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Abstract 
In this paper we propose the language of 'state 
specif ications' to un i formly specify effect of ac­
t ions, executabi l i ty condit ion of actions, and 
dynamic and stat ic constraints. This language 
allow? us to be able to express effects of ac­
t ion and constraints w i th same first order rep­
resentation but different in tu i t ive behavior to 
be specified differently. We then discuss how 
we can use state specifications to extend the 
act ion descript ion languages A and Lo. 

1 Introduction and Motivation 
In this paper we consider several aspects of reasoning 
about actions: effects (direct, indirect, nondeterminist ic) 
of actions, qual i f icat ion and executabi l i ty of actions, con­
straints and their manifestat ions as ramifications and/or 
qual i f icat ion, and propose a language that facil itates rep­
resenting and reasoning about all of the above in a uni­
form manner. 

We fol low the nota t ion of s i tuat ion calculus [McCarthy 
and Hayes, 1969] and have three different sets of symbols, 
called fluents, actions, and situations, respectively. For 
example, in the statement "Shooting causes the turkey to 
be dead if the gun was loaded", shoot is an action, dead 
and loaded are fluents, the in i t ia l s i tuat ion is denoted 
by so. and the s i tuat ion after the shoot is performed is 
denoted by res(shoot,s0). The state corresponding to a 
par t icu lar s i tuat ion is represented by the set of fluents 
t rue in tha t s i tua t ion . 

Consider the act ion "shoot" . I t is impossible to perform 
this act ion if the agent does not have a gun. 1 wi l l re­
fer to the condi t ion of having a gun as an executability 
condi t ion for the act ion "shoot" . Now let us reconsider 
the statement "Shoot ing causes the turkey to be dead 
if the gun was loaded" . Here, the condit ion of the gun 
being loaded is a precondition for the fluent "dead" to 
hold in the s i tuat ion obtained after performing the ac­
t ion "shoot " . In the l i terature related to frame problems 
[Brown, 1987] bo th type of condit ions are sometimes con­
sidered as par t of the qualification problem. In the plan­
ning l i te ra ture [Al len et a/., 1990] the second kind of 
condit ions and the corresponding effects are referred to 

as conditional effects. To avoid confusion we wi l l refer 
to them as "executabi l i ty condi t ion of an act ion" and 
"preconditions of effects" respectively. In other words 
the condit ion of having a gun is an executabi l i ty con­
di t ion for the action "shoot" while the condi t ion of the 
gun being loaded is a precondit ion of the effect of having 
the turkey dead when the action "shoot" is performed. 

We consider two kinds of constraints: dynamic and 
static. In this paper we only consider one-step dynamic 
constraints which are general statements t ha t are t rue 
about adjacent situations. For example, the statement 
that "The salary of a person does not decrease by per­
forming an act ion" is a dynamic constraint tha t says the 
salary of a person in a s i tuat ion S is always less than 
or equal to the salary of the person in the s i tuat ion ob­
tained by performing an action in S. The statement u No 
action can make a dead person al ive" is another example 
of an one-step dynamic constraint. 

Static constraints are statements about the wor ld tha t 
is true in all situations. For example, the statement tha t 
"a person can not be at two different places at the same 
t ime" is a static constraint. 

Now consider the action moveto_B. The effect of this ac­
t ion is to make the fluent a t .B true. Now suppose that 
before the action was executed "at_A" was true, i.e. the 
agent was at the posit ion A. Not only "at_B" would be 
true after executing "moveto_B", but also the constraint. 
"a person can not be at two different places at the same 
t ime" wi l l dictate that "at_A" be false in the result ing 
s i tuat ion. We could expl ic i t ly state this as an effect of 
the action "moveto_B". But there might be several dif­
ferent positions in our wor ld , and also there m igh t be 
several different actions (fly_to_B, drive_to_B, jump_to_B 
etc.) which have simi lar interaction w i th the constraint. 
A better approach would be state it as a constraint (i.e. 
not to state it expl ic i t ly for al l those actions), and have a 
mechanism that considers the ramif icat ion of a direct ly 
specified effect due to the constraints. Th is is referred 
to as ramification in the l i terature. 

It. was pointed out in [Lin and Reiter, 1994] tha t some 
constraints, instead of causing ramif icat ions, affect the 
executabil i ty of an act ion. Moreover, sometimes these 
constraints are indist inguishable ( in a first order repre­
sentation) f rom the constraints that cause ramif icat ions. 
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For example, consider the act ion of "mar ry_B" , w i t h the 
effect "marr ied_to_B" and the constraint tha t "a per­
son can not be marr ied to two different persons at the 
same t i m e " . Now suppose "married_to_A" is true in a 
par t icu lar s i tuat ion 5. In tu i t i ve ly , we would like the ac­
t ion " m a r r y - B " to be in-executable in s i tuat ion S, rather 
than have a rami f ica t ion of the action "marry_B" tha t 
makes "marr ied_to_A" false. 

