
Reasoning about actions: Non-deterministic effects, Constraints, and
Qualif ication

C h i t t a B a r a l
D e p a r t m e n t o f C o m p u t e r Sc ience

U n i v e r s i t y o f T e x a s a t E l Paso
E l Paso , T e x a s 79968 , U . S . A .

chitta@cs.utep.edu, http://cs.utep.edu/chitta/chitta.html
9 1 5 - 7 4 7 - 6 9 5 2 / 5 0 3 0 (v o i c e / f a x)

Abstract
In this paper we propose the language of 'state
specif ications' to un i formly specify effect of ac­
t ions, executabi l i ty condit ion of actions, and
dynamic and stat ic constraints. This language
allow? us to be able to express effects of ac­
t ion and constraints w i th same first order rep­
resentation but different in tu i t ive behavior to
be specified differently. We then discuss how
we can use state specifications to extend the
act ion descript ion languages A and Lo.

1 Introduction and Motivation
In this paper we consider several aspects of reasoning
about actions: effects (direct, indirect, nondeterminist ic)
of actions, qual i f icat ion and executabi l i ty of actions, con­
straints and their manifestat ions as ramifications and/or
qual i f icat ion, and propose a language that facil itates rep­
resenting and reasoning about all of the above in a uni­
form manner.

We fol low the nota t ion of s i tuat ion calculus [McCarthy
and Hayes, 1969] and have three different sets of symbols,
called fluents, actions, and situations, respectively. For
example, in the statement "Shooting causes the turkey to
be dead if the gun was loaded", shoot is an action, dead
and loaded are fluents, the in i t ia l s i tuat ion is denoted
by so. and the s i tuat ion after the shoot is performed is
denoted by res(shoot,s0). The state corresponding to a
par t icu lar s i tuat ion is represented by the set of fluents
t rue in tha t s i tua t ion .

Consider the act ion "shoot" . I t is impossible to perform
this act ion if the agent does not have a gun. 1 wi l l re­
fer to the condi t ion of having a gun as an executability
condi t ion for the act ion "shoot" . Now let us reconsider
the statement "Shoot ing causes the turkey to be dead
if the gun was loaded" . Here, the condit ion of the gun
being loaded is a precondition for the fluent "dead" to
hold in the s i tuat ion obtained after performing the ac­
t ion "shoot " . In the l i terature related to frame problems
[Brown, 1987] bo th type of condit ions are sometimes con­
sidered as par t of the qualification problem. In the plan­
ning l i te ra ture [Al len et a/., 1990] the second kind of
condit ions and the corresponding effects are referred to

as conditional effects. To avoid confusion we wi l l refer
to them as "executabi l i ty condi t ion of an act ion" and
"preconditions of effects" respectively. In other words
the condit ion of having a gun is an executabi l i ty con­
di t ion for the action "shoot" while the condi t ion of the
gun being loaded is a precondit ion of the effect of having
the turkey dead when the action "shoot" is performed.

We consider two kinds of constraints: dynamic and
static. In this paper we only consider one-step dynamic
constraints which are general statements t ha t are t rue
about adjacent situations. For example, the statement
that "The salary of a person does not decrease by per­
forming an act ion" is a dynamic constraint tha t says the
salary of a person in a s i tuat ion S is always less than
or equal to the salary of the person in the s i tuat ion ob­
tained by performing an action in S. The statement u No
action can make a dead person al ive" is another example
of an one-step dynamic constraint.

Static constraints are statements about the wor ld tha t
is true in all situations. For example, the statement tha t
"a person can not be at two different places at the same
t ime" is a static constraint.

