
International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 462

Secure and Efficient Client-Side Data
Deduplication with Public Auditing in Cloud

Storage

Qianlong Dang, Hua Ma, Zhenhua Liu, and Ying Xie
(Corresponding author: Qianlong Dang)

School of Mathematics and Statistics, Xidian University

No.2, South Taibai Road, Xi’an Shaanxi 710071, P.R. China

(Email: xidianqldang@163.com)

(Received Nov. 06, 2018; Revised and Accepted Feb. 7, 2019; First Online June 14, 2019)

Abstract

In this paper, we propose a secure and efficient client-
side data deduplication scheme with public auditing. In
the process of deduplication, the proposed scheme im-
proves the probability that the cloud server detects the
missing blocks by eliminating the aggregated proofs struc-
ture. Meanwhile, we combine the oblivious pseudo-random
function protocol with proxy re-encryption technology to
implement key distribution without online data owners or
the authorized party. Moreover, during public auditing,
proxy re-signature technology is utilized to require only
one auditing tag for each data block. For data dedupli-
cation, the proposed scheme is a zero-knowledge proof
of knowledge assuming that the Discrete Logarithm (DL)
problem is hard. In addition, the symmetric key can not be
recovered by the cloud server or malicious users. And se-
curity analysis indicates that our scheme is secure against
adaptive chosen-message attack under the Computational
Diffie-Hellman (CDH) assumption during public auditing.
Finally, the performance evaluation demonstrates that the
proposed scheme is practical and efficient.

Keywords: Cloud Storage; Key Distribution; Proof of Own-
ership; Public Auditing; Secure Deduplication

1 Introduction

In cloud storage services, clients outsource data to a remote
storage and access the data whenever they need the data.
Recently, owing to its convenience, cloud storage services
have become widespread, and it can provide resource-
constrained users with convenient storage and computing
services [5,16,21]. Although the cloud storage offers many
advantage, it also brings a huge storage burden and some
security challenges such as data integrity [23].

Since cloud storage service is increasingly used, a large
amount of data is gathered into the cloud server. IDC
predicts that the cloud data will reach 44ZB in 2020. A

recent survey conducted by Microsoft [22] indicates that
about 90% of data stored in the cloud are duplicated copies.
Regarding storage efficiency, commercial cloud storage
services, such as Dropbox, Wuala and Bitcasa, adopt
deduplication technique to store one copy of each data and
refer other duplicates to this stored copy. However, several
security threats potentially exist during deduplication [1,
6, 14, 15, 24]. For instance, if a malicious user needs to
gain access to the data that already exists in the cloud
server, he can pass the verification by only owing the
hash value of the data rather than the original data. It is
obvious that the cloud server cannot distinguish whether
user indeed possess the data only through matching its
hash value. Therefore, how to convince the cloud server
that the user indeed possesses original data becomes an
important problem.

As a promising approach, message-locked encryp-
tion (MLE) [3] was used as client-side deduplication
schemes [14, 15]. However, almost all of these schemes
adopt deterministic encryption method and are vulnera-
ble to brute force dictionary attacks. To solve this issue,
some schemes encrypt the data with a randomly selected
symmetric key, and the first uploader distribute the sym-
metric key to subsequent uploaders by adopting the proxy
re-encryption technology. Unfortunately, all existing key
distribution processes require the assistance of online data
owners or the authorized party. In order to improve secu-
rity and efficiency, it is essential to consider how can the
deduplication scheme implement key distribution without
the assistance of online data owners or the authorized
party.

When clients use cloud storage services, they have hopes
of guaranteeing the completeness of cloud storage data [4,
11, 13, 18, 30]. Accordingly, we need an efficient way to
check the integrity of data in remote storage. Clients
decide to authorize the task of auditing to a third party
auditor (TPA), which enables that clients can efficiently
perform integrity verifications even without the local copy

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 463

of data. However, these integrity auditing schemes rarely
consider secure client-side data deduplication. Therefore,
it is essential to combine secure client-side deduplication
with integrity auditing.

In this paper, aiming at solving both storage efficiency
and data integrity, we concentrate on how to design a
secure and efficient client-side data deduplication scheme
with public auditing. Inspired by a proof of ownership
protocol [28] and a key distribution process [6, 28], we
will propose an efficient client-side data deduplication and
public auditing scheme which achieves a better trade-off
between functionality and efficiency through improving
Liu et al.’s auditing scheme [20]. Our main contributions
can be summarized as follows.

• We utilize the aggregated proofs structure and zero-
knowledge proof for proof of ownership, which im-
proves the probability that the cloud server detects
the missing blocks. Meanwhile, we prove that the
proof of ownership scheme is sound, complete and
zero-knowledge.

• The proposed scheme integrates the oblivious pseudo-
random function (O-PRF) protocol with proxy re-
encryption technology to implement key distribution.
In the process of data deduplication, the proposed
scheme does not require the assistance of online data
owners or the authorized party. The process shows
that the symmetric key of data can not be recovered
by the cloud server or malicious users.

• By adopting proxy re-signature technology, subse-
quent uploaders can verify integrity of the cloud stor-
age data in the proposed scheme. We prove that
the proposed auditing scheme can guarantee the cor-
rectness and unforgeability. Finally, the performance
evaluation demonstrates that the proposed scheme is
practical and efficient.

The rest of this paper is organized as follows. A review
about some related works is given in Section 2. Some
preliminaries are presented in Section 3. Section 4 defines
system and security model. The concrete construction
of secure and efficient client-side deduplication scheme
with public auditing is detailed in Section 5. Section 6
analyzes the security of our scheme. Section 7 presents the
performance evaluation. Finally, we conclude the paper
in Section 8.