One of the goal of th is paper is to propose a language 
which distinguishes between the above two constraints. 

Now let us consider the effect of actions in the absence 
of any precondit ions, executabi l i ty condit ions and con­
stra ints. Let S and S' be statesand let us represent the 
effect of an act ion a by a formula Ea. Let us also repre­
sent the set of possible states tha t may be reached after 
an action a is performed in a s i tuat ion w i th state S be 
Res{a,S). Using Wins le t t s 'de f in i t i on [Winslet t , 1989]: 

D e f i n i t i o n 1 S' € Res(a, S) if 

(a) S' satisfies Ea, and 

(b) There is no other state S" that satisfies Ea and that 
is closer to S than 5 ' , where closer is defined using sym­
metr ic difference, 

In terms of the theory of "updates" [Katsuno and 
Mendelzon, 1992], Res{a,S) can be defined as S' £ 
Res(a, 5) iff S' is a model of S o Ea. When the update 
operator o is defined in terms of symmetr ic difference 
then this def in i t ion coincides w i t h Wins let t 's def in i t ion. 

Now let us consider the act ion of tossing a coin. In tu -
i t ively, the effect of th is act ion is either "head" or " t a i l " 
(not both) regardless of which of the f luents were true 
before the coin was spun. Bu t if we represent this ef­
fect as Etoss = (head A -> ta i l ) V ( ta i l A - head) and 
use Wins le t t ' s def in i t ion or the update operator o de­
fined in terms of symmetr ic difference, then we have 
the problem that if the coin was "head" before per­
fo rm ing "toss" then i t stays "head" after per forming 
"toss" and s imi lar ly i f i t was " t a i l " before perform­
ing "toss" then i t stays " t a i l " after per forming "toss". 
Th i s has also been pointed out in [Crawford, 1994; 
Brewka and Hertzberg, 1993; K a r t h a and Lifschitz, 1994; 
P in to , February 1994; Sandewall , 1992]. Representing, 
Etoss — head V ta i l , does not help either. 

Let us now consider a different action "pa in t " whose ef­
fect is to paint a block " red" or "b lue" . But this t ime 
the robot is smar t and minimizes its j ob when it realizes 
tha t the block is already either "red " or "b lue" . Here, 
Epoint = (red A -* blue) V (blue A - red) is adequate 
when we use Wins le t t ' s def in i t ion. 

Consider the act ion of "sp inn ing" a coin on a chess 
board . Let us consider the f luents "black" and "wh i te " 
which mean tha t the coin touches a black square and 
the coin touches a wh i te square respectively. In tu i t ive ly , 
after the coin is spun the f luent "b lack" , "wh i te " or both 
could be true in the resultant s i tuat ion regardless of what 

was t rue before. But the only way to represent Esp in the 
effect of spinning the coin, in f irst order logic is through 
the formula E8pin = black V whi te , or i ts equivalent. 

Here, we again get un in tu i t i ve result if we use Wins le t t ' s 
def in i t ion. Moreover, since E toss and Epaint are equiva-
lent in their proposi t ional representation, any approach 
that does not specify the differences in their intended 
meaning w i l l be wrong w i t h respect to one of t hem. 

When we examine our formal iza t ion we observe tha t 
there are two aspects to i t . ( i) We use classical logic 
to represent effects of actions, ( i i ) We use a fixed defini­
t ion of "closeness" based on symmetr ic difference. To 
dist inguish between "toss" and "pa in t " we have two 
choices: (a) to use a more expressive language to rep­
resent Etoos and Epaint and /o r (b) to use different defi­
n i t ion of "closeness" for "toss" and " p a i n t " , i.e. we use 
different update operators for "toss" and "pa in t " . 

Ka r tha and Lifschitz [Kar tha and Li fschi tz, 1994] and 
Sandewall [Sandewall, 1992] fol low the second approach 
by al lowing specification of when iner t ia of a fluent 
{w.r . t . an action) is not preserved. (Th is results in dif­
ferent update operators.) 

In this paper we propose to use the first approach of using 
a more expressive language ( than first order logic) to 
represent effects of actions. 

