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Abstract

In this paper, an e-epidemic SV EIS model describing
the transmission of worms with nonlinear incidence rate
through horizontal transmission is formulated in com-
puter network. The existence of two equilibrium points:
worm-free and endemic equilibria have been investigated.
The stability analyses are determined by the basic repro-
duction number. It has been observed that if the basic
reproduction number,

R0 =
σβ(µ+ θ)Λ

η2(µ+ γ)(Λ(µ+ θ) + η1µc)
< 1,

the system is globally asymptotically stable and the in-
fected nodes get vanish at worm-free equilibrium state;
worms fade out from the network. However, if R0 > 1,
the infected node exists; worm persists in the network at
an endemic equilibrium state and is globally stable with
some conditions. Further, the transcritical bifurcation at
R0 = 1, has obtained using the center manifold theorem.
The effect of vaccination and non-linear transmission rate
on the dynamics of the model system has been observed.
The dynamical behavior of the susceptible, exposed and
infected nodes with real parametric values is examined.
We also observe that the critical vaccination rate is re-
quired to eradicate the worm. Our results illustrate sev-
eral administrative and executive insights.

Keywords: Computer Network; E-Epidemic Model; Non-
linear Incidence Rate; Stability Analysis; Transcritical Bi-
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1 Introduction

Over the last several decades, a rigorous global effort is
speeding up the developments, in the establishment of
a worldwide surveillance network for the propagation of
computer malicious objects (Viruses, Worms and Tro-
jans). Researchers from computer science and applied

mathematics have collaborated for fast assessment of po-
tentially critical conditions. To achieve this goal, math-
ematical modeling plays a vital role in efforts; that fo-
cuses on predicting, assessing and controlling potential
outbreak. Also, the epidemic modeling and its applica-
tions have been used to understand the effect of changes
in the behavior of solutions of the model system. To bet-
ter understand such dynamics, the papers of Kermack
and McKendrick [13] and Capasso and Serio [2] can be
studied which established the deterministic compartmen-
tal epidemic modeling. In this way, many research arti-
cles have published and discussed the main approaches
that are used for the surveillance and modeling of bi-
ological diseases as well as computer viruses dynamics.
Wang et al. [26] proposed a novel worm attack SV EIR
model using saturated incidence rate and partial immu-
nization rate. In which they have shown the partial im-
munization is highly effective for eliminating worms. A
propagation model with varying node numbers of remov-
able memory device(RMD) virus have been formulated
and obtained three threshold parameters to control the
RMD-virus in [11].

Worm exploits security vulnerabilities and does not re-
quire any user action to propagate. It is a self-propagating
malicious program that focuses mainly on infecting as
many nodes as possible to the network. Several network
phenomena are well modeled as transmissions (through
both horizontally and vertically) of viruses or worms
through a network. We consider the vaccination strate-
gies that are used to control the spreading of malicious ob-
jects [24, 30]. The regular pattern of periodic occurrences
have been observed in the epidemiology of many infectious
diseases and computer viruses. To predict and control the
spread of computer worms, it is necessary to understand
such periodic patterns and identify the specific factors
that exhibit such periodic outbreak [16]. Zhang et al. [29]
have employed an impulsive state feedback model to study
the transmission of computer worm and the preventive ef-
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fect of operating system patching.

Recent studies have demonstrated that the nonlinear
incidence rate is one of the important factor for the mod-
eling of epidemic and e-epidemic systems that induces
periodic oscillations in epidemic models [23, 27]. For
modeling the transmission process, researchers have em-
ployed different forms of incidence rate on which the dy-
namics of the model system depends extensively. The
e-epidemicity of worm is closely related to the stability
of the equilibria of the model system. Many researchers
have considered bilinear incidence rate (βSI) [7, 14], stan-
dard incidence rate βSI

N [18], nonlinear incidence rate
βSI
f(I) [8], modified saturated incidence rate f(S, I) =

βSI
(1+αS+γI) (Beddington-DeAngelis type), where α, β, γ >

0 [5, 12], etc. in their studies. The use of classical e-
epidemic transmission for studying computer virus prop-
agation has been investigated by Piqueira et al. [21]. In
the present work, we have taken nonlinear incidence rate
as f(S, I) = βSI

(S+I+c) [25].

In the e-epidemiology of worm propagation in the com-
puter network, Mishra and Pandey [19, 18] described
the effect of anti-virus software and vaccination on the
attack of computer worms with global stability. Also,
some research articles appear on the computer worm or
virus model with different recovery rates and dynam-
ics [22, 28]. Recently, Upadhyay et al. [25] proposed a
SV EIR model with nonlinear incidence rate for modeling
the virus dynamics in computer network. In this paper,
SV EIS model with nonlinear incidence rate and vacci-
nation strength are presented. This work is basically for
the implementation and practice to predict and minimize
the severe attack of worms in the computer network.

Here, we have investigated the global stability of the
proposed e-epidemic SV EIS model using modified non-
linear incidence rate and predict its optimal vaccination
and eradicate worms from the network. The paper is
structured as follows. In Section 2, we formulate an e-
epidemic SV EIS model as the system of ordinary differ-
ential equations and give the descriptions of all the param-
eters used in the model system. We find the two possible
equilibrium points and its existence criteria and also cal-
culate the basic reproduction number in Section 3. The
stability analysis for both the equilibrium points are an-
alyzed and transcritical bifurcation analysis is executed
when basic reproduction number R0 = 1 in Section 4.
Section 5 presents the numerical simulations to verify
the results found analytically by taking computer rele-
vant value of parameters and discusses the stability of the
model system using MATLAB and Mathematica. Finally,
we conclude this article in Section 6.