2 Related Works

With the development of cloud computing, a rising num-
ber of enterprises and organizations choose to outsource
their data to the cloud server. Then, the large amount of
data is gathered in the cloud server, which will bring huge
storage overhead to the cloud server. Therefore, client-
side deduplication technology is introduced to solve data
redundancy problems. During a client-side deduplication
system, after receiving the hash value of data from the

user, the cloud server checks whether the duplicate exists
in cloud storage. Nonetheless, Halevi et al. [10] explained
several security attacks that may occur in client-side dedu-
plication systems. Moreover, Halevi et al. [9] proposed
the concept of proof of ownership (PoW). The purpose of
proof of ownership is to better verify that a client owns
the entire data instead of owning partial data. Some schol-
ars have proposed a variety of PoW schemes [8, 25–27].
However, when data ownership is verified, the existing
schemes are based on the hash of the data rather than the
original data. That is to say, the clients could be accepted
by the cloud server as data owners with the hash of the
data, even if they do not have original data. To address
this issue, Yang et al. [28] verified the data ownership by
the original data block. Nevertheless, this scheme has a
low probability of detecting missing blocks.

The vast majority of client-side deduplication
schemes [14,15] adopted message-locked encryption tech-
nology to achieve data deduplication. However, these
schemes are vulnerable to brute force dictionary attacks.
Yang et al. [28] presented a scheme that the first uploader
encrypts the data by a random symmetric key and utilizes
the proxy re-encryption technology to distribute symmet-
ric keys to subsequent uploaders. This scheme requires the
online data owner to assist key distribution. In addition,
Ding et al. [6] introduced an authorized party to complete
key distribution in the client-side deduplication scheme.

When a client stores data in the cloud server, the user
loses the right of managing the data. Consequently, it is
very vital for users to check the integrity of cloud storage
data in time. Recently, some scholars have proposed a vari-
ety of auditing schemes [7,12,29]. However, these schemes
fail to achieve secure deduplication. Li et al. [17] proposed
an integrity auditing scheme for encrypted deduplication
storage, which introduced a third-party cluster to generate
the same signature tag for duplicate data, but brought
some data privacy issues. In order to resolve this problem,
Liu et al. [20] used the MLE and proxy re-signature to
actualize the deduplication of auditing tags among users,
which can protect data privacy and generate one tag for
the identical data block. However, due to the adoption
of message-locked encryption technology, this scheme is
vulnerable to brute force dictionary attacks. In addition,
this scheme adopts server-side deduplication, which causes
huge network bandwidth consumption.

3 Preliminaries

We now explain some preliminary notions that will form
the foundations of our scheme.

3.1 Bilinear Pairings

Let G1 and GT be two multiplicative cyclic groups of
the same prime order q. Let e : G1 ×G1 → GT denote a
bilinear map [28] constructed with the following properties:

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 464

1) Bilinearity: For all a, b ∈ Z∗q and g1, g2 ∈ G1,

e(ga1 , g
b
2) = e(g1, g2)ab.

2) Non-degeneracy: There exists a point g1 such that
e(g1, g1) 6= 1.

3) Computability: e(g1, g2) for any g1, g2 ∈ G1 can be
computed efficiently.

3.2 Complexity Assumptions

Definition 1. (Discrete Logarithm (DL) problem [6])
Given g ∈ G1 and y = gx, where x are selected uniformly
at random from Z∗q , it is hard to get x.

Definition 2. (Computational Diffie-Hellman (CDH)
problem [6]) Given a group G1 with generator g and el-
ements gx, gy ∈ G1, where x, y are selected uniformly at
random from Z∗q , it is hard to compute the value of gxy.

3.3 Oblivious Pseudo-Random Function
Protocol

Oblivious pseudo-random function protocol (O-PRF proto-
col) is introduced in DupLESS [2]. This protocol generates
secret value by interacting between the key server and the
user instead of deriving the secret value from the data
directly.

Key Server User

moddy x Ndd

*

Nr *

N

()h H m

modex h r Nee

1 modz y r N11

()G z

x

y

Figure 1: O-PRF protocol

Figure 1 illustrates the O-PRF protocol based on RSA
blind signatures. The key server has secret key d and
public key e where ed ≡ 1 mod Φ(N). H : {0, 1}∗ → Z∗N
and G : Z∗N → {0, 1}∗ are two secure hash functions.
The interaction process is as follows. (1) The uploader
calculates the hash value h = H(m) of the data and
selects a random value r ∈ Z∗N . Moreover, the uploader
computes the blinded hash x = h · re mod N and sends
x to the key server. (2) Upon receiving x, the key server
computes y = xd mod N and sends y to the uploader. (3)
The uploader calculates y · r−1 mod N and obtains secret
value z. Finally, the uploader computes the secret value
π ← G(z).

The cloud server does not have the hash value h of
data, so it cannot generate the secret value π. Moreover,
the secret value generation process will not disclose any
information. A malicious user who does not have a secret

key d, therefore, cannot generate secret value π. It allows
encryption to be secure against the brute force attacks
even for predictable message set.

3.4 Aggregated Proofs Structure

During the verification process, the aggregated proofs [19]
can improve verification efficiency and save network band-
width. By using the idea of aggregated proofs, we design
the aggregated proofs structure (As shown in Figure 2).
The first uploader uploads the original proofs to the cloud
server. Firstly, the original proofs are multiplied by the se-
lected coefficient to obtain the first-level proofs. Secondly,
the second-level proofs are generated by multiplying two
adjacent terms in the first-level proofs. Thirdly, the third-
level proofs are generated by multiplying two adjacent
terms in the second-level proofs. Finally, the j-level proofs
are calculated.

First-Level Proofs

Second-Level Proofs

11 2(, , , ,)11 2 n nm mm m
g g g g

1 11 1 2 2(, , ,)1 11 11 11 11 1 2 2 n n n na m a ma m a m
g g g g

2

1 1())1 1

2

)1 11 11 11 11 1

2 n

i i i i

i i n

a m a m

g g

Original Proofs

Jth-Level Proofs

12

11 2(, ,)

1

, ,)1 21 21 21 21 2

2

)1 2 11

2 1

1 2

2 j n

i ii i
j

i i n

a ma m

g g

Figure 2: Aggregated proofs structure

In the PoW protocol, many scholars adopt the Merkel
hash tree to verify ownership of the data. These schemes
do not verify the data ownership based on accessing of the
original data. In other words, the verification is based on
the Merkle hash tree which is built over one hash of the
original data rather than the original data. Therefore, a
malicious user could pass the PoW verification of client-
side deduplication if he could get the hash value of the
data. However, the aggregated proofs structure verifies
the data ownership by the original data block. Moreover,
the proposed scheme improves the detection rate and
saves network bandwidth by using the aggregated proofs
structure.