Now let us go back to representing constraints and the 
resultant ramif icat ion and /o r qual i f icat ion. (For s impl ic­
i ty we stay w i th the assumptions tha t we do not have 
precondit ions and executabi l i ty condit ions.) In presence 
of constraints C, Res(a,S), the set of s i tuat ions tha t can 
be possible when a is executed in s i tuat ion S, is usually 
[Kar tha and Lifschitz, 1994] defined as 

D e f i n i t i o n 2 S' E Res{a,S) if 

(a1) S' satisfies Ea U C, and 

(b ' ) There is no other state 5" tha t satisfies EaUC and 
that is closer to 5 than S', where closer is defined using 
symmetr ic difference, 

Now let us reconsider the constraints "a person can not 
be at two different places at the same t i m e " , and "a per­
son can not be marr ied to two different people at the 
same t i m e " . These two constraints when expressed in 
first order logic are equivalent. Bu t as discussed before 
they have different intended meanings, the first causes 
rami f icat ion whi le the second adds qual i f icat ion condi­
t ions. Here also instead of using different update oper­
ators for different constraints we propose to use a more 
expressive language to represent constraints. Moreover, 
the condi t ion (a1) suggests tha t we use the same language 
to represent effects of actions and constraints. Th i s is 
one of the m a i n theses of our paper. 

In this paper we propose a language to express ( i ) ef­
fects of actions w i t h their precondit ions, ( i i ) executabi l ­
i ty condit ions of actions, and ( i i i ) constraints, such that 
the drawbacks of using f irst order logic ( F O L ) to express 
them (as described in this section) is avoided. 
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Before we go on to introduce the syntax and semantics 
of the language of "state specifications" for specifying 
effects of actions and constraints, we briefly discuss dis-
junc t ive logic programs. We later give the semantics of 
"state specifications" through translations to disjunctive 
logic programs. 

2 Background: Logic Programming 
Preliminaries 

A disjunct ive logic p rogram 1 is a collection of rules of 
the fo rm 

where L i ' s are l i terals. When L i ' s are only atoms we 
refer to the program as a normal disjunctive program. 
When m — n and L i ' s are only atoms, we refer to the 
program as a posit ive disjunct ive logic program. 
D e f i n i t i o n 3 [Gelfond, 1994] The answer set of a dis­
junc t i ve logic program II not containing not is the 
smallest (in a sense of set-theoretic inclusion) subset S 
of L i t , the set of al l l i terals, such that 

The set of answer sets of a program II that does not 
contain negation as fai lure is denoted by a ( I I ) . □ 

It should be noted that for positive disjunctive logic pro­
gram (al l L is are atoms, and the program does not con­
tain not ), the answer sets correspond to the min imal 
Herbrand models. 

D e f i n i t i o n 4 [Gelfond, 1994] Let II be a disjunctive 
logic program w i thou t variables. For any set S of l i t ­
erals, let I I s be the logic program obtained from II by 
deleting 

( i) each rule tha t has a fo rmu la not L in its body w i th 
L £ S, and 

( i i ) al l formulas of the fo rm not L in the bodies of the 
remain ing rules. 

Clearly, I I s does not contain not , so that then a(IIs) 
is already defined in Def in i t ion 3. If S E a ( I I s ) , then 
we say tha t S is an answer set of I I . □ 
2 . 1 N o t a t i o n a l C o n v e n i e n c e 
In this paper we consider a disjunctive logic program to 
be of a set of rules of the fo rm (1), where L o , .....,Lk 

are a conjunct ion of l i terals. The answer sets of such 
programs are defined exactly as in Defini t ion 3 and Def­
in i t i on 4, except tha t ( i ) in Def in i t ion 3 is replaced by 
the fo l lowing: 

1 Although we use the answer set semantics [Gelfond and 
Lifschitz, 1991; Gelfond, 1994], we use the symbol V instead 
of or. Our connective V is not the classical disjunction. 

3 State Specifications 
For an action a, to specify i ts effect Ea, we need to make 
statements about the state reached after 'a ' is performed 
(we refer to this state as the updated state w.r.t. 'a ' ) . 
To integrate preconditions and executabi l i ty condit ions 
of 'a ' we also need to consider the state where ' a ' is to 
be performed (we refer to this state as initial state w.r.t. 
' a ) . Whi le to represent static constraints we only need 
to refer to the updated states of actions, to be able to 
represent dynamic constraints we need to able to refer 
to both in i t ia l states and updated states of actions. 