2 Formulation of the Mathemati-
cal Model

Consider N nodes which have been divided into four sub-
classes as susceptible (S), vaccinated (V ), exposed (E)

and infectious (I) nodes and N = S + V + E + I. Some
assumptions for formulating the model system are as fol-
lows:

1) We assume that any new node entering into the net-
work is susceptible. The crashing rate of a node
(due to hardware or software problems) µ is constant
throughout the network.

2) The nodes are interacting heterogeneously. Worms
are transmitted to the node through horizontal trans-
mission.

3) The worms propagate into network when an infected
file is transferred from an infectious node to the sus-
ceptible node. We have considered the modified non-
linear incidence rate f(S, I) = βSI

S+I+c . This rep-
resents the fact that the number of nodes carrying
the worms can interact with other nodes, reaches
some finite maximum value due to limitation of time
or the network slowdown problems of the particular
nodes [25].

4) Software offers temporary immunity to the nodes
that is, when the software loss their efficiency or re-
moved from the node of the computer network, the
node becomes susceptible to attack again.

5) The worm induces temporary immunity is a fraction
of recovered node, remaining recovered nodes again
become susceptible [1]. A small fraction of exposed
node recovers, rather than being infected and de-
velops worm acquired temporary immunity due to
self-prevention and detection techniques of operat-
ing system and becomes vaccinated [24]. A fraction
of infected node after recovery gains temporary im-
munity against the worm and joins vaccinated class,
remaining node becomes re-susceptible.

Figure 1: Schematic diagram for model system (1)

The schematic diagram for the model (1) is shown in
Figure 1. The worm transmission between the different
classes can be expressed by the following model:

dS
dt = Λ− µS − ωS + θV − βSI

S+I+c + (1− q)γI,
dV
dt = ωS − θV − µV + ξE + qγI,
dE
dt = βSI

S+I+c − µE − ξE − σE,
dI
dt = σE − µI − γI.

(1)
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Table 1: Definition of parameters

Parameter Descriptions Units
S Susceptible node In number
V Vaccinated node ”
E Exposed node but not yet infectious ”
I Infectious node ”

Λ Rate at which new nodes are connected to the network Day−1

µ Crashing rate of node due to hardware or software problems ”
ω Vaccination rate ”
θ Rate at which vaccinated nodes lose their immunity and join susceptible class ”
β Contact rate or rate of transfer of worms from an infectious node to susceptible node ”
c Half saturation constant In number

q Fraction of recovered nodes gaining worm-acquired immunity Day−1

ξ Recovery rate of exposed class due to self-prevention technique of operating system ”
γ Duration of infection of infected nodes ”
σ Rate at which exposed node become infectious ”

with initial conditions: S(0) = S0 > 0, V (0) = V0 >
0, E(0) = E0 > 0, I(0) = I0 > 0, where all the param-
eters are positive and 0 ≤ q ≤ 1. The definitions of all
parameters are summarized in Table 1.

3 Existence of Equilibrium Points
and Basic Reproduction Num-
ber

The existence of worm-free and endemic equilibrium
points are established and basic reproduction number has
been calculated.

We observe that total number of nodes N satisfies the
equation dN

dt = Λ− µN and hence N(t)→ Λ
µ , as t→∞.

The solutions of the model system (1) are non-negative
for all t ≥ 0. Therefore, the feasible region

U =

{
(S, V,E, I) : 0 ≤ S, V,E, I,N ≤ Λ

µ

}
,

is positively invariant in which the usual existence,
uniqueness of solutions and continuation results hold.

The model system (1) always has the worm-free equi-
librium P 0 =

(
S0, V 0, 0, 0

)
, where

S0 =

(
µ+ θ

η1

)
N0, V 0 =

(
ω

η1

)
N0, N0 =

Λ

µ
,

with η1 = µ + θ + ω, represent the level of susceptible,
vaccinated and total number of nodes respectively, in the
absence of infection.

Now, we calculate the basic reproduction number [4].
Let x = (E, I) , then from the model system (1), it follows:

dx

dt
= f − υ,

where f =

[
βSI

S+I+c

0

]
and υ =

[
η2E

−σE + (µ+ γ)I

]
.

We obtain F = Jacobian of f at WFE =

[
0 βS0

S0+c

0 0

]
and M = Jacobian of υ at WFE =

[
η2 0
−σ µ+ γ

]
.

The next generation matrix approach is used to com-
pute the basic reproduction number, R0 and is defined
as the spectral radius of the next generation operator.
The formation of the operator involves determining two
compartments, infected and non-infected nodes for the
considered model system.

The next generation matrix for the system is

K = FM−1 =

[
σβS0

η2(µ+γ)(S0+c)
βS0

(µ+γ)(S0+c)

0 0

]
.

Thus, the basic reproduction number R0 = ρ(FM−1), of
the model system (1) is given by

R0 =
σβS0

η2(µ+ γ)(S0 + c)

=
σβ(µ+ θ)Λ

η2(µ+ γ)(Λ(µ+ θ) + η1µc)
.

