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A b s t r a c t 

Th i s v i d e o demons t ra tes the p r o g r a m M U , the 
Mathemat ics Unders tander , w h i c h learns Un ivers i t y 
level Pure Mathemat ics. The v ideo is both concerned 
w i t h MU 's per formance in learn ing and pe r fo rm ing 
mathematics, and its under l y ing cognit ive architecture, 
the Contextual Memory System, (CMS). The changes in 
knowledge representat ion d u r i n g proof checking and 
problem solv ing are demonstrated graphical ly. 

1 . I n t r o d u c t i o n 

Learn ing Un ive rs i t y level Mathemat ics is a complex 
task for both people and machines and di f f icul t to model 
for three ma in reasons: 
1. Students can learn any branch of mathematics, and 

mathematics is cont inual ly developing. Any learning 
model therefore has to be open in its representation. 

2. Pure Mathemat ics is a very large domain over 2000 
years o l d , and this means that a large amount of 
knowledge has to be acquired. 

3 . U n d e r s t a n d i n g Ma themat i cs Proofs and so lv ing 
prob lems requires the ab i l i ty to be able to retrieve 
the a p p r o p r i a t e resu l t at each step, and th is 
expertise on ly comes w i t h experience. 

The Mathematics Understander (MU) , [Furse, 1994] is a 
compu ta t i ona l m o d e l o f h o w students learn Pure 
Mathematics f rom texts wr i t t en in a notat ion known as 
the Formal Expression Language (FEL), [Furse, 1990]. 
FEL is a ve ry expressive language and capable of 
representing almost al l branches of pure mathematics. 
MU has read texts in both Classical Analysis and Group 
Theory. An extract f rom an FEL text is shown in Figure 1, 
where a de f i n i t i on , theorem and proof are shown in 
Classical Analys is . 

MU has no bu i l t in knowledge o f mathematical 
results, and acquires al l its knowledge f rom the reading 
of texts. This knowledge is of t w o sorts: 
1. The mathemat ics results: de f in i t ions of concepts, 

theorems and lemmas. 
2. Features w h i c h index the mathematical results, and 

enable easy retr ieval of the appropr iate result. 
The features prov ide an open fo rm of representation thus 
enabling MU to learn in an open domain [see Furse, 1993]. 

2 . T h e M a t h e m a t i c s T a s k 

The mathematics task consists of checking proofs and 
solving problems using the knowledge of mathematical 
results that has been already been acquired. Clear ly 
there is more to understanding a mathematics text than 
this but this is the scope of MU's understanding, 

A knowledge of the mathematical results is not 
sufficient either to check proofs or solve problems since 
there are many results that could be appl ied at any one 
step. It is also necessary to have some control knowledge 
w i t h to choose the appropr ia te result. In theorem 
proving systems, such as A m m o n [1992], this is often done 
by heuristics, but in MU the choice of result is largely 
dr iven by perceptual features. 

MU performs proof checking just by use of its features 
to retrieve the appropriate result. As explained in the 
next section th rough the experience of checking proofs 
and so lv ing problems the features change in thei r 
representation, so that gradual ly more specific features 
emerge wh ich enable impor tan t results to be easily 
ret r ieved, thus overcoming the combinator ia l choice. 
This also ensures that MU goes faster rather than slower 
w i t h more knowledge, as the specialised features ensure 
that retr ieval is faster. 
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In problem solving, MU uses four general purpose 
heuristics to give overall control: 1. Break a problem up 
into parts; 2. Suppose the left hand side; 3. Expand 
definitions; 4. Simplify expressions. A verbatim solution 
of MU using these heuristics to solve a problem in Group 
Theory is shown in Figure 2. The simplification process 
uses the CMS to control which results are applied. The 
above heuristics are not sufficient to solve all problems 
in mathematics, and research has shown that there is a 
need for specialised heuristics as well as the features 
used by MU. Morgan et al [1995] show how the heuristics 
can be learned from the analysis of worked examples. 

3 . L e a r n i n g a n d t h e C M S 

MU's learning is all performed by the Contextual 
Memory System (CMS) which controls all the storage 
and retrieval of the mathematical results in terms of 
dynamic features. Because of the open learning 
requirement, there are no built in features. Rather the 
CMS uses buil t in feature creation mechanisms to 
generate a large number of features from the input. 

The CMS performs its learning in two stages: 
1. Init ial encoding of the mathematical results when 

MU reads the FEL statement in terms of features. 
2. Continual updating of the features through the 

experience of proof checking and problem solving. 
Feature creation works on a parsed form of the input. For 
example, the definition of abelian in Fig. 2 is parsed as 
(<=> (abelian (cap g)) (and (group (cap g)) 

(forall (variables a b) 
(propn (=> (and (member a (cap g)) (member b (cap g))) 

(=(*ab)(*ba))))))) 
If this is treated as a tree, features can be constructed as 
subtrees. Formally, features are defined by: 
<feature> ::= <pos i t ion><spec i f ie rx typex term> 
<position> ::= LHS- I RHS- I null 
<position> ::= LHS-<position> I RHS-<position> 
<specifier> ::= IS- I HAS-
<type> ::= FORM- I TERM-
Since the <term> is as open as the input, this results in 
an infinite feature space. In this example there are 
many features including general features such as: 
has-form-[=_a_bJ, is-form-[<=*_a_b], has-form-
[member_a_b] and more specialised features such as: 
lhs-has-form-[abelian_[cap_a]], rhs-has-form-
[and_[group_a]_b] is-form-[»_[abelian_aL[and_b_c]] 
and only about 10 features are used for the first encoding. 

The initial encoding into features of a result may not 
be very efficient as at the time it is impossible to know 
which features w i l l turn out to be salient. Wi th 
subsequent experience, proof checking and problem 
solving w i l l provide probes wi th which to do retrieval 
from the CMS. Often such retrievals w i l l recall a result 
which cannot be applied to the current step, as well as 
the correct result, and these are termed failures. The 
CMS learns from this experience in three ways: 
1. Features which were used in the searching using the 

probe but are not currently linked to the found item 
are termed 'uncomputed features'. These features are 
now linked to the item. 

4. Conc lus ion 

MU shows that it is possible to model the learning of a 
very large and open domain. The solution is to use an 
arbitrary set of features built from the environment for 
init ial encoding, and let experience dictate how the 
features should be revised to improve performance. 
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