Now consider the action moveto_B. The effect of this ac­
t ion is to make the fluent a t .B true. Now suppose that
before the action was executed "at_A" was true, i.e. the
agent was at the posit ion A. Not only "at_B" would be
true after executing "moveto_B", but also the constraint.
"a person can not be at two different places at the same
t ime" wi l l dictate that "at_A" be false in the result ing
s i tuat ion. We could expl ic i t ly state this as an effect of
the action "moveto_B". But there might be several dif­
ferent positions in our wor ld , and also there m igh t be
several different actions (fly_to_B, drive_to_B, jump_to_B
etc.) which have simi lar interaction w i th the constraint.
A better approach would be state it as a constraint (i.e.
not to state it expl ic i t ly for al l those actions), and have a
mechanism that considers the ramif icat ion of a direct ly
specified effect due to the constraints. Th is is referred
to as ramification in the l i terature.

It. was pointed out in [Lin and Reiter, 1994] tha t some
constraints, instead of causing ramif icat ions, affect the
executabil i ty of an act ion. Moreover, sometimes these
constraints are indist inguishable (in a first order repre­
sentation) f rom the constraints that cause ramif icat ions.

BARAL 2017

For example, consider the act ion of "mar ry_B" , w i t h the
effect "marr ied_to_B" and the constraint tha t "a per­
son can not be marr ied to two different persons at the
same t i m e " . Now suppose "married_to_A" is true in a
par t icu lar s i tuat ion 5. In tu i t i ve ly , we would like the ac­
t ion " m a r r y - B " to be in-executable in s i tuat ion S, rather
than have a rami f ica t ion of the action "marry_B" tha t
makes "marr ied_to_A" false.

One of the goal of th is paper is to propose a language
which distinguishes between the above two constraints.

Now let us consider the effect of actions in the absence
of any precondit ions, executabi l i ty condit ions and con­
stra ints. Let S and S' be statesand let us represent the
effect of an act ion a by a formula Ea. Let us also repre­
sent the set of possible states tha t may be reached after
an action a is performed in a s i tuat ion w i th state S be
Res{a,S). Using Wins le t t s 'de f in i t i on [Winslet t , 1989]:

D e f i n i t i o n 1 S' € Res(a, S) if

(a) S' satisfies Ea, and

(b) There is no other state S" that satisfies Ea and that
is closer to S than 5 ' , where closer is defined using sym­
metr ic difference,

In terms of the theory of "updates" [Katsuno and
Mendelzon, 1992], Res{a,S) can be defined as S' £
Res(a, 5) iff S' is a model of S o Ea. When the update
operator o is defined in terms of symmetr ic difference
then this def in i t ion coincides w i t h Wins let t 's def in i t ion.

Now let us consider the act ion of tossing a coin. In tu -
i t ively, the effect of th is act ion is either "head" or " t a i l "
(not both) regardless of which of the f luents were true
before the coin was spun. Bu t if we represent this ef­
fect as Etoss = (head A -> ta i l) V (ta i l A - head) and
use Wins le t t ' s def in i t ion or the update operator o de­
fined in terms of symmetr ic difference, then we have
the problem that if the coin was "head" before per­
fo rm ing "toss" then i t stays "head" after per forming
"toss" and s imi lar ly i f i t was " t a i l " before perform­
ing "toss" then i t stays " t a i l " after per forming "toss".
Th i s has also been pointed out in [Crawford, 1994;
Brewka and Hertzberg, 1993; K a r t h a and Lifschitz, 1994;
P in to , February 1994; Sandewall , 1992]. Representing,
Etoss — head V ta i l , does not help either.

Let us now consider a different action "pa in t " whose ef­
fect is to paint a block " red" or "b lue" . But this t ime
the robot is smar t and minimizes its j ob when it realizes
tha t the block is already either "red " or "b lue" . Here,
Epoint = (red A -* blue) V (blue A - red) is adequate
when we use Wins le t t ' s def in i t ion.

Consider the act ion of "sp inn ing" a coin on a chess
board . Let us consider the f luents "black" and "wh i te "
which mean tha t the coin touches a black square and
the coin touches a wh i te square respectively. In tu i t ive ly ,
after the coin is spun the f luent "b lack" , "wh i te " or both
could be true in the resultant s i tuat ion regardless of what

was t rue before. But the only way to represent Esp in the
effect of spinning the coin, in f irst order logic is through
the formula E8pin = black V whi te , or i ts equivalent.