Further, the model system (1) also has an interior equi-
librium given by P ∗ = (S∗, V ∗, E∗, I∗), where

S∗ =
I∗ + c

(R0 − 1) + cR0

S0

, E∗ =
µ+ γ

σ
I∗,

V ∗ =
1

µ+ θ


(

ω

(R0−1)+c
R0
S0

+ ξ(µ+γ)
σ + qγ

)
I∗

+ ωc

(R0−1)+c
R0
S0

 ,
I∗ =

Λ
(
R0 − 1 + cR0

S0

)
(θ + µ)σ − η1cµσ

µ

((
R0 − 1 + cR0

S0

){ (γ + µ)(θ + µ+ ξ)
+(qγ + θ + µ)σ

}
+ ση1

) .
We conclude from the above that the endemic equilibrium
point exists if R0 > 1.
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4 Stability Analysis of the Model
System

We investigate the stability (linear as well as nonlinear)
analysis of both the equilibrium points. The reduced lim-
iting dynamical system is given by ([23])

dS
dt = Λ

µ (µ+ θ)− η1S − βSI
S+I+c − θE − (θ − pγ)I,

dE
dt = βSI

S+I+c − η2E,
dI
dt = σE − (µ+ γ)I,

(2)

with initial conditions: S(0) = S0 > 0, E(0) = E0 >
0, I(0) = I0 > 0. All the parameters are positive. Also
η1 = (µ+ ω + θ), η2 = (µ+ ξ + σ) and p = 1− q.

Now, the local stability for worm-free equilibrium
(WFE) point is established as follows:

Theorem 1. The WFE point P 0 is

1) Locally asymptotically stable, if R0 < 1,

2) Unstable, if R0 > 1 and

3) A transcritical bifurcation occurs at R0 = 1.

Proof. The Jacobian matrix J0 at WFE is given by

J0 =

 −η1 −θ − βS0

S0+c − θ + pγ

0 −η2
βS0

S0+c

0 σ −(µ+ γ)

 .
The characteristic equation of J0 is given by

(λ+ η1)[λ2 + (µ+ η2 + γ)λ+ η2(µ+ γ)(1−R0)] = 0.

One eigenvalue is clearly negative; remaining two eigen-
values depends on the sign of the basic reproduction num-
ber. If R0 < 1, then remaining two eigenvalues of J0 have
negative real parts and if R0 > 1, then one eigenvalue of
J0 has negative real part and other has positive real part.
Hence, WFE is locally asymptotically stable, if R0 < 1
and unstable, if R0 > 1. Now, if R0 = 1, then two eigen-
values of J0 have negative real parts and one eigenvalue
is zero.

Let x = S − S0, y = E, z = I. Then, system (2) re-
duces to


dx
dt = −Ax− B(1+r)(x+S0)z

x+z+c+S0 − θy − θz + (1− q)γz,
dy
dt = B(1+r)(x+S0)z

x+z+c+S0 − (µ+ ξ + σ)y,
dz
dt = σy − (µ+ γ)z,

(3)

where

A = η1, B =
η2(γ + µ)(S0 + c)

σS0
, R0 = 1 + r.

For showing the occurrence of transcritical bifurcation
at (R0, (S,E, I)) = (1, (S0, 0, 0)), we write β in terms of
R0 and other parameters. Linearizing system (3) about

equilibrium point (r, (x, y, z)) = (0, (0, 0, 0)). we obtain
the Jacobian matrix −A −θ (1− q)γ − θ − BS0

S0+c

0 −η2
BS0

S0+c

0 σ −γ − µ

 . (4)

The proof is done by projecting the flow onto the extended
center manifold [9]. The eigen-vectors corresponding to
the eigenvalues λ1 = 0, λ2 = −A and λ3 = −γ − µ − η2

when R0 = 1(r = 0) are

e1 =

 −a1

a3

1

 , e2 =

 1
0
0

 , e3 =

 a2

−a4

1


respectively, where

a1 =
(γ + µ)(θ + µ+ ξ) + (qγ + θ + µ)σ

Aσ
,

a2 =
(γ − θ + µ)(µ+ ξ) + (qγ + µ)σ

σ(−A+ γ + µ+ η2)
,

a3 =
γ + µ

σ
and a4 =

η2

σ
.

The model matrix P with its column vector as the
eigenvector is

P =

 −a1 1 a2

a3 0 −a4

1 0 1

 ,
and hence

P−1 =
1

a3 + a4

 0 1 a4

a3 + a4 a1 + a2 −a2a3 + a1a4

0 −1 a3

 .
Now, we have to find the nature of stability (x, y, z) =
(0, 0, 0) for r near zero. We obtain the transformation
using the eigen basis {e1, e2, e3}, x

y
z

 = P

 u
v
w

 with inverse

 u
v
w

 = P−1

 x
y
z


which transform system (3) into u̇

v̇
ẇ

 =

 0 0 0
0 −A 0
0 0 −γ − µ− η2

 u
v
w


+

 f(u, v, w, r)
g1(u, v, w, r)
g2(u, v, w, r)




(5)

ṙ = 0. (6)

