Learning University Mathematics

Edmund Furse

Department of Computer Studies
University of Glamorgan
Pontypridd, Mid Glamorgan

CF37 1DL
UK

efurse@uk.ac.glamorgan

Abstract

This video demonstrates the program MU, the
Mathematics Understander, which learns University
level Pure Mathematics. The video is both concerned
with MU's performance in learning and performing
mathematics, and its underlying cognitive architecture,
the Contextual Memory System, (CMS). The changes in
knowledge representation during proof checking and
problem solving are demonstrated graphically.

1. Introduction

Learning University level Mathematics is a complex
task for both people and machines and difficult to model
for three main reasons:

1. Students can learn any branch of mathematics, and
mathematics is continually developing. Any learning
model therefore has to be open in its representation.

2. Pure Mathematics is a very large domain over 2000
years old, and this means that a large amount of
knowledge has to be acquired.

3. Understanding Mathematics Proofs and solving
problems requires the ability to be able to retrieve
the appropriate result at each step, and this
expertise only comes with experience.

The Mathematics Understander (MU), [Furse, 1994] is a

computational model of how students learn Pure

Mathematics from texts written in a notation known as

the Formal Expression Language (FEL), [Furse, 1990].

FEL is a very expressive language and capable of

representing almost all branches of pure mathematics.

MU has read texts in both Classical Analysis and Group

Theory. An extract from an FEL text is shown in Figure 1,

where a definition, theorem and proof are shown in

Classical Analysis.

MU has no built in knowledge of mathematical
results, and acquires all its knowledge from the reading
of texts. This knowledge is of two sorts:

1. The mathematics results: definitions of concepts,
theorems and lemmas.

2. Features which index the mathematical results, and
enable easy retrieval of the appropriate result.

The features provide an open form of representation thus

enabling MU to learn in an open domain [see Furse, 1993].

Definition 2.4 of converges
“s,»convergesto @ iff Ve>03mVn>m Is_-al <&

Lemma 2.1.1
not («(-1)"» converges to 1)
Proof
1 RTP not («(-1)"» converges to a)
2 Suppose to the contrary «(-1)"» converges to |
3=>Ve>03mvnom I {-1)"- 1l <g
by definition of converges
4=3ImVn>m |(-1)"- 1| < 1by substituting £ = 1
Sletn=2m+1
6 = nis odd
7=(¢1)"=-1
8= ¢-1)"-11 =12l sincea=b= la-11 = Ib-11
9=2
10 = 2 < 1 by combining steps 4 and 9
11 = contradiction
12 QED
Figure 1. Input to MU in FEL.

2. The Mathematics Task

The mathematics task consists of checking proofs and
solving problems using the knowledge of mathematical
results that has been already been acquired. Clearly
there is more to understanding a mathematics text than
this but this is the scope of MU's understanding,

A knowledge of the mathematical results is not
sufficient either to check proofs or solve problems since
there are many results that could be applied at any one
step. It is also necessary to have some control knowledge
with to choose the appropriate result. In theorem
proving systems, such as Ammon [1992], this is often done
by heuristics, but in MU the choice of result is largely
driven by perceptual features.

MU performs proof checking just by use of its features
to retrieve the appropriate result. As explained in the
next section through the experience of checking proofs
and solving problems the features change in their
representation, so that gradually more specific features
emerge which enable important results to be easily
retrieved, thus overcoming the combinatorial choice.
This also ensures that MU goes faster rather than slower
with more knowledge, as the specialised features ensure
that retrieval is faster.

FURSE 2067

In problem solving, MU uses four general purpose
heuristics to give overall control: 1. Break a problem up
into parts; 2. Suppose the left hand side; 3. Expand
definitions; 4. Simplify expressions. A verbatim solution
of MU using these heuristics to solve a problem in Group
Theory is shown in Figure 2. The simplification process
uses the CMS to control which results are applied. The
above heuristics are not sufficient to solve all problems
in mathematics, and research has shown that there is a
need for specialised heuristics as well as the features
used by MU. Morgan et al [1995] show how the heuristics
can be learned from the analysis of worked examples.