Here, we again get un in tu i t i ve result if we use Wins le t t ' s
def in i t ion. Moreover, since E toss and Epaint are equiva-
lent in their proposi t ional representation, any approach
that does not specify the differences in their intended
meaning w i l l be wrong w i t h respect to one of t hem.

When we examine our formal iza t ion we observe tha t
there are two aspects to i t . (i) We use classical logic
to represent effects of actions, (i i) We use a fixed defini­
t ion of "closeness" based on symmetr ic difference. To
dist inguish between "toss" and "pa in t " we have two
choices: (a) to use a more expressive language to rep­
resent Etoos and Epaint and /o r (b) to use different defi­
n i t ion of "closeness" for "toss" and " p a i n t " , i.e. we use
different update operators for "toss" and "pa in t " .

Ka r tha and Lifschitz [Kar tha and Li fschi tz, 1994] and
Sandewall [Sandewall, 1992] fol low the second approach
by al lowing specification of when iner t ia of a fluent
{w.r . t . an action) is not preserved. (Th is results in dif­
ferent update operators.)

In this paper we propose to use the first approach of using
a more expressive language (than first order logic) to
represent effects of actions.

Now let us go back to representing constraints and the
resultant ramif icat ion and /o r qual i f icat ion. (For s impl ic­
i ty we stay w i th the assumptions tha t we do not have
precondit ions and executabi l i ty condit ions.) In presence
of constraints C, Res(a,S), the set of s i tuat ions tha t can
be possible when a is executed in s i tuat ion S, is usually
[Kar tha and Lifschitz, 1994] defined as

D e f i n i t i o n 2 S' E Res{a,S) if

(a1) S' satisfies Ea U C, and

(b ') There is no other state 5" tha t satisfies EaUC and
that is closer to 5 than S', where closer is defined using
symmetr ic difference,

Now let us reconsider the constraints "a person can not
be at two different places at the same t i m e " , and "a per­
son can not be marr ied to two different people at the
same t i m e " . These two constraints when expressed in
first order logic are equivalent. Bu t as discussed before
they have different intended meanings, the first causes
rami f icat ion whi le the second adds qual i f icat ion condi­
t ions. Here also instead of using different update oper­
ators for different constraints we propose to use a more
expressive language to represent constraints. Moreover,
the condi t ion (a1) suggests tha t we use the same language
to represent effects of actions and constraints. Th i s is
one of the m a i n theses of our paper.

In this paper we propose a language to express (i) ef­
fects of actions w i t h their precondit ions, (i i) executabi l ­
i ty condit ions of actions, and (i i i) constraints, such that
the drawbacks of using f irst order logic (F O L) to express
them (as described in this section) is avoided.

2018 TEMPORAL REASONING

Before we go on to introduce the syntax and semantics
of the language of "state specifications" for specifying
effects of actions and constraints, we briefly discuss dis-
junc t ive logic programs. We later give the semantics of
"state specifications" through translations to disjunctive
logic programs.

2 Background: Logic Programming
Preliminaries

A disjunct ive logic p rogram 1 is a collection of rules of
the fo rm

where L i ' s are l i terals. When L i ' s are only atoms we
refer to the program as a normal disjunctive program.
When m — n and L i ' s are only atoms, we refer to the
program as a posit ive disjunct ive logic program.
D e f i n i t i o n 3 [Gelfond, 1994] The answer set of a dis­
junc t i ve logic program II not containing not is the
smallest (in a sense of set-theoretic inclusion) subset S
of L i t , the set of al l l i terals, such that

The set of answer sets of a program II that does not
contain negation as fai lure is denoted by a (I I) . □

It should be noted that for positive disjunctive logic pro­
gram (al l L is are atoms, and the program does not con­
tain not), the answer sets correspond to the min imal
Herbrand models.