Here

f(u, v, w, r) = l1u
2 + l2w

2 + l3uv + l4uw + l5ur + l6vw

+l7wr + l8u
3 + l9w

3 + l10uvw + l11uw
2

+l12u
2v + l13u

2w + l14u
2r + l15vw

2

+l16w
2r + l17wv

2 + l18uvr + l19vwr

+l20uwr + l21uv
2,
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g1(u, v, w, r) = m2u
2 +m3w

2 +m4uv +m5uw

+m6ur +m7vw +m8wr +m9u
3

+m10w
3 +m11uvw +m12uw

2

+m13u
2v +m14u

2w +m15u
2r

+m16vw
2 +m17w

2r +m18wv
2

+m19uvr +m20vwr +m21uw

+m22uv
2,

g2(u, v, w, r) = n2u
2 + n3w

2 + n4uv + n5uw + n6ur

+n7vw + n8wr + n9u
3 + n10w

3

+n11uvw + n12uw
2 + n13u

2v + n14u
2w

+n15u
2r + n16vw

2 + n17w
2r + n18wv

2

+n19uvr + n20vwr + n21uwr + n22uv
2.

Where

l1 = − B(S0 + ca1)

(c+ S0)
2
(a3 + a4)

,

l2 =
B(−S0 + ca2)

(c+ S0)
2
(a3 + a4)

,

l3 = l6 =
Bc

(c+ S0)
2
(a3 + a4)

,

l4 = −B(2S0 + ca1 − ca2)

(c+ S0)
2
(a3 + a4)

,

l5 = l7 =
BS0

(a3 + a4)(c+ S0)
,

l8 = −B(−1 + a1)(S0 + ca1)

(c+ S0)
3
(a3 + a4)

,

l9 =
B(1 + a2)(S0 − ca2)

(c+ S0)
3
(a3 + a4)

,

l10 =
2B(−c+ S0 + ca1 − ca2)

(c+ S0)
3
(a3 + a4)

,

l11 =
B(3S0 − a2(2c− 2S0 + ca2) + a1(c− S0 + 2ca2))

(c+ S0)
3
(a3 + a4)

,

l13 =
B(3S0 − ca2

1 + (−c+ S0)a2 + 2a1(c− S0 + ca2))

(c+ S0)
3
(a3 + a4)

,

l12 =
B(−c+ S0 + 2ca1)

(c+ S0)
3
(a3 + a4)

,

l14 = − B(S0 + ca1)

(c+ S0)
2
(a3 + a4)

,

l15 =
B(−c+ S0 − 2ca2)

(c+ S0)
3
(a3 + a4)

,

l16 =
B(−S0 + ca2)

(c+ S0)
2
(a3 + a4)

,

l17 = l21 = − Bc

(c+ S0)
3
(a3 + a4)

,

l18 = l19 =
Bc

(c+ S0)
2
(a3 + a4)

,

l20 = −B(2S0 + ca1 − ca2)

(c+ S0)
2
(a3 + a4)

,

m1 = −A,

m2 = −B(S0 + ca1)(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m3 =
B(−S0 + ca2)(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m4 = m7 =
Bc(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m5 = −B(2S0 + ca1 − ca2)(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m6 = m8 =
BS0(a1 + a2 − a3 − a4)

(c+ S0)(a3 + a4)
,

m9 =
B(1− a1)(S0 + ca1)(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m10 =
B(1 + a2)(S0 − ca2)(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m11 =
2B(−c+ S0 + ca1 − ca2)(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m12 =

(
B(3S0 − a2(2c− 2S0 + ca2)
+a1(c− S0 + 2ca2))(a1 + a2 − a3 − a4)

)
(c+ S0)

3
(a3 + a4)

,

m13 =
B(−c+ S0 + 2ca1)(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m14 = −

(
B(−3S0 + ca2

1 + (c− S0)a2

−2a1(c− S0 + ca2))(a1 + a2 − a3 − a4)

)
(c+ S0)

3
(a3 + a4)

,

m15 = −B(S0 + ca1)(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m16 = −B(c− S0 + 2ca2)(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m17 =
B(−S0 + ca2)(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

m18 = m22 = −Bc(a1 + a2 − a3 − a4)

(c+ S0)
3
(a3 + a4)

,

m19 = m20 = m21 =
Bc(a1 + a2 − a3 − a4)

(c+ S0)
2
(a3 + a4)

,

n1 = −γ − 2µ− ξ − σ,

n2 =
B(S0 + ca1)

(c+ S0)
2
(a3 + a4)

,

n3 =
B(S0 − ca2)

(c+ S0)
2
(a3 + a4)

,

n4 = n7 = − Bc

(c+ S0)
2
(a3 + a4)

,

n5 =
B(2S0 + ca1 − ca2)

(c+ S0)
2
(a3 + a4)

,

n6 = n8 = − BS0

(c+ S0)(a3 + a4)
,

n9 =
B(−1 + a1)(S0 + ca1)

(c+ S0)
3
(a3 + a4)

,
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n10 =
B(1 + a2)(−S0 + ca2)

(c+ S0)
3
(a3 + a4)

,

n11 = −2B(−c+ S0 + ca1 − ca2)

(c+ S0)
3
(a3 + a4)

,

n12 =

(
B(−3S0 + a1(−c+ S0 − 2ca2)
+a2(2c− 2S0 + ca2))

)
(c+ S0)

3
(a3 + a4)

,

n13 = −B(−c+ S0 + 2ca1)