3. Learning and the CMS

MU's learning is all performed by the Contextual
Memory System (CMS) which controls all the storage
and retrieval of the mathematical results in terms of
dynamic features. Because of the open learning
requirement, there are no built in features. Rather the
CMS wuses built in feature creation mechanisms to
generate a large number of features from the input.

The CMS performs its learning in two stages:
1. Initial encoding of the mathematical results when

MU reads the FEL statement in terms of features.
2. Continual updating of the features through the

experience of proof checking and problem solving.
Feature creation works on a parsed form of the input. For
example, the definition of abelian in Fig. 2 is parsed as
(<= (abelian (cap g)) (and (group (cap g))

(forall (variables a b)

(propn (=> (and (member a (cap g)) (member b (cap g)))

(=(*ab)(*ba)))))))

If this is treated as a tree, features can be constructed as
subtrees. Formally, features are defined by:

<feature> ::= <position><specifierxtypexterm>
<position> ;= LHS- | RHS- | null

<position> ::= LHS-<position> | RHS-<position>
<specifier> = IS- | HAS-

<type> ::= FORM- | TERM-

Since the <term> is as open as the input, this results in
an infinite feature space. In this example there are
many features including general features such as:
has-form-[=_a_bJ, is-form-[<=*_a_b], has-form-
[member_a_b] and more specialised features such as:
Ihs-has-form-[abelian_[cap_a]], rhs-has-form-
[and_[group_a]_b] is-form-[»_ [abelian_alL[and_b_c]]
and only about 10 features are used for the first encoding.
The initial encoding into features of a result may not
be very efficient as at the time it is impossible to know
which features will turn out to be salient. With
subsequent experience, proof checking and problem
solving will provide probes with which to do retrieval
from the CMS. Often such retrievals will recall a result
which cannot be applied to the current step, as well as
the correct result, and these are termed failures. The
CMS learns from this experience in three ways:
1. Features which were used in the searching using the

probe but are not currently linked to the found item
are termed 'uncomputed features'. These features are
now linked to the item.

2058 VIDEOS

2. Features which index the found item but not the
failures are termed 'useful features', and have their
energies increased as well as the strength of the link.

3. It is also possible to create new features, unknown at
the time to the CMS, which distinguish the found
item from the failures.

Definition of abelian
G is abelian iff G isa group and Va,b € G ab =Dba

Problem 2.3.3
Prove (G isa group and Va,bae G
andbe G = (ab)=a?b?) = Gis abelian
Suppose G isa group
and Va,bae Gandbe G = (ab)? = aZb?
RTP G is abelian
RTPGisagroupand Va,bae Gandbe Gab=ba
by definition of abelian
Part 1
RTP G isa group
Follows logically
QED Part 1
Part 2
Supposeae Gandbe G
RTP ab = ba
Now (ab)? = aZb?
= (ab}ab) = (aa){bb) since x = xx
= a((ba)b} = a({ab)b) since (ab)(cd) = a((bc)d)
= (ba)b = (ab)bsinceab=ac= b=¢
= ba=absinceba=ca= b=c
QED Part 2
Figure 2. MU's Solution to a Problem.

4. Conclusion

MU shows that it is possible to model the learning of a
very large and open domain. The solution is to use an
arbitrary set of features built from the environment for
initial encoding, and let experience dictate how the
features should be revised to improve performance.

References

[Ammon, 1992] Ammon, K. Automatic Proofs in
Mathematical Logic and Analysis. In Proceedings of
11th International Conference on Automated Deduction.

[Furse, 1990] Furse E. A Formal Expression Language for
Pure Mathematics, Technical Report CS-90-2, Dept. of
Computer Studies, The University of Glamorgan.

[Furse, 1993] Furse E. Escaping from the Box. In Prospects
for Intelligence: Proceedings of AISB93, (Eds) Aaron
Sloman, David Hogg, Glynn Humphreys, Allan Ramsey,
Derek Partridge, 10S Press, Amsterdam.

[Furse, 1994] Furse E. The Mathematics Understander. In

Artificial Intelligence in Mathematics, (eds)
J H Johnson,S.McKee, A. Vella, Clarendon Press,
Oxford.

[Morgan et al., 1995] Morgan G., Furse E., and Nicolson
R.l, Learning Problem Solving Heuristics From Worked
Examples, First European Cognitive Science Conference,
INRIA, France.