4 Problem Statement

4.1 System Model

The system model of the proposed scheme is described
as Figure 3, which includes five entities: cloud service
provider, key server, third party auditor, first uploader
and subsequent uploaders.

• Cloud Service Provider (CSP): The CSP stores
the encrypted data uploaded by the first uploader and
performs deduplication operations with subsequent

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 465

Upload data

 Auditing

Deduplication
First Uploader

Key Server

Third Party

Auditor

Subsequent Uploaders
Cloud Service

Provider

Figure 3: System model of our scheme

uploaders. In addition, when uploaders delegate a
third party auditor to audit cloud storage data, the
CSP generates corresponding auditing proofs.

• Key Server (KS): In the O-PRF protocol, upon
receiving the blinded hash value from the uploader,
the KS signs it using the oblivious pseudo-random
function. As a result of the interacting, the ciphertext
is secure against the brute-force attack by known set.

• Third Party Auditor (TPA): When the uploader
sends auditing delegation, the TPA invokes the in-
tegrity auditing protocol by sending the CSP a chal-
lenge. On receipt of the proof from the CSP, TPA
verifies the target data integrity and notifies the client
of the result.

• First Uploader: The first uploader interacts with
the KS to generate a secret value of the data by the
O-PRF protocol. Then, the first uploader generates
ciphertext and uploads it to the CSP. When the first
uploader wants to check the integrity of the cloud
storage data, he sends the auditing delegation to the
TPA.

• Subsequent Uploaders: The subsequent uploaders
interact with the KS to generate a secret value of
the data by the O-PRF protocol. Moreover, the sub-
sequent uploaders perform deduplication operations
with CSP and send the auditing delegation to TPA.

4.2 Threat and Security Model

We give the threat model of the proof of ownership process
and the key distribution process. Moreover, the security
model of integrity auditing scheme is defined.

4.2.1 Threat Model

The existing deduplication schemes [6,28] did not construct
a formal security model, but only gave some threat models.
Therefore, the threat model for a malicious user and the
cloud servers is constructed as follows.

In PoW protocol, a malicious user is to pass the PoW
challenge for a message m while he only knows some
partial information of m. Suppose that the malicious user
possesses several data blocks and the hash value of m .
Therefore, the malicious user can attempt to forge proofs
for passing the PoW challenge. On the other hand, the
cloud server wants to get some information about the data
during the ownership verification process.

In key distribution process, a malicious user owns the
secret value of the data, but he is an unauthorized user.
The malicious user can attempt to get the symmetric key
of the data. Moreover, since the cloud server re-encrypts
the ciphertext of the data, the cloud server also attempts
to obtain the symmetric key of the data.

4.2.2 Security Model

As for the security of integrity auditing, similar to the
existing definition [20], we consider the probability that
the cloud server can convince the user that the cloud
storage data is stored correctly while the cloud storage
data has been corrupted or deleted. We say that the
proposed scheme is secure against an adaptive chosen-
message attack. The specific process of this game is as
follows.

Setup: We divide users into normal users and malicious
users. For the l normal users and l′ malicious users
in the system, the challenger performs KeyGen algo-
rithm to generate user-associated public/private key
pairs (pknu, sknu)nu∈[1,l] and (pkmu, skmu)mu∈[1,l′].
Finally, the normal users’ public keys and the ma-
licious users’ public/ private keys are sent to the
adversary A.

Query 1: The adversary A can adaptively query Sec-
ValGen to obtain message-related public/private key
pairs (pkπ′ω , π

′
ω)ω∈[1,o′] for o′ data. Then, A queries

Rekey and gets re-signature keys rk′nu,m and rk′mu,m.
Finally, A adaptively queries TagBlock as follows.

The adversary A chooses a block E′1 and sends it to
the challenger for the tag under message-related public
key pkπ′ω . The challenger calls TagBlock algorithm
and sends T ′1,ω back to A. A continually queries
the tags on blocks E′2, . . . , E

′
n′ under pkπ′ω , and the

challenger responds T ′2,ω, . . . , T
′
n′,ω accordingly. In

the end, A stores the blocks and their tags.

Query 2: The adversary A can adaptively query Sec-
ValGen to obtain message-related public key
(pkπ′ω)ω∈[1,o] for o data. A then queries Rekey and
gets re-signature keys rk′nu,m for (1 ≤ nu ≤ l, 1 ≤
ω ≤ o). Finally, A adaptively queries TagBlock on
blocks E1, E2, . . . , En as the case in query 1.

Challenge: The challenger requests A to provide a proof
of possession for {Ei}i∈I⊆[1,n] determined by a chal-
lenge Chal under the user public key pknu.

Forge: The adversary A outputs a possession proof P .

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 466

If CheckProof returns 1, then the adversary A wins this
game.

Definition 3. We say that a data integrity auditing
scheme is secure, if for any probabilistic polynomial time
adversary A who does not possess all of the challenged
data blocks, the probability that A succeeds in the above
game is negligible.

4.3 Working Graphs

As shown in Figure 4, we describe in detail the whole
process of our scheme.

Initialization

Deduplication check

Deduplication

Proof of ownership

Key distribution

Decryption

Auditing

Uploaddata
No

Yes

Figure 4: The working graphs of our scheme

In the initialization phase, the system generates the
public parameters. The cloud server and the uploader
generate their key pairs. In addition, uploaders interact
with the key server to generate a secret value of the data.
When a uploader uploads a tag to the cloud server, the
cloud server performs deduplication detection on the data.
If the data does not exist in cloud server, this uploader is
the first uploader and uploads the data to the cloud server.
Otherwise, this uploader is subsequent uploader and goes
into the deduplication phase. The proof of ownership
protocol aims to verify that the subsequent uploader indeed
owns the original data. When the subsequent uploader
passes the proof of ownership protocol, the cloud server
distributes the symmetric key to subsequent uploader
by using proxy re-encryption technology. Because the
first uploader and subsequent uploader are data owners,
they can decrypt the ciphertext to get the plaintext data.
Moreover, the data owners authorize a third party auditor
to audit the integrity of the cloud storage data.