(c+ S0)
3
(a3 + a4)

,

n14 =
B(−3S0 + ca2

1 + (c− S0)a2 − 2a1(c− S0 + ca2))

(c+ S0)
3
(a3 + a4)

,

n15 =
B(S0 + ca1)

(c+ S0)
2
(a3 + a4)

,

n16 =
B(c− S0 + 2ca2)

(c+ S0)
3
(a3 + a4)

,

n17 =
B(S0 − ca2)

(c+ S0)
2
(a3 + a4)

,

n18 = n22 =
Bc

(c+ S0)
3
(a3 + a4)

,

n19 = n20 = − Bc

(c+ S0)
2
(a3 + a4)

,

n21 =
B(2S0 + ca1 − ca2)

(c+ S0)
2
(a3 + a4)

.

Let

g (u, v, w, r) =

[
g1 (u, v, w, r)
g2 (u, v, w, r)

]
.

We have from the existence theorem for center manifolds

W c (0) =

{
(u, v, w, r) ∈ R4

∣∣ v = h1 (u, r) , w = h2 (u, r) ,
hi (0, 0) = 0, Dhi (0, 0) = 0, i = 1, 2

}
for u and r sufficiently small.

Let

δ ≡ u, ζ ≡ (v, w) , h = (h1, h2) , Q = 0

and

R =

[
−A 0
0 −γ − 2µ− ξ − σ

]
.

Assume that

h1 (u, r) = c1u
2 + c2ur + c3r

2 + · · · ,
h2 (u, r) = c4u

2 + c5ur + c6r
2 + · · ·

}
. (7)

Using invariance of the graph of h(u, r) under the dynam-
ics generated by Equation (3), h(u, r) must satisfy

N (h (δ, r)) = Dδh (δ, r) [Qδ + f (δ, h (δ, r) r)]

−Rh (δ, r)− g (δ, h (δ, r) r)

= 0. (8)

Substitute h = (h1, h2) from Equation (7) into Equa-
tion (8) and then compare the coefficients of u2, ur and
r2, we obtain

c1 = −m2

m1
, c2 = −m6

m1
, c3 = 0, c4 = −n2

n1
, c5 = −n6

n1
, c6 = 0.

Hence

h1(u, r) = −m2

m1
u2 − m6

m1
ru, h2(u, r) = −n2

n1
u2 − n6

n1
ru.

Finally substituting the values of v = h1, w = h2 into
Equations (5) and (6) we obtain the vector field reduced
to the center manifold

u̇ = r u l5 + u2 l1 + u3

(
l8 −

l3m2

m1
− l4 n2

n1

)
+ru2

(
l14 −

l3m6

m1
− l4 n6

n1
− l7 n2

n1

)
+ · · · ,

ṙ = 0.

Here we observe that l1 < 0 and l5 > 0. On the center
manifold, we have

du

dt
= G(u, r) = rul5 + u2l1,

with

G(0, 0) = Gu(0, 0) = Gr(0, 0),

Guu = 2l1,

Gur = l5,

Grr = 0.

Here Gur is positive and Guu is negative. Hence, us-
ing transcritical bifurcation and center manifold theo-
rems, worm-free equilibrium point is stable when R0 <
1(since r < 0) and there is a separate unstable branch
from the endemic equilibrium point and when R0 >
1(since r > 0), worm-free equilibrium point becomes un-
stable while the separating branch becomes stable [9].
When R0 = 1(since r = 0), center manifold is approxi-
mated by

du

dt
≈ l1u2 + · · · .

Therefore, the worm-free equilibrium point is stable if it
is approached from u > 0.

Hence, transcritical bifurcation occurs at the bifurca-
tion point R0 = 1.

Theorem 2. The endemic equilibrium point P ∗ is locally
asymptotically stable if σβ(S∗ + c)S∗ ≤ η2(γ + µ)(S∗ +
I∗ + c)2 holds.

Proof. The Jacobian matrix J∗ at endemic equilibrium
point P ∗ is given by

J∗ =

 −η1 − a21 −θ −θ + pγ − a23

a21 −η2 a23

0 σ −µ− γ

 ,
where

a21 =
β(I∗ + c)I∗

(S∗ + I∗ + c)
2 , a23 =

β(S∗ + c)S∗

(S∗ + I∗ + c)
2 .

The characteristic equation of J∗ is

λ3 +A1λ
2 +A2λ+A3 = 0,
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where

A1 = a21 + γ + µ+ η1 + η2,

A2 = θ(µ+ η2) + µ(µ+ 2η2)− a23σ

+a21(γ + θ + µ+ η2) + (µ+ η2)ω

+γ(η1 + η2),

A3 = a21(γ + µ)(θ + µ+ ξ) + a21(qγ + θ + µ)σ

+η1(−a23σ + η2(γ + µ)),

and

A1A2 −A3 = a221(γ + θ + µ+ η2)

+(γ + µ+ η2)(−a23σ + (γ + µ+ η1)(η1 + η2))

+a21(γ
2 + θ2 − a23σ + θ(2(2µ+ η2) + ξ + ω)

+(µ+ η2)(3µ+ η2 + 2ω) + 2γ(µ+ η1 + η2 +
p

2
σ)).