D e f i n i t i o n 4 [Gelfond, 1994] Let II be a disjunctive
logic program w i thou t variables. For any set S of l i t ­
erals, let I I s be the logic program obtained from II by
deleting

(i) each rule tha t has a fo rmu la not L in its body w i th
L £ S, and

(i i) al l formulas of the fo rm not L in the bodies of the
remain ing rules.

Clearly, I I s does not contain not , so that then a(IIs)
is already defined in Def in i t ion 3. If S E a (I I s) , then
we say tha t S is an answer set of I I . □
2 . 1 N o t a t i o n a l C o n v e n i e n c e
In this paper we consider a disjunctive logic program to
be of a set of rules of the fo rm (1), where L o ,,Lk

are a conjunct ion of l i terals. The answer sets of such
programs are defined exactly as in Defini t ion 3 and Def­
in i t i on 4, except tha t (i) in Def in i t ion 3 is replaced by
the fo l lowing:

1 Although we use the answer set semantics [Gelfond and
Lifschitz, 1991; Gelfond, 1994], we use the symbol V instead
of or. Our connective V is not the classical disjunction.

3 State Specifications
For an action a, to specify i ts effect Ea, we need to make
statements about the state reached after 'a ' is performed
(we refer to this state as the updated state w.r.t. 'a ') .
To integrate preconditions and executabi l i ty condit ions
of 'a ' we also need to consider the state where ' a ' is to
be performed (we refer to this state as initial state w.r.t.
' a) . Whi le to represent static constraints we only need
to refer to the updated states of actions, to be able to
represent dynamic constraints we need to able to refer
to both in i t ia l states and updated states of actions.

To be able to express the t ru th and falsity of fluents
in the in i t ia l states and updated states of actions we
use four special operators " i n " , " ou t " , "was_in" and
"was_out". For any f luent / , the in tu i t ive meaning of
in(f) is that / is true in the updated state. The in tu ­
i t ive meaning of was_in(f) is tha t / is true in the in i t ia l
state. Simi lar ly the meaning of out(f) is that the flu­
ent / is false in the updated state, and the meaning of
was-out(f) is that the fluent / is false in the in i t ia l state.

A state specification is a set of rules of the fo rm

(2)

where, k, l, m, n, p and q could be 0.

Intui t ively, the rule

in(p) <— in(q),out(s),was-in(t),was-out(u)
w.r.t an action a means that if t is true and u is false
in the in i t ia l state then if q is true and s is false in the
updated state then p must also be true in the updated
state.

3 .1 U s i n g s t a t e s p e c i f i c a t i o n s
For every action a, we have a corresponding state speci­
fication Pa that specifies (i) the effect of a together w i th
the preconditions, and (i i) the executabi l i ty condit ions
of action a. We refer Pa as the "update specif icat ion" of
the action a.

For example, for the action "shoot" , the update specifi­
cation Pshoot is as follows:

Similar ly, the update specifications for the actions
"toss", "sp in" , and "paint" can be given as follows:

in(white) V in(black) <—
out(white) V in{white) <— in(black)
out{black) V in(black) <- in(white)

Pspin

BARAL 2019

2020 TEMPORAL REASONING

5 F u r t h e r E x t e n s i o n s

5.1 E x t e n d i n g S t a t e S p e c i f i c a t i o n s :
v a r i a b l e s , e v a l u a b l e p r e d i c a t e s

Consider the one-step dynamic constraint which says
that the salary of a person does not decrease by per form­
ing an action. Th is can be represented as an extended
state specification that allows variables and evaluable
predicates , in the fo l lowing way:

It is straight forward to characterize the semantics of
extended state specifications. We first instant iate the
variables in the extended state specifications. We then
evaluate the evaluable predicates in the body of the rules
and throw away the rules whose body has an evaluable
predicate that evaluates to false, and only consider the
rest of the rules wi th the evaluable predicates e l iminated.
This gives us a state specification whose semantics is
defined in Defini t ion 5.

5.2 E x t e n d i n g A a n d L0

The language A was introduced by Gelfond and Lifschitz
in [Gelfond and Lifschitz, 1992], to express actions and
their effects. It was later extended to L0 [Baral et al,
1994] to include actual situations and to AR [Kar tha
and Lifschitz, 1994] to include static constraints.

