently) normally inherits the ef-
fects of its subactions. Using their method the effect of
executing actions a and 6 concurrently is reasoned by
inheriting from P, and P,, effects that do not contra-
dict with P{a,b}, if any. But this approach is weak when
effects are represented by state specifications.

Consider, P, — ({in(c) *—,in(d) <— s'n(e)},

P,= {in(e)<-,in (f) <--in(c)},

2022 TEMPORAL REASONING

and Ppyt = {in(g) <--,out(e) <-}.

Intuitively, the effect of executing {a, b}, can be obtained
by (i) inheriting the effects of executing a and 6 indepen-
dently which do not contradict with P{,;), (ii) and the
effects specified by P\,b}- This dictates that in the state
obtained after executing {a,b}, c,/, and g must be true
and e must be false. In this report we leave open the
problem of formalizing this.

7 Conclusion

This paper builds on the efforts in [Marek and
Truszczyriski, 1994c; 1994b; Baral and Gelfond, 1993].
Marek and Truszczynski introduce the language of "re-
vision programs"6 and use it to represent complex effects
of actions, such as the action of "reorganizing" a depart-
ment whose effect is given as "If John is in the depart-
ment then peter must not be there", with a non-classical
interpretation of "If ... then ..." implying that "John is
preferred over Peter". In [Baral, August 1994], Baral
shows how to translate "revision programs" to extended
logic programs and introduces was_in and wash_out, in
the body of rules.

In this paper we introduce the language of state spec-
ifications and show that this language is not only able
to represent complex effects, but also, non-deterministic
effects of actions, executability conditions of actions, pre-
conditions of different effect of actions, and dynamic and
static constraints. Moreover, it allows distinct represen-
tations of different non-deterministic effects, and differ-
ent constraints that have same representation in first or-
der theory (See the discussion on "paint" and "toss", and
"marry" and "move" in Section 1.). We then show how
to incorporate state specifications to action description
languages like A and Lo, and how to implement state
specifications through a translation to disjunctive logic
programs’.

Recently, McCain and Turner[McCain and Turner, 1995]
propose using inference rules for representing constraints
so as to distinguish between constraints that, cause ram-
ification, and that add to the qualification. Unlike their
approach we are able to express both dynamic (one-step)
and static constraints, and non-deterministic effects in a
single language. Moreover, one of the fundamental thesis
of our approach is that effects, and executability condi-
tions of actions be expressed in the same language as the
constraints.

One of our main future goal is to study impact of using
state specifications with other action theories. In par-
ticular we would like to formalize effects of concurrent
actions when the effects are given as state specifications.

Revision programs are state specifications, with the fol-
lowing restrictions: (a) No was in and was-out, (b) No dis-
junctions in the head of rules, and (c) No rules with empty
heads.

7Currently, there exists some systems that can compute
the answer sets of disjunctive logic programs.

8 Acknowledgment

I would like to thank Hudson Turner and the referees for
their insightful comments. Research in this paper was
supported by NSF grants NSF-IRI-92-11-662 and NSF-
CDA 90-15-006.

References

[Allen et ai, 1990] J. Allen, J. Hendler, and A. Tate, ed-
itors. Readings tn planning. Morgan Kaufmann, CA,
USA, 1990.

[Baral and Gelfond, 1993] C. Baral and M. Gelfond.
Representing concurrent actions in extended logic pro-
gramming. In Proc. of 13th International Joint Con-
ference on Atrtificial Intelligence, Chambery, France,
pages 866-871, 1993. A substantially extended and
revised version is to appear in Bertram Fronhofer,
editor, Theoretical Approaches to Dynamic Worlds.

[Baral et a/., 1994] C. Baral,
M. Gelfond, and A. Provetti. Representing Actions 1:
Laws, Observations and Hypothesis. Technical report,
Dept of Computer Science, University of Texas at El
Paso, 1994 (also in 1995 AAA1 Spring Symposium).

[Baral, August 1994] C. Baral. Rule based updates on
simple knowledge bases. In Proc. of AAAI94. Seattle,
pages 136-141, August 1994.

[Brewka and Hertzberg, 1993]
G. Brewka and J. Hertzberg. How to do things with
worlds: on formalizing actions and plans. Journal of
Logic and Computation, 3(5):517--532, 1993.

[Brown, 1987] F. Brown, editor. Proceedings of the 1987
workshop on The Frame Problem tn Al. Morgan Kauf-
mann, CA, USA, 1987.

[Crawford, 1994] J. Crawford. Three issues in action. In
Presented in the workshop on Non-monotonic reason-
ing, 1994.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lif-
schitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing,
pages 365-387, 1991.

[Gelfond and Lifschitz, 1992] M. Gelfond and V. Lifs-
chitz. Representing actions in extended logic pro-
grams. In Joint International Conference and Sym-
posium on Logic Programming., pages 559-573, 1992.

[Gelfond, 1994] M. Gelfond. Logic programming and

reasoning with incomplete information. Annals of
Mathematics and Artificial Intelligence, 12:19-116,
1994.

[Hanks and McDermott, 1987] S. Hanks and D. McDer-
mott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379 412, 1987.

[Kartha and Lifschitz, 1994] G. Kartha and V. Lifs-
chitz. Actions with indirect effects (preliminary re-
port). In KR 94, pages 341-350, 1994.

[Katsuno and Mendelzon, 1992] H. Katsuno and
A. Mendelzon. On the difference between updating
a knowledge base and revising it. In Proc. of KR 92,
pages 387-394,1992.

[Kosheleva and Kreinovich, 1992] K. Kosheleva and
K. Kreinovich. Any theory expressible in first order
logic extended by transitive closure can be represented
by a logic program, 1992. manuscript.

[Lifschitz and Turner, 1994] V. Lifschitz and H. Turner.
From disjunctive programs to abduction. In prepara-
tion, 1994.

[Lin and Reiter, 1994] F. Lin and R. Reiter. State con-
straints revisited. Journal of Logic and Computation,
4(5):655-678, October 1994.

[Lin and Shoham, 1992] F. Lin and Y. Shoham. Con-
current actions in the situation calculus. In Proc. of
AAAl 92, pages 590-595, 1992.

[Marek and Truszczynski, 1994a]
W. Marek and M. Truszczynski.
ming, manuscript, 1994.

[Marek and Truszczyriski, 1994b]
W. Marek and M. Truszczyriski. Revision program-
ming, database updates and integrity constraints. In
To appear in 5th International conference in Database
theory, Prague, 1994,

[Marek and Truszczyriski, 1994c]
W. Marek and M. Truszczyriski. Revision specifica-
tions by means of programs, manuscript, 1994.

[McCain and Turner, 19951 M. McCain and M. Turner.
A causal theory of ramifications and qualifications. I1J-
CAl 95.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes.
Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 4, pages 463
502. Edinburgh University Press, Edinburgh, 1969.

[Pinto, February 1994] J. Pinto. Temporal Reasoning
in the Situation Calculus. PhD thesis, University of
Toronto, Department of Computer Science, February
1994. KRR TR-94-1.

[Sandewall, 1992] E. Sandewall. Features and fluents: A
systematic approach to the representation of knowl-
edge about dynamical systems. Technical report,
Institutionen for datavetenskap, Universitetet och
Tekniska hogskolan i Linkoping, Sweeden, 1992.

[Winslett, 1989] M. Winslett. Reasoning about action
using a possible models approach. In Proc. of 7th na-
tional conference on Al, pages 89-93, 1989.

Revision program-

BARAL 2023