5 Proposed Construction

In this section, we put forward a secure and efficient client-
side data deduplication scheme with public auditing. The
proposed scheme consists of five phases: initialization,
upload, deduplication, decryption, and auditing.

5.1 The Initialization Phase

The system runs the Setup algorithm and generates the
public parameters. Moreover, the CSP and the uploader
generate their key pairs by running the KeyGen algorithm.
In addition, uploaders interact with the key server to
generate secret value of the data by running the secret
value generation (SecValGen) algorithm. The details are
as follows.

Setup: Let p, q be two large primes. Due to the property
of safe primes, there exist two primes p′ and q′ that
satisfy that p = 2p′ + 1, q = 2q′ + 1. We compute
n = p ∗ q and choose generator g with order λ =
2p′q′, which can be chosen by selecting a random
number ς ∈ Z∗n2 and computing g = −ς2n. The
value λ can be used for decryption, but we choose to
conceal and protect it from all parties. In addition,
the system chooses two groups G1 and GT of a prime
order with bilinear map e : G1 × G1 → GT . The
system parameters are random generators v ∈ G1 and
Z = e(v, v) ∈ GT . Then, it randomly chooses secure
hash functions H1 : {0, 1}∗ → Z∗n, H2 : {0, 1}∗ → G1,
H3 : Z∗n → {0, 1}∗. The system public parameters
are pars = (G1, GT , n, g, Z,H1, H2, H3).

KeyGen: The CSP and the uploader j generates their
key pairs: (skCSP , pkCSP) = (a, va) and (skj , pkj) =
(uj , v

uj) respectively. Besides, the uploader j selects
a random number xuj

∈ Z∗n as his secret value.

SecValGen: The uploader interacts with the key server
to generate a secret value of the data by the O-
PRF protocol [21]. The O-PRF protocol is based
on RSA blind signatures. The key server has se-
cret key d and public key e where ed ≡ 1 mod Φ(n).
H1 : {0, 1}∗ → Z∗n and H3 : Z∗n → {0, 1}∗ are two
secure hash functions. The interaction process is as
follows.

1) The uploader calculates the hash value h = H1(m) of
the data and selects a random value r ∈ Z∗n. Moreover,
the uploader computes the blinded hash x = h ·
re mod n and sends x to the key server.

2) Upon receiving x, the key server computes y =
xd mod n and sends y to the uploader.

3) The uploader calculates y · r−1 mod n and obtains
secret value z. Finally, the uploader computes a secret
value π ← H3(z).

Then, the uploader announces that it has a certain data
via a tag. If the data does not exist in CSP, the uploader

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 467

goes into the upload phase. Otherwise, the uploader goes
into the deduplication phase.

5.2 The Upload Phase

The first uploader performs an upload task that includes
Encrypt algorithm and TagBlock algorithm. In this pro-
cess, the first uploader generates the data ciphertext, the
data tag, the ciphertext of symmetric key, the original
proofs of data, and the auditing tag of data block. Finally,
the first uploader uploads these information to the cloud
server.

Encrypt: The encryption algorithm is divided into four
parts, as shown below.

1) The first uploader generates the data ciphertext E =
Enck(m) using a random symmetric key k.

2) The first uploader computes the data tag T = H1(m).

3) The first uploader chooses two random values r1 and
r2, and then encrypts symmetric key k using the pub-
lic keys pkCSP and the secret value π. The ciphertext
of symmetric key k is denoted as: C = {C1, C2, C3} =
{(1 + k ∗ n)gH1(Z

r1)∗r2 mod n2, gr2 mod n2, pkπr1CSP }.

4) The first uploader divides the data m into n
blocks (i.e., m = {m1, . . . ,mn}), and calculates
the original proofs: IPsi = g−mi(modp), IPs =
(IPs1, . . . , IPsn).

TagBlock: The first uploader computes data integrity
tags. In particular, he splits E into n blocks (i.e.,
E = {E1, E2, . . . , En}) and further divides each block
Ei into s sectors (i.e., Ei = {Ei,1, Ei,2, . . . , Ei,s}).
Among them g1, g2, . . . , gs are s elements in G1. For
each block Ei, the first uploader computes Ti =
[H2(IDC ‖ i) ·

∏s
j=1 gj

Ei,j]π ∈ G1.

5.3 The Deduplication Phase

If a data announced by the first uploader in the initial-
ization phase exists in the cloud server, the subsequent
uploaders go into the deduplication phase and run the
proof of ownership protocol. When the subsequent up-
loader passes the proof of ownership protocol, the cloud
server generates the re-encryption key and re-encrypts the
ciphertext of symmetric key.

5.3.1 The Proof of Ownership Protocol

The proof of ownership protocol aims to provide a frame-
work for the cloud server to verify that the subsequent
uploader indeed owns the data rather than part of it. This
phase includes the original proofs generation (OPsGen)
algorithm, the coefficients generation (CosGen) algorithm,
the final proofs generation (FPsGen) algorithm, and the
proofs verification (ProVer) algorithm.

OPsGen: As shown in the encryption process, the first
uploader generates the original proofs of the data:
IPsi = g−mi(modp), IPs = (IPs1, . . . , IPsn).
Then he sends these proofs to the cloud server. Af-
ter receiving the original proofs, the cloud server
aggregates these proofs using the aggregated proofs
structure. As shown in Subsection 3.4.

CosGen: The subsequent uploaders utilize this algorithm
to generate the coefficients according to the Schnorr’s
Identification Protocol [28]. Given µ random number
ri, 1 ≤ ri ≤ q − 1, the subsequent uploaders compute
the Coefficients: commiti = gri(modp), commit =
(commit1, . . . , commitµ), and send these Coefficients
to the cloud server.