We observe that A1 > 0 automatically satisfies. Both the
conditions A3 > 0 and A1A2 − A3 > 0 satisfies if σa23 ≤
(γ+µ)η2 implies that σβ(S∗+c)S∗ ≤ η2(γ+µ)(S∗+I∗+
c)2 holds. Hence, by Routh-Hurwitz criterion the endemic
equilibrium point P ∗ is locally asymptotically stable.

4.1 Global Stability Analysis

We analyze the global dynamics of worm-free and endemic
equilibrium points. We find first the global stability of
worm-free equilibrium point using the method developed
in [3]. Rewrite the model system (2) as{

dY
dt = F (Y, Z),
dZ
dt = G(Y,Z), G(Y, 0) = 0.

(9)

where Y = (S) and Z = (E, I) , with Y ∈ R denoting
the number of susceptible node and Z ∈ R2 denoting the
number of infected nodes (exposed and infectious). The
worm-free equilibrium point is denoted by Q0 =

(
Y 0, 0

)
.

The following conditions (A1) and (A2) must give a local
asymptotic stability:

(A1) Y 0 is globally asymptotic stable for dY
dt = F (Y, 0).

(A2) G(Y,Z) = BZ − Ĝ(Y,Z) where Ĝ(Y,Z) ≥ 0 for
(Y,Z) ∈ U ,

and B = DzG
(
Y 0, 0

)
is an M -matrix and U is the region

of attraction. Then the following lemma holds.

Lemma 1. The fixed point Q0 = (Y 0, 0) is a globally
asymptotic stable equilibrium point of (9) if R0 < 1 and
Assumptions (A1) and (A2) are satisfied.

Theorem 3. Suppose R0 < 1, then the worm-free equi-
librium point P 0 is globally asymptotically stable.

Proof. Let Y = (S), Z = (E, I) and Q0 = (Y 0, 0), where

Y 0 =
Λ

µ

(
µ+ θ

η1

)
. (10)

Then,

dY

dt
= F (Y,Z)

=
Λ

µ
(µ+ θ)− η1S −

βSI

S + I + c
− θE − (θ− (1− q)γ)I.

At S = S0, F (Y, 0) = 0, and

dY

dt
= F (Y, 0) =

Λ

µ
(µ+ θ)− η1Y.

As t→∞, Y → Y 0.
Hence Y = Y 0(= S0) is globally asymptotically stable.
Now,

G (Y,Z) =

[
−η2 βS0

σ − (µ+ γ)

] [
E
I

]
−
[
βS0I − βSI

S+I+c

0

]
,

= BZ − Ĝ (Y,Z) ,

where B =

[
−η2 βS0

σ −(µ+ γ)

]
and

Ĝ(Y,Z) =

[
βS0I − βSI

S+I+c

0

]
.

In model system (2), total number of nodes is bounded
by N0

1 = Λ
µ

µ+θ
µ+θ+η where η = max{ω, ξ, qγ}, that is,

(S,E, I) ≤ N0
1 .

Since S0 ≥ N0
1 , we have S0 ≥ N0

1 ≥ S ≥ S
S+I+c and

thus, Ĝ(Y, Z) ≥ 0. Therefore, B is an M -matrix. Hence
(A1) and (A2) are satisfied and by Lemma 1, P 0 is glob-
ally asymptotically stable if R0 < 1.

Following Li and Muldowney [15], we obtain sufficient
conditions for global asymptotic stability of the endemic
equilibrium point. Consider the autonomous dynamical
system:

ẋ = f (x) with x(0, x0) = x0 (11)

where f : D → Rn, D ⊂ Rn open set and simply con-
nected and f ∈ C1(D). Let x∗ be an equilibrium point
of Equation (11) that is, f(x∗) = 0. Assume that the
following conditions hold:

(A3) There exists a compact absorbing set K ⊂ D.

(A4) Equation (11) has a unique equilibrium point x∗ in
D.

We know that if x∗ is locally stable and all trajectories in
D converges to x∗ then it is to be globally stable in D.
Bendixon criterion rule out the existence of non-constant
periodic solutions of Equation (11) for n ≥ 2, that condi-
tions satisfied by f . The classical Bendixson’s condition
divf (x) < 0 for n = 2, is robust under C1 local pertur-
bations of f .

Lemma 2. Assume that conditions (A3), (A4) hold and
Equation (11) satisfies a Bendixson criterion. Then, x∗

is globally stable in D, provided it is stable.
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Let us consider P (x) as

(
n
2

)
×
(
n
2

)
matrix-valued

function that is C1 on D and the matrix Pf has compo-
nents

(pij(x))f =

(
∂pij(x)

∂x

)T
.f(x) = ∇pij .f(x).

Assume that P−1 exists and is continuous for x ∈ K
(the compact absorbing set). The matrix J [2] is the sec-
ond additive compound matrix of the Jacobian matrix J ,
that is J (x) = Df (x). When n = 3, the second additive
compound matrix of J = (aij) is given by [20],

J [2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
Let µ (B) be the Lozinskii measure of B with respect to

a vector norm |.| in RN .N =

(
n
2

)
, defined by µ (B) =

lim
h→0+

|I+hB|−1
h . A quantity q̄ is defined as

q̄ = lim sup
t→∞

sup
x∈K

1

t

∫ t

0

µ (B (x (s, x0))) ds,

where

B = PfP
−1 + PJ [2]P−1.