In A, L0 and AR., effects of actions were specified
through propositions of the fol lowing two forms

When using update specifications to express effects and
preconditions of actions, proposit ions of the above form
are translated to rules of the fol lowing two forms respec­
tively.

respectively, and added to the update specification of A.

The languages A and Co can be extended by having ef­
fects and preconditions of actions being represented by
updated specifications. Moreover, the translat ions of A
[Lifschitz and Turner, 1994] and Lo to disjunctive logic
programs can be easily adapted to the proposed exten­
sions by fol lowing A lgor i thm 3.1 to translate the update
specifications of actions.

In AR static constraints5 are represented as first order
theories. Our proposal is to represent constraints us­
ing state specifications. To translate a domain descrip­
t ion description in the result ing language to a disjunct ive
logic program we use A lgo r i t hm 3.1 w.r . t . every action a
and the corresponding state specification P a U C , where,
Pa is the update specification of a, and C is the con­
straint.

5AR does not allow representation of dynamic constraints.

BARAL 2021

6 Future Work
Some of the questions tha t need to be answered are:

1. How expressive is the language of state specifications?
Can an arb i t ra ry first order theory be expressed using
state specifications?

From the fact tha t any logic program can be represented
as a state specif ication [Marek and Truszczyriski, 1994a],
and f r om the expressibi l i ty of logic programs, the answer
is yes. But an efficient a lgor i thm that can translate a
first order theory to a state specification st i l l need to be
developed. One result tha t may help is in [Kosheleva
and Kre inov ich, 1992], where Kosheleva and Kreinovich
propose an a lgor i thm to syntactical ly translate a first-
order theory to a logic program.

2. How easy is to express something using "State Spec­
i f icat ions"?

The answer is ''as easy as specifying something using
dis junct ive logic programs'1 . Th is is clear f rom the defi­
n i t i on of Res(a,S) which uses a straight forward trans­
la t ion f rom state specifications to disjunctive logic pro­
grams.

Some researchers have expressed concern about the in -
tuit iveness of the language of disjunctive logic program­
m i n g vis-a-vis first order logic. We believe that one rea­
son fisrt-order logic is more in tu i t i ve to most of us is
because we are more fami l ia r w i th i t . It is quite possible
tha t as we become more fami l iar w i th disjunctive logic
p rog ramming i t w i l l appear more in tu i t ive.

Also, why should we expect first-order logic to be the
language for al l our needs? In deductive databases, logic
p rogramming is the language of choice. The s imi la r i ty
between 'deductive databases' and 'reasoning about ac­
t ions ' is amazing and wi l l be discussed in a future paper.

6.1 E f f ec t s o f C o n c u r r e n t A c t i o n s
In [Baral and Gel fond, 1993], Baral and Gelfond ex-
tend the language A to allow concurrent actions. Let
us consider the execution of actions a and 6, w i th cor­
responding update specifications Pa and Pb If a and 6
are completely independent of each other then the ef­
fect of executing a and b concurrently can be given by
P{a,b) = PaUPb.

Bu t in general actions executed concurrently are not al­
ways independent of each other. In that case, one way
would be to expl ic i t ly specify the effect of each possi­
ble sets of actions. Th is leads to a frame problem in
another d i rect ion. In [Baral and Gel fond, 1993], Baral
and Gel fond suggest tha t a compound action (a set of
actions executed concurrent ly) normally inheri ts the ef­
fects of i ts subactions. Using their method the effect of
executing actions a and 6 concurrent ly is reasoned by
inher i t ing f rom Pa and Pb, effects tha t do not contra­
dict w i t h P{a,b}, i f any. Bu t this approach is weak when
effects are represented by state specifications.

Consider, Pa — {in(c) *—,in(d) <— s'n(e)},

P b = { in(e)<- , in (f) < - - i n (c) } ,

and P{a,b} = {in(g) <--,out(e) < - } .