To be able to express the t ru th and falsity of fluents 
in the in i t ia l states and updated states of actions we 
use four special operators " i n " , " ou t " , "was_in" and 
"was_out". For any f luent / , the in tu i t ive meaning of 
in(f) is that / is true in the updated state. The in tu ­
i t ive meaning of was_in(f) is tha t / is true in the in i t ia l 
state. Simi lar ly the meaning of out(f) is that the flu­
ent / is false in the updated state, and the meaning of 
was-out(f) is that the fluent / is false in the in i t ia l state. 

A state specification is a set of rules of the fo rm 

(2) 

where, k, l, m, n, p and q could be 0. 

Intui t ively, the rule 

in(p) <— in(q),out(s),was-in(t),was-out(u) 
w.r.t an action a means that if t is true and u is false 
in the in i t ia l state then if q is true and s is false in the 
updated state then p must also be true in the updated 
state. 

3 .1 U s i n g s t a t e s p e c i f i c a t i o n s 
For every action a, we have a corresponding state speci­
fication Pa that specifies (i) the effect of a together w i th 
the preconditions, and ( i i ) the executabi l i ty condit ions 
of action a. We refer Pa as the "update specif icat ion" of 
the action a. 

For example, for the action "shoot" , the update specifi­
cation Pshoot is as follows: 

Similar ly, the update specifications for the actions 
"toss", "sp in" , and "paint" can be given as follows: 

in(white) V in(black) <— 
out(white) V in{white) <— in(black) 
out{black) V in(black) <- in(white) 

Pspin 
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5 F u r t h e r E x t e n s i o n s 

5.1 E x t e n d i n g S t a t e S p e c i f i c a t i o n s : 
v a r i a b l e s , e v a l u a b l e p r e d i c a t e s 

Consider the one-step dynamic constraint which says 
that the salary of a person does not decrease by per form­
ing an action. Th is can be represented as an extended 
state specification that allows variables and evaluable 
predicates , in the fo l lowing way: 

It is straight forward to characterize the semantics of 
extended state specifications. We first instant iate the 
variables in the extended state specifications. We then 
evaluate the evaluable predicates in the body of the rules 
and throw away the rules whose body has an evaluable 
predicate that evaluates to false, and only consider the 
rest of the rules wi th the evaluable predicates e l iminated. 
This gives us a state specification whose semantics is 
defined in Defini t ion 5. 

5.2 E x t e n d i n g A a n d L0 

The language A was introduced by Gelfond and Lifschitz 
in [Gelfond and Lifschitz, 1992], to express actions and 
their effects. It was later extended to L0 [Baral et al, 
1994] to include actual situations and to AR [Kar tha 
and Lifschitz, 1994] to include static constraints. 

In A, L0 and AR., effects of actions were specified 
through propositions of the fol lowing two forms 

When using update specifications to express effects and 
preconditions of actions, proposit ions of the above form 
are translated to rules of the fol lowing two forms respec­
tively. 

respectively, and added to the update specification of A. 

The languages A and Co can be extended by having ef­
fects and preconditions of actions being represented by 
updated specifications. Moreover, the translat ions of A 
[Lifschitz and Turner, 1994] and Lo to disjunctive logic 
programs can be easily adapted to the proposed exten­
sions by fol lowing A lgor i thm 3.1 to translate the update 
specifications of actions. 

In AR static constraints5 are represented as first order 
theories. Our proposal is to represent constraints us­
ing state specifications. To translate a domain descrip­
t ion description in the result ing language to a disjunct ive 
logic program we use A lgo r i t hm 3.1 w.r . t . every action a 
and the corresponding state specification P a U C , where, 
Pa is the update specification of a, and C is the con­
straint. 

5AR does not allow representation of dynamic constraints. 
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6 Future Work 
Some of the questions tha t need to be answered are: 

1. How expressive is the language of state specifications? 
Can an arb i t ra ry first order theory be expressed using 
state specifications? 

From the fact tha t any logic program can be represented 
as a state specif ication [Marek and Truszczyriski, 1994a], 
and f r om the expressibi l i ty of logic programs, the answer 
is yes. But an efficient a lgor i thm that can translate a 
first order theory to a state specification st i l l need to be 
developed. One result tha t may help is in [Kosheleva 
and Kre inov ich, 1992], where Kosheleva and Kreinovich 
propose an a lgor i thm to syntactical ly translate a first-
order theory to a logic program. 

2. How easy is to express something using "State Spec­
i f icat ions"? 

The answer is ''as easy as specifying something using 
dis junct ive logic programs'1 . Th is is clear f rom the defi­
n i t i on of Res(a,S) which uses a straight forward trans­
la t ion f rom state specifications to disjunctive logic pro­
grams. 