FPsGen: The subsequent uploaders run this algorithm
to generate the final proofs for cloud server’s chal-
lenge. Let Chal = (θ, γ, a1, a2, . . . , an), 1 ≤ γ ≤ 2α

be selected uniformly at random, µ be the commit
generated by Coefficients and θ, a1, a2, . . . , an are a
set of random integers. The cloud server allows the
subsequent uploader to challenge the jth-level ag-
gregated proofs and sends the challenge block index
function ϕθ(·) to the subsequent uploader. According
to the block index function and index number, the
subsequent uploader calculates the challenge set of
the data. Then, the subsequent uploader calculates
the final proofs:

FPst = γ

2j−1∑
i=1

aimi + rt(modq),

FPs = (FPs1, . . . , FPsb n

2j−1 c).

ProVer: The cloud server receives the final proofs FPs
from the subsequent uploader. According to the ag-
gregated proofs structure, challenge set Chal and
Coefficients commit, the cloud server computes the
product representation of the IPs and FPs: DPst =
gFPst × IPstγ(modp). If DPst = committ, output
true, the proof is recognized by the cloud server. Oth-
erwise, output false, the proof is fake.

5.3.2 The Key Distribution Process

The cloud server generates the re-encryption key and the
re-encryption ciphertext. This process includes the re-
encryption key generation (RekGen) algorithm and the
re-encryption (ReEnc) algorithm.

RekGen: The cloud server wants to delegate the sub-
sequent uploader j by publishing re-encryption key
rkCSP→j = vuj/a.

ReEnc: The cloud server computes ciphertext C ′3 =
e(pkπr1CSP , rkCSP→j) = Zπr1∗uj , and sets C ′2 = C2

and C ′1 = C1. Finally, the cloud server generates the
re-encryption ciphertext C ′ = {C ′1, C ′2, C ′3}.

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 468

5.4 The Decryption Phase

When the data owner proposes a decryption request, the
cloud server sends the ciphertext to the data owner. Then,
the Decrypt algorithm is as follows.

Decrypt: Upon receiving the encrypted data tuple
(E,C ′), the data owner can directly decrypt it to
obtain the original data. The specific steps for de-
cryption are as follows.

1) The data owner computes C ′′3 = H1((C ′3)1/πuj) =
H1(Zr1).

2) The data owner obtains the symmetric key k =
L(C1/(C

′
2)C

′′
3 mod n2) where L(u) = (u− 1)/n.

3) The data owner obtains the data m = Deck(E) using
the symmetric key k.

5.5 The Auditing Phase

During the auditing process, the proposed scheme adopts
the proxy re-signature technology to achieve efficient audit-
ing. Firstly, the user computes re-signature keys. Secondly,
the cloud service provider generates corresponding audit-
ing proofs by using cloud storage data and re-signature
keys. Finally, the third party auditor verifies the integrity
of the target data by the user’s public key and auditing
proofs. This process includes the re-signature keys genera-
tion (Rekey) algorithm, the generation proof (GenProof)
algorithm, and the check proof (CheckProof) algorithm.

Rekey: It is performed by user to compute re-signature
keys, which enables the cloud to prove the integrity
of the challenged data under user-associated pri-
vate/public key pair. The user j computers du,m =
uj · (π)−1 + β, hu,m = β · xuj

and also sets rku,m =
(du,m, hu,m), where β is a random number in Z∗n.

GenProof: The third party auditor chooses a random
c-element subset I ⊂ [1, n] along with c random co-
efficients in Z∗n. Let Q = {i, vi}i∈I be the set of
challenge index-coefficient pairs. After receiving Q
from the third party auditor, the cloud server sends a
proof P = (σ, σ1, ρ1, . . . , ρs) back to the third party

auditor, where σ =
∏

(i,vi)∈Q T
du,m·vi
i ∈ G1, σ1 =∏

(i,vi)∈Q T
hu,m·vi
i ∈ G1 and ρj =

∑
(i,vi)∈Q vi ·Ei,j ∈

Z∗n for 1 ≤ j ≤ s.

CheckProof: The third party auditor sends σ1 to user

and obtains σ′1 = σ
x−1
u

1 . The third party auditor then
accepts the proof if the following equation holds:

e(
σ

σ′1
, g) = e(

∏
(i,vi)∈Q

H2(IDC ‖ i)vi ·
s∏
j=1

g
ρj
j , pku)

6 Security Analysis

In this section, we analyze security of the proposed scheme.
The security consists of two parts: The data deduplication
phase and the data auditing phase.

6.1 Data Deduplication Phase

In this case, we mainly concentrate on the security of the
PoW protocol, the O-PRF protocol, and the ciphertext of
symmetric key.

Theorem 1. The proposed proofs of ownership (PoW)
protocol is a zero-knowledge proof of knowledge assuming
that the discrete logarithm is hard.

Proof. A zero-knowledge proof protocol satisfies the fol-
lowing three properties: completeness, soundness and
zero-knowledge. Assuming that the discrete logarithm
problem is hard means that no adversary can compute
the secret value mi from the original proofs IPsi, where
IPsi = g−mi(modp). In the process of aggregating
proofs, the cloud server aggregates the original proofs
into the j-level proofs. For the j-level proofs, no adversary
can compute the secret information mi.

Completeness. Completeness means that a client has
the original data blocks, and both the client and cloud
server follow the instructions, then the cloud server
must accept the client. This is because

DPst = gFPst × (IPst)
γ mod p

= g
γ

2j−1∑
i=1

aimi+rt
· (g
−

2j−1∑
i=1

aimi

)γ mod p
= grt mod p
= committ

Soundness. Soundness means that if a client does not
have the original data blocks, then regardless of what
the client does, the cloud server will pass the proofs
with probability that it can be ignored. Assuming
the client is a cheater, he does not have the correct
original data blocks mi. committ is transmitted in
iteration, the server, after picking γ ∈ {0, 1}α, is
waiting for:

FPst = logg(committIPst
γ mod p)(modq)

This equation shows that, for fixed committ and IPst,
there will be 2α distinct values for FPst which correspond
to 2α distinct values for e. So the client guesses probability

for each −
2j−1∑
i=1

aimi is 2−α. Here let
⌊

n
2j−1

⌋
be equal to

η. In PoW protocol, the client interacts with the server η
times. If all the η commitments are admitted, the cloud
server marks this client as the owner of this data. The
false positive probability for the verify protocol is 2−ηα.