In tu i t ive ly , the effect of executing { a , b}, can be obtained
by (i) inher i t ing the effects of executing a and 6 indepen­
dently which do not contradict w i t h P{a,b), (i i) and the
effects specified by P\a,b}- Th is dictates t ha t in the state
obtained after executing { a , b } , c , / , and g must be t rue
and e must be false. In this report we leave open the
problem of formal iz ing th is.

7 Conclusion
This paper bui lds on the efforts in [Marek and
Truszczyriski, 1994c; 1994b; Baral and Gel fond, 1993].
Marek and Truszczynski introduce the language of "re­
vision programs" 6 and use it to represent complex effects
of actions, such as the action of "reorganizing" a depart­
ment whose effect is given as " I f John is in the depart­
ment then peter must not be there" , w i t h a non-classical
interpretat ion of " I f ... then ..." imp l y i ng that "John is
preferred over Peter". In [Bara l , August 1994], Baral
shows how to translate "revision programs" to extended
logic programs and introduces was_in and wash_out, in
the body of rules.

In this paper we introduce the language of state spec­
if ications and show that this language is not only able
to represent complex effects, but also, non-determinist ic
effects of actions, executabi l i ty condit ions of actions, pre­
condit ions of different effect of actions, and dynamic and
static constraints. Moreover, i t allows dist inct represen­
tat ions of different non-determinist ic effects, and differ­
ent constraints tha t have same representation in first or­
der theory (See the discussion on "pa in t " and " toss" , and
"mar ry " and "move" in Section 1.). We then show how
to incorporate state specifications to act ion descript ion
languages like A and L0, and how to implement state
specifications through a t ranslat ion to dis junct ive logic
programs7 .

Recently, McCain and Turner [McCain and Turner , 1995]
propose using inference rules for representing constraints
so as to dist inguish between constraints that, cause ram­
i f icat ion, and that add to the qual i f icat ion. Unl ike their
approach we are able to express bo th dynamic (one-step)
and static constraints, and non-determinist ic effects in a
single language. Moreover, one of the fundamenta l thesis
of our approach is that effects, and executabi l i ty condi­
t ions of actions be expressed in the same language as the
constraints.

One of our main fu ture goal is to study impac t of using
state specifications w i th other act ion theories. In par­
t icular we would like to formal ize effects of concurrent
actions when the effects are given as state specifications.

Revision programs are state specifications, with the fol­
lowing restrictions: (a) No was_in and was-out, (b) No dis­
junctions in the head of rules, and (c) No rules wi th empty
heads.

7 Currently, there exists some systems that can compute
the answer sets of disjunctive logic programs.

2022 TEMPORAL REASONING

8 Acknowledgment
I would like to thank Hudson Turner and the referees for
their ins ight fu l comments. Research in this paper was
supported by NSF grants NSF-IRI-92-11-662 and NSF-
C D A 90-15-006.

References
[Al len et ai, 1990] J. A l len , J. Hendler, and A. Tate, ed­

i tors. Readings tn planning. Morgan Kaufmann, CA,
USA, 1990.

[Baral and Gel fond, 1993] C. Baral and M. Gelfond.
Representing concurrent actions in extended logic pro­
g ramming . In Proc. of 13th International Joint Con­
ference on Artificial Intelligence, Chambery, France,
pages 866-871, 1993. A substantial ly extended and
revised version is to appear in Ber t ram Fronhofer,
edi tor, Theoretical Approaches to Dynamic Worlds.

[Baral et a/., 1994] C. Baral ,
M. Gel fond, and A. Provet t i . Representing Actions 1:
Laws, Observations and Hypothesis. Technical report,
Dept of Computer Science, University of Texas at El
Paso, 1994 (also in 1995 A A A 1 Spring Symposium).

[Bara l , August 1994] C. Baral . Rule based updates on
simple knowledge bases. In Proc. of A A A I 9 4 . Seattle,
pages 136-141, August 1994.