IfD is simply connected, q̄ < 0 rules out the presence of
any orbit that gives rise to simple closed rectifiable curve
that is invariant for Equation (11) and robust under C1

local perturbations of f near any non-equilibrium point
that is non-wandering. The following global stability re-
sult is given in Li and Muldowney [15].

Lemma 3. Assume that D is simply connected and as-
sumptions (A3) and (A4) hold. Then the unique equilib-
rium point x∗ of Equation (11) is globally stable in D if
q̄ < 0.

Now, we analyze the global stability of the endemic
equilibrium point x∗.

Theorem 4. If R0 > 1, ξ + σ < ω and (1 − q)γ ≥ θ,
then the endemic equilibrium P ∗ of the model system (2)
is globally stable in U .

Proof. From Theorem 2, if the endemic equilibrium point
P ∗ exists, is locally asymptotically stable. From Theo-
rem 1, when R0 > 1, P 0 is unstable. The instability of
P 0 together with P 0 ∈ ∂U is implies to the uniform per-
sistence [6], that is there exists a constant C > 0 such
that:

lim
t→∞

inf x(t) > C, x = (S,E, I).

The uniform persistence together with the boundedness
of U , is equivalent to the existence of a compact set in
the interior of U which is absorbing for the model sys-
tem (2) [10]. Thus, (A3) is verified. Now, the second

additive compound matrix J [2](S,E, I) is given by

J [2] =

 Φ1
β(S+c)S
(S+I+c)2

β(S+c)S
(S+I+c)2 + θ − (1− q)γ

σ Φ2 −θ
0 β(I+c)I

(S+I+c)2 − (µ+ γ + η2)


where

Φ1 = −(η1 + η2)− β(I + c)I

(S + I + c)2
,

Φ2 = −(µ+ γ + η1)− β(I + c)I

(S + I + c)2
.

Let us consider

P = P (S,E, I) = diag

{
1,
E

I
,
E

I

}
.

Therefore,

PfP
−1 = diag

{
0,
Ė

E
− İ

I
,
Ė

E
− İ

I

}
.

Then B = PfP
−1 + PJ [2]P−1

=


Φ1

β(S+c)S
(S+I+c)2

I
E

(
β(S+c)S
(S+I+c)2 + θ − (1− q)γ

)
I
E

σEI
Ė
E −

İ
I + Φ2 −θ

0 β(I+c)I
(S+I+c)2

Ė
E −

İ
I − (µ+ γ + η2)

 .
Let

B =

[
B11 B12

B21 B22

]
,

where

B11 = Φ1 = −
(
η1 + η2 + β(I+c)I

(S+I+c)2

)
,

B12 =
[

β(S+c)S
(S+I+c)2

I
E

(
β(S+c)S
(S+I+c)2 + θ − (1− q)γ

)
I
E

]
,

B21 =

[
σEI
0

]
,

B22 =


Ė
E −

İ
I −

β(I+c)I

(S+I+c)2

−(µ+ γ + η1)
−θ

β(I+c)I

(S+I+c)2
Ė
E −

İ
I − (µ+ γ + η2)

 .
Now, consider the norm |(u1, u2, u3)| = max{|u1| |u2|+

|u3|} in R3, where (u1, u2, u3) denotes vector in R3 and
the Lozinskii measure is denoted by µ with respect to this
norm [17].

µ(B) ≤ sup{g1, g2},
= sup {µ1(B11) + |(B12)| , µ1(B22) + |(B21)|} .

where |B21| |B12| are matrix norms with respect to the L1

vector norm, and µ1 denotes the Lozinskii measure with
respect to the L1 norm.
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Then

g1 = µ1 (B11) + |B12|,

= −
(
η1 + η2 +

β(I + c)I

(S + I + c)2

)
+

β(S + c)S

(S + I + c)2

I

E

+
I

E
max {0, θ − (1− q) γ} ,

≤ −
(
η1 + η2 +

β(I + c)I

(S + I + c)2

)
+

β(S + c)S

(S + I + c)2

I

E
,

[when (1− q) γ ≥ θ]

≤ −η1+
Ė

E
−
[

βS

S + I + c
− β(S + c)S

(S + I + c)2

]
I

E
,

[from steady state of second equation of model system (2)]

=
Ė

E
−η1−

βSI

(S + I + c)2

I

E
,

≤ Ė

E
−µ.

Again,

g2 = |B21|+ µ1 (B22) ,

= σ
E

I
+
Ė

E
− İ

I
− 2µ− γ − θ

+ max {−ω,−(σ + ξ)} ,

=
Ė

E
− µ− θ + max {−ω,−(σ + ξ)} ,

[from steady state of third equation of model system (2)]

≤ Ė

E
− µ− θ, [when ξ + σ < ω]

≤ Ė

E
− µ.

Therefore,

µ (B) ≤ sup {g1, g2} =
Ė

E
− µ.

Along each solution (S(t), E(t), I(t)) of the system with
(S(0), E(0), I(0)) ∈ K, where K is the compact absorbing
set, we have

1

t

∫ t

0

µ (B) ds ≤ 1

t
log

E (t)

E (0)
− µ,

which implies that

q̄ =
lim sup
t→∞

sup
x0 ∈ U

1

t

∫ t

0

µ (B(x(s, x0))) ds ≤ −µ < 0.