Zero-knowledge. For a perfect zero-knowledge proof
protocol, which does not need to negotiate between

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 469

the prover and the verifier. We introduce a simulator
that produces the proof transcript of simulation. Dur-
ing the proof of ownership of this document, the simu-
lator effectively generates the proof transcript without
interacting with the real client, and the transcript gen-
erated by these simulators is indistinguishable from
the actual transcript.

For common input IPst, we can construct a polynomial-
time (in |p|) simulator S as follows.

1) S initializes transcript as an empty string;

2) (a) S picks FPst ∈ Zq; (b) S picks γ ∈ {0, 1}α; FPst
must be uniform in Zq for either cases of γ ∈ {0, 1}α
and independent of the common input IPst; (c) S
computes committ ← gFPstIPst

γ mod p; commit
must also be uniform and independent of the com-
mon input IPst; (d) Transcript ← Transcript ‖
committ, γ, FPst.

Clearly, Transcript(committ, γ, FPst) can be produced
by S in polynomial time, and the elements in it have dis-
tributions which are the same as those in a real proof tran-
script. Therefore, the protocol is perfect zero-knowledge.

In summary, the data sent from the client in a run is
uniform, they can tell the cloud server that there is no
information about the client’s private input bi. Regardless
of how the server selects the random challenge bits, the
elements in the client’s records are uniform, so even if the
cloud server is dishonest, the protocol is a perfect zero
knowledge.

Theorem 2. The O-PRF protocol is an interactive proto-
col between the uploader and the key server. The key server
will not obtain the secret value π. In addition, during the
O-PRF protocol, no information will be revealed.

Proof. In the O-PRF protocol, the uploader blinds the
hash value H1(m) of the data and sends it to the key
server which can not obtain the hash value H1(m) of data.
Therefore, the key server will not obtain the secret value π.
In the process of interaction between the uploader and the
key server, the uploader blinds the hash value H1(m) and
sends x to the key server. The key server signs the blinded
value x and sends y to the uploader. Because x and y are
blinded by the random value r, the O-PRF protocol will
not leak any information.

Theorem 3. If the DL problem holds in group G1 and
the CDH problem holds in group Z∗n2 , then the ciphertext
of symmetric key is secure in the proposed scheme.

Proof. The ciphertext of the symmetric key is C =
{C1, C2, C3} = {(1 + k ∗ n)gH1(Z

r1)∗r2 mod n2, gr2 mod
n2, pkπr1CSP }. The cloud server and unauthorized users
would like to obtain the symmetric key k.

The secret value π is obtained by the O-PRF proto-
col between the uploader and the key server. According
to Theorem 2, the cloud server can not obtain the se-
cret value π. Because the DL problem is difficult, it is

hard to get vr1 from pkπr1CSP = vπr1a. Thus, the cloud
server can not obtain the value of H(Zr1). The cloud
server re-encrypts the ciphertext of the symmetric key,
the obtained ciphertext is: C ′ = {C ′1, C ′2, C ′3} = {(1 +
k ∗ n)gH1(Z

r1)∗r2 mod n2, gr2 mod n2, Zπr1∗uj}. Unautho-
rized users with a secret value of π also can not obtain
the value H(Zr1), because he can not obtain the private
key uj of user j. Bounded by the difficulty of the CDH
problem, the cloud server and unauthorized users can not
get gH1(Z

r1)∗r2 from gH1(Z
r1) and gr2 . Hence, they can

not obtain the symmetric key k. In addition, a malicious
user who does not have a secret key d, therefore, cannot
generate secret value π. It allows encryption to be secure
against the brute force attacks even for predictable mes-
sage set. Therefore, the key distribution of the proposed
scheme is secure.

6.2 Data Auditing Phase

In this case, we focus on the correctness and unforgeability
of the integrity auditing scheme.

Theorem 4. The cloud server is able to generate a proof
that passes the verification if all the challenged blocks and
their integrity tags are correctly stored.

Proof. Proving the correctness of our integrity auditing
scheme for data is equivalent to proving that equation

e(σσ′1
, g) = e(

∏
(i,vi)∈Q

H2(IDC ‖ i)vi ·
s∏
j=1

g
ρj
j , pku) hold. Ac-

cording to the properties of the bilinear map, the correct-
ness can be verified by the following calculations.

e(σσ′1
, g)

= e(
∏

(i,vi)∈Q T
du,mvi
i · (

∏
(i,vi)∈Q T

ru,mvi
i)

−1
, g)

= e(
∏

(i,vi)∈Q T
ujπ
−1vi

i , g)

= e(
∏

(i,vi)∈Q [H2(IDC ‖ i) ·
∏s
j=1 g

Ei,j

j]uj ·vi ,g)

= e(
∏

(i,vi)∈Q [H2(IDC ‖ i)vi ·
∏s
j=1 g

viEi,j

j],pku)

= e(
∏

(i,vi)∈Q [H2(IDC ‖ i)vi ·
∏s
j=1 g

ρj
j],pku)

Theorem 5. Under the CDH assumption, the integrity au-
diting scheme is secure against an adaptive chosen-message
attack in the random oracle model.

Proof. Assuming that the CDH assumption holds in G.
If there is a polynomial time adversary A, he has the
advantage AdvA to break our scheme. Then, we show
how to construct an adversary B that uses A to solve the
CDH problem. That is, given a CDH tuple (g, ga, g0),
the adversary B is able to compute ga0 with non-negligible
probability. In the process of proof, the adversary B is the
challenger for the adversary A. The process of proof is as
follows.

Setup: The normal user-associated public keys are set
to be pknu = gasnu for nu ∈ [1, l], where snu are
randomly chosen from Z∗q . Moreover, the adversary

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 470

B sets gj = g
yj
0 for 1 ≤ j ≤ s. Besides, B chooses

xnu randomly from Z∗q . For malicious users, B se-
lects random numbers xmu, smu (mu ∈ [1, l′]) and
computes the public keys pkmu = gsmu . Finally,
the system parameters, the normal user public keys
pknu(nu ∈ [1, l]), the malicious public and private key
pairs (pkmu, smu, xmu)(mu ∈ [1, l′]) are given to the
adversary A.