[Brewka and Hertzberg, 1993]
G. Brewka and J. Hertzberg. How to do things w i th
worlds: on formal iz ing actions and plans. Journal of
Logic and Computation, 3(5):517--532, 1993.

[Brown, 1987] F. Brown, editor. Proceedings of the 1987
workshop on The Frame Problem tn AI. Morgan Kauf­
mann , C A , USA, 1987.

[Crawford , 1994] J. Crawford. Three issues in action. In
Presented in the workshop on Non-monotonic reason­
ing, 1994.

[Gelfond and Li fschi tz, 1991] M. Gelfond and V. Lif-
schitz. Classical negation in logic programs and
dis junct ive databases. New Generation Computing,
pages 365-387, 1991.

[Gelfond and Lifschitz, 1992] M. Gelfond and V. Lifs­
chitz. Representing actions in extended logic pro-
grams. In Joint International Conference and Sym­
posium on Logic Programming., pages 559-573, 1992.

[Gel fond, 1994] M. Gel fond. Logic programming and
reasoning w i t h incomplete in format ion. Annals of
Mathematics and Artificial Intelligence, 12:19-116,
1994.

[Hanks and M c D e r m o t t , 1987] S. Hanks and D. McDer-
m o t t . Nonmonotonic logic and temporal project ion.
Artificial Intelligence, 33(3):379 412, 1987.

[Ka r tha and Li fschi tz, 1994] G. Kar tha and V. Lifs­
chitz. Act ions w i t h indirect effects (prel iminary re­
po r t) . In KR 94, pages 341-350, 1994.

[Katsuno and Mendelzon, 1992] H. Katsuno and
A. Mendelzon. On the difference between updat ing
a knowledge base and revising i t . In Proc. of KR 92,
pages 387-394,1992.

[Kosheleva and Kreinovich, 1992] K. Kosheleva and
K. Kreinovich. Any theory expressible in f irst order
logic extended by transit ive closure can be represented
by a logic program, 1992. manuscr ipt .

[Lifschitz and Turner, 1994] V. Lifschitz and H. Turner.
From disjunctive programs to abduct ion. In prepara­
t ion , 1994.

[Lin and Reiter, 1994] F. L in and R. Reiter. State con­
straints revisited. Journal of Logic and Computation,
4(5):655-678, October 1994.

[Lin and Shoham, 1992] F. L in and Y. Shoham. Con­
current actions in the s i tuat ion calculus. In Proc. of
AAAI 92, pages 590-595, 1992.

[Marek and Truszczynski, 1994a]
W. Marek and M. Truszczynski. Revision program­
ming, manuscript, 1994.

[Marek and Truszczyriski, 1994b]
W. Marek and M. Truszczyriski. Revision program­
ming, database updates and integr i ty constraints. In
To appear in 5th International conference in Database
theory, Prague, 1994.

[Marek and Truszczyriski, 1994c]
W. Marek and M. Truszczyriski. Revision specifica­
tions by means of programs, manuscript , 1994.

[McCain and Turner, 1995] M. McCai n and M. Turner.
A causal theory of ramif ications and qualif ications. I J -
C A I 95.

[McCarthy and Hayes, 1969] J. McCar thy and P. Hayes.
Some philosophical problems f rom the standpoint of
art i f icial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 4, pages 463
502. Edinburgh University Press, Edinburgh, 1969.

[Pinto, February 1994] J. Pinto. Temporal Reasoning
in the Situation Calculus. PhD thesis, University of
Toronto, Department of Computer Science, February
1994. K R R TR-94-1 .

[Sandewall, 1992] E. Sandewall. Features and fluents: A
systematic approach to the representation of knowl ­
edge about dynamical systems. Technical report ,
Inst i tut ionen for datavetenskap, Universitetet och
Tekniska hogskolan i L inkoping, Sweeden, 1992.

[Winslett , 1989] M. Wins let t . Reasoning about action
using a possible models approach. In Proc. of 7th na­
tional conference on AI, pages 89-93, 1989.

BARAL 2023