Therefore, q̄ < 0 and thus Bendixson criteria is also ful-
filled. Hence the global stability of the endemic or worm-
induced equilibrium point has established.

5 Numerical Simulations

Numerically, Runge-Kutta method is used to simulate the
model system (2) using MATLAB software. The dynam-
ical behaviors of all the three classes S, E and I are ob-
served by considering a set of parameter values and initial
conditions. We have taken initial condition (22, 20, 20)
and parametric values

Λ = 0.4, µ =
1

(65 ∗ 365)
, θ =

1

(2 ∗ 365)
, γ =

1

30
,

ω = 0.6, β = 0.14, c = 10, q = 0.9, ξ = 0.2, σ = 0.1. (12)

The endemic equilibrium point for the vaccination rate
ω = 0.1 is (102.2687, 10.2488, 30.7065) and the worm-
free equilibrium point for vaccination rate ω = 0.9
is (14.8677, 0, 0) and other parameter values are same
as used in (12). The analysis of Figures 2 and 3 un-
der different vaccination rate shows the stability of both
worm-free and endemic equilibrium points that is, for
the cases when R0 < or > 1. We have critically ex-
amined the infectious class I for the different values of
ξ(= 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ) which support the reality that as the

self-prevention techniques of nodes ξ decreases, infection
increases (Figure 4) and the increment in transmission
rate β(= 0.8, 0.12, 0.16, 0.20, 0.24) causes increment in in-
fection (Figure 5) that is infected node increases and sus-
ceptible node decreases (Figure 6) and will be stable. It
is observed from Figure 7, the values of transmission rate
β decreases the susceptible nodes attain its saturation
value, when R0 < 1. We have also observed the evo-
lutions of susceptible nodes for the fraction of recovered
nodes gaining worm-acquired immunity, q (Figure 8) and
observation tells that the susceptible node increases when
the fraction of recovered nodes gaining worm-acquired im-
munity, q(= 0.2, 0.4, 0.6, 0.8, 1.0) increases when β = 0.12
(R0 < 1) but when β = 0.20 (R0 > 1) then the susceptible
nodes attain its saturation value. The above parametric
values given in (12) satisfies our analytical results.

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

Time

N
od

es

Basic Reproduction Number = 0.835798

 

 
Susceptible
Exposed
Infected

Figure 2: Time series of susceptible, exposed and infected
nodes when ω = 0.9



International Journal of Network Security, Vol.20, No.3, PP.515-526, May 2018 (DOI: 10.6633/IJNS.201805.20(3).15) 524

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

Time

N
od

es

Basic Reproduction Number = 1.29968

 

 

Susceptible
Exposed
Infected

Figure 3: Time series of susceptible, exposed and infected
nodes when ω = 0.1
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Figure 4: Dynamical behavior of infected class for differ-
ent values of ξ when ω = 0.1
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Figure 5: Dynamical behavior of infected class for differ-
ent values of β

6 Discussions and Conclusions

An e-epidemic SV EIS model with nonlinear incidence
rate has been proposed for the transmission of worms in
the computer network. Stability analysis and behavior of
the reduced model system (2) have been investigated for
both worm-free and endemic equilibrium points. Local
stability analysis is established by using Routh-Hurwitz
criterion. Characteristics of basic reproduction number
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Figure 6: Dynamical behavior of susceptible class for dif-
ferent values of β when R0 > 1
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Figure 7: Dynamical behavior of susceptible class for dif-
ferent values of β when R0 < 1
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Figure 8: Dynamical behavior of susceptible nodes for
different values of q when β = 0.12 (R0 < 1) and β = 0.20
(R0 > 1)

have been discussed and found that if R0 < 1, WFE
point P 0 is globally asymptotically stable under certain
conditions and worm declines from the computer network,
where as if R0 > 1, the worm-free equilibrium point is un-
stable and worm persists. In Figure 9, the forward tran-
scritical bifurcation occurs at R0 = 1 and it is effectively
eradicate the worms. When the bifurcation parameter R0,
crosses the bifurcation threshold R0 = 1, the endemic
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Figure 9: Transcritical Bifurcation diagram in the plane
(R0, Imax)

equilibrium point enters into the positive orthant. The
vaccination rate reaches its critical value

ωc =
(µ+ θ)

µc
(

σβΛ

(µ+ γ)(µ+ ξ + σ)
− (Λ + µc))

then the basic reproduction number R0 = 1. We have
observed the effect of the vaccination rate ω, on the ba-
sic reproduction number which ultimately affecting the
dynamics of the model system. The optimal vaccine at
critical level is most important factor to effectively eradi-
cate the worm. Hence vaccination rate, ω must be greater
than critical vaccination rate, ωc = 0.531956 to control
worm from the network otherwise, worm persists in the
network.

To study the affect of the parameter q, a fraction of
recovered nodes on the dynamics of the model systems we
find that it does not appear in the definition of R0 and
wc. Due to waning of vaccination, a fraction of recovered
nodes (1 − q)γI moves to the susceptible class directly
and rest via vaccinated class [23]. The effect of q on the
susceptible node for transmission rate β = 0.12 and 0.20
is shown in Figure 8. In self-replicating computer worms
modeling, the nonlinear incidence rate plays a major role
and ensures that the model system can give a reasonable
qualitative description of the worm dynamics.
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