Some researchers have expressed concern about the in -
tuit iveness of the language of disjunctive logic program­
m i n g vis-a-vis first order logic. We believe that one rea­
son fisrt-order logic is more in tu i t i ve to most of us is 
because we are more fami l ia r w i th i t . It is quite possible 
tha t as we become more fami l iar w i th disjunctive logic 
p rog ramming i t w i l l appear more in tu i t ive. 

Also, why should we expect first-order logic to be the 
language for al l our needs? In deductive databases, logic 
p rogramming is the language of choice. The s imi la r i ty 
between 'deductive databases' and 'reasoning about ac­
t ions ' is amazing and wi l l be discussed in a future paper. 

6.1 E f f ec t s o f C o n c u r r e n t A c t i o n s 
In [Baral and Gel fond, 1993], Baral and Gelfond ex-
tend the language A to allow concurrent actions. Let 
us consider the execution of actions a and 6, w i th cor­
responding update specifications Pa and Pb If a and 6 
are completely independent of each other then the ef­
fect of executing a and b concurrently can be given by 
P{a,b) = PaUPb. 

Bu t in general actions executed concurrently are not al­
ways independent of each other. In that case, one way 
would be to expl ic i t ly specify the effect of each possi­
ble sets of actions. Th is leads to a frame problem in 
another d i rect ion. In [Baral and Gel fond, 1993], Baral 
and Gel fond suggest tha t a compound action (a set of 
actions executed concurrent ly) normally inheri ts the ef­
fects of i ts subactions. Using their method the effect of 
executing actions a and 6 concurrent ly is reasoned by 
inher i t ing f rom Pa and Pb, effects tha t do not contra­
dict w i t h P{a,b}, i f any. Bu t this approach is weak when 
effects are represented by state specifications. 

Consider, Pa — {in(c) *—,in(d) <— s'n(e)}, 

P b = { in(e)<- , in ( f ) < - - i n ( c ) } , 

and P{a,b} = {in(g) <--,out(e) < - } . 

In tu i t ive ly , the effect of executing { a , b}, can be obtained 
by ( i) inher i t ing the effects of executing a and 6 indepen­
dently which do not contradict w i t h P{a,b), ( i i) and the 
effects specified by P\a,b}- Th is dictates t ha t in the state 
obtained after executing { a , b } , c , / , and g must be t rue 
and e must be false. In this report we leave open the 
problem of formal iz ing th is. 

7 Conclusion 
This paper bui lds on the efforts in [Marek and 
Truszczyriski, 1994c; 1994b; Baral and Gel fond, 1993]. 
Marek and Truszczynski introduce the language of "re­
vision programs" 6 and use it to represent complex effects 
of actions, such as the action of "reorganizing" a depart­
ment whose effect is given as " I f John is in the depart­
ment then peter must not be there" , w i t h a non-classical 
interpretat ion of " I f ... then ..." imp l y i ng that "John is 
preferred over Peter". In [Bara l , August 1994], Baral 
shows how to translate "revision programs" to extended 
logic programs and introduces was_in and wash_out, in 
the body of rules. 

In this paper we introduce the language of state spec­
if ications and show that this language is not only able 
to represent complex effects, but also, non-determinist ic 
effects of actions, executabi l i ty condit ions of actions, pre­
condit ions of different effect of actions, and dynamic and 
static constraints. Moreover, i t allows dist inct represen­
tat ions of different non-determinist ic effects, and differ­
ent constraints tha t have same representation in first or­
der theory (See the discussion on "pa in t " and " toss" , and 
"mar ry " and "move" in Section 1.). We then show how 
to incorporate state specifications to act ion descript ion 
languages like A and L0, and how to implement state 
specifications through a t ranslat ion to dis junct ive logic 
programs7 . 

Recently, McCain and Turner [McCain and Turner , 1995] 
propose using inference rules for representing constraints 
so as to dist inguish between constraints that, cause ram­
i f icat ion, and that add to the qual i f icat ion. Unl ike their 
approach we are able to express bo th dynamic (one-step) 
and static constraints, and non-determinist ic effects in a 
single language. Moreover, one of the fundamenta l thesis 
of our approach is that effects, and executabi l i ty condi­
t ions of actions be expressed in the same language as the 
constraints. 

One of our main fu ture goal is to study impac t of using 
state specifications w i th other act ion theories. In par­
t icular we would like to formal ize effects of concurrent 
actions when the effects are given as state specifications. 

Revision programs are state specifications, with the fol­
lowing restrictions: (a) No was_in and was-out, (b) No dis­
junctions in the head of rules, and (c) No rules wi th empty 
heads. 

7 Currently, there exists some systems that can compute 
the answer sets of disjunctive logic programs. 
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