Query 1: There are four types of queries that A can
request: oracle SecValGen, oracle Rekey, oracle Tag-
Block and the hash function H1.

1) Oracle SecValGen: if π′ω has not been queried before,
B returns a random number x′w ∈ Z∗q to A and records
it in list DataKey. Otherwise, B obtains x′w from list
DataKey and responds it to A.

2) Oracle Rekey: for malicious user public key pkmu,
the adversary B returns (x′w)−1 · smu + rmu,w′ · xmu,
where rmu,w′ is a random in Z∗q . For normal user, B
returns two random numbers to A.

3) Oracle TagBlock: if IDE′i
‖ Vi has not been queried

before, the adversary B chooses a random element
from G1 as the value of H1(IDE′i

‖ Vi) and then

computes T ′i = [H1(IDE′i
‖ Vi) ·

∏s
j=1 g

Ei,j

j]x
′
w for the

query. Finally, B records T ′i in list and returns
H1(IDE′i

‖ Vi) for the corresponding hash query. Oth-
erwise, the adversary B returns T ′i from list to the
adversary A.

Query 2: There are three types of queries that A can
request: oracle Rekey, oracle TagBlock and the hash
function H1.

1) Oracle Rekey: The adversary B returns (x−1w · snu +
rnu,w, xnurnu,w) to A, where rnu,w is a random num-
ber in Z∗q .

2) Oracle TagBlock: if IDE′i
‖ Vi has not been queried

before, the adversary B computes Ti = gaxwri and
records it in list. Finally, B returns Ti and H1(IDE′i

‖
Vi) = gri∏s

j=1 g
Ei,j
j

for the corresponding hash query. It

is easily observed that Ti is a valid tag under the
public key pkπ. If {Ei, IDEi

‖ Vi} is in list, the
adversary B obtains Ti and returns it to the adversary
A.

Challenge: The adversary B requests the adversary A to
prove the integrity of all blocks E1, . . . , En by sending
coefficients a1, . . . , an under the public key pku.

Forge: We assume that the adversary A has deleted or
modified one or more blocks. Let ρ′j =

∑n
i=1 aiEi,j

be the real result. The adversary A returns a
proof P = (σ, σ1, ρ1, . . . , ρs) satisfying e(σσ′1

, g) =

e(
∏

(i,vi)∈Q
H2(IDC ‖ i)vi ·

s∏
j=1

g
ρj
j , pku) but there ex-

ists at least one value ρj = ρ′j . Since P is a valid

proof under public key pku, we have

σ
σ′1

= [
∏n
i=1H1(IDC ‖ Vi)ai ·

∏s
j=1 g

ρj
j]asu

= (
∏n
i=1 (H1(gri∏s

j=1 g
mi,j
j

)
ai ·
∏s
j=1 g

ρj
j)asu

= (
∏n
i=1 g

riai ·
∏s
j=1 g

ρj−ρ′j
j)asu

= gasu
∑n

i=1 riai(g
su

∑s
j=1 yj(ρj−ρ

′
j)

0)a

From the above equation, the adversary B can easily com-

pute ga0 = (σ

σ′1g
asu

∑n
i=1

riai
)[su

∑s
j=1 yj(ρj−ρ

′
j)]
−1

.

If the adversary A does not possess all the sectors Ei,j
(1 ≤ i ≤ n, 1 ≤ j ≤ s), we analyze the probability that
the adversary A successfully forges the values satisfying
Pj = P ′j for (1 ≤ j ≤ s). Due to Theorem 2 in [20], we can
know that the adversary A forges a valid value Pj = P ′j is
negligible.

Finally, if there is a polynomial time adversary A that
has the advantage AdvA to break our scheme, the adver-
sary B can use A to solve the CDH problem. Since the
CDH problem is a difficult problem, the probability that
the adversary A breaks our scheme is negligible. There-
fore, the proposed scheme is secure against an adaptive
chosen-message attack in the random oracle model under
the CDH assumption.

7 Performance Evaluation

In this section, we will conduct the performance evalua-
tion including four aspects, the detection rate analysis,
functionality comparison, efficiency comparison, and ex-
perimental comparison.

7.1 Detection Rate Analysis

Since Ding et al.’s scheme [6] and Liu et al.’s scheme [20]
do not verify the data ownership based on the original
data, we only make the detection rate analysis between
Yang et al.’s scheme [28] and our scheme.

Suppose a client claims the ownership of an n-block
data m, but actually he owns f out of n blocks of data m.
Let’s examine the probability that the cloud server accepts
the client as the data owner. We use px to indicate the
probability that the cloud server detects at least one miss-
ing block. We set x as the number of missing data blocks.
During the proof of ownership process, if the missing data
block on the client is not detected, the cloud server will
accept the client’s ownership of the data. Therefore, the
probability that the client is accepted by the cloud server
is 1− px. Since

px = p{x ≥ 1} = 1−
Cµn−x
Cµn

= 1−
µ−1∏
i=0

n− x− i
n− i

Based on the knowledge of probability theory, we can
calculate: 1− px ≈ (1− x

n)µ.
From the above equation, we can derive: µ ≈⌈

log(1− x
n)(1− px)

⌉
.

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 471

Table 1: Functionality comparison between our scheme and other schemes

Schemes Ding et al. [6] Liu et al. [20] Yang et al. [28] Our scheme
Secure proof of ownership No No Yes Yes

High detection rate No No No Yes
Data owner offline Yes No No Yes

No authorized party No No Yes Yes
Against brute-force attacks Yes No Yes Yes

Public auditing No Yes No Yes
One tag for each block No Yes No Yes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

500

Detection Rates

B
lo

ck
 N

um
be

r

Scheme [26]
Our scheme

Figure 5: Challenged block numbers vary with detection
rates

The proposed scheme aggregates original proofs and
verifies the subsequent proofs. With the same number of
verifications, we compare the detection rate of our scheme
and Yang et al.’s scheme [28]. Figure 5 is the relationship
between the detection rate and the number of challenges
in our scheme and Yang et al.’s scheme [28] in the case of
missing blocks rates of 1%. In the proposed scheme, we
utilize the third-level aggregate proofs to verify ownership
of the data. It can be seen that the detection rate of the
proposed scheme is higher than Yang et al.’s scheme [28]
with the same of data blocks.

7.2 Functionality Comparison

The functionality comparisons between the proposed
scheme and the related schemes [6, 20, 28] are showed
in Table 1.

Table 1 shows that the proposed scheme supports secure
proof of ownership, high detection rate, data owner offline,
no authorized party, against brute-force attacks and public
auditing, while others only support partial functionality.
By adopting the zero-knowledge proof technology and the
aggregated proofs structure, the proposed scheme achieves
the secure proof of ownership and high detection rate for
the missing data block, respectively. Meanwhile, we com-

bine the oblivious pseudo-random function protocol with
proxy re-encryption technology to implement key distribu-
tion without online data owners or the authorized party.
In addition, because the O-PRF protocol is used in the
encryption process, the proposed scheme is secure against
brute-force attacks. The proposed scheme utilizes a third
party auditor for performing public auditing. Moreover,
our scheme only generates one tag for each data block.

7.3 Efficiency Comparison

In this subsection, we will conduct efficiency comparisons
including three aspects, the proof of ownership, the key
distribution, and the public auditing. Since Liu et al.’s
scheme [20] does not support client-side deduplication, we
only make a comparison between the proposed scheme
and the related schemes [6, 28] in proof of ownership and
key distribution processes, respectively. Moreover, we
conduct a comparison between the proposed scheme and
Liu et al.’s scheme [20] in public auditing process, because
Yang et al.’s scheme [28] and Ding et al.’s scheme [6] do
not support public auditing.

As shown in the table below. Pair: bilinear pairing;
Exp: exponentiation in G1 or GT ; ModExp: modular
exponentiation; ModMul: modular multiplication; n: the
number of blocks; µ: the number of challenging blocks by
the cloud server; j: the level of aggregated proofs; c: the
number of subsequent uploaders; s: the number of sectors
for each block; d: the number of challenging blocks by the
third party auditor.

7.3.1 The Proof of Ownership Process

We make an efficiency comparison between the proposed
scheme and the related schemes [6, 28] in Table 2. In
ownership verification process, the proposed scheme and
Yang et al.’s scheme [28] use zero knowledge proof technol-
ogy, and Ding et al.’s scheme [6] utilizes bilinear pairing
operation.

As shown in Table 2, the computation consumption of
Ding et al.’s scheme [6] is much smaller than Yang et al.’s
scheme [28] and the proposed scheme. However, Ding et
al.’s scheme [6] verifies the data ownership based on the
hash value. In other words, a malicious user could pass the
PoW verification of client side deduplication if he could

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 472

Table 2: Efficiency comparison in proof of ownership

Schemes Ding et al. [6] Yang et al. [28] Our scheme
OPs computation Exp nModExp nModExp
FPs computation Exp µModMul µ

jModMul

Verification of µ blocks Pair 2µExp+µModMul 2µ
j Exp+

µ
jModMul

Total computational 2Exp+Pair 2µExp+nModExp+ 2µ
j Exp+nModExp+

costs 2µModMul 2µ
j ModMul

get the hash value of the data. In addition, because of
adopting the aggregated proofs structure, the computa-
tion consumption of the proposed scheme is smaller than
Yang et al.’s scheme [28].

7.3.2 The Key Distribution Process

We make an efficiency comparison between the proposed
scheme and the related schemes [6, 28] in Table 3 with
regard to first uploader, CSP, subsequent uploader and AP.
For the three comparison schemes, they use a symmetric
encryption algorithm to encrypt the data, and then dis-
tribute the symmetric keys through the O-PRF protocol
and proxy re-encryption technology. When comparing the
efficiency of the three schemes, we ignore the symmetric
encryption.

As shown in Table 3, Yang et al.’s scheme [28] incurs
higher computation overhead than the proposed scheme
and Ding et al.’s scheme [6] in the total computational
costs. Meanwhile, the first uploader has a large computa-
tional overhead in Yang et al.’s scheme [28]. In addition,
we also compare our scheme with Ding et al.’s scheme [6].
Although the computational cost of our scheme is slightly
higher than Ding et al.’s scheme [6], our scheme does not
require the introduction of an authorized party to com-
plete key distribution. In the proposed scheme, the cloud
server takes on the main computational costs and other
entities have a little computational costs. As we all know,
the cloud server’s computing power can be considered
infinitely, so the proposed scheme is more practical and
effective.

7.3.3 The Public Auditing Process

Because Ding et al.’s scheme [6] and Yang et al.’s
scheme [28] do not support public auditing, we only make
an efficiency comparison between the proposed scheme
and Liu et al.’s scheme [20]. In public auditing process,
the proposed scheme and Liu et al.’s scheme [20] adopt
the proxy re-signature technology to verify integrity of
the cloud storage data. Moreover, these two schemes only
generate one auditing tag for each data block.

As shown in Table 4, the computation consumption of
the proposed scheme is higher than Liu et al.’s scheme [20].
However, because the proposed scheme utilizes the O-PRF
protocol to generate secret values for calculating auditing
tag, the proposed scheme can achieve better security.

7.4 Experimental Comparison

By utilizing the Pairing Based Cryptography (PBC) Li-
brary, an efficiency experiment result is given under the
Linux environment. The following experiments run on a
personal computer with its configuration parameters as
Intel Core i5 2.5 GHz Processor and 4 GB RAM. The
number of subsequent uploaders range from 10 to 50. The
experiment includes five aspects, the computation cost of
the first uploader, the CSP, the subsequent uploader, the
AP, and the total computation cost. The experiment result
given below comes from the average of 50 experiments.

As shown in Figure 6, we first evaluate the computation
cost of the first uploader in key distribution process. With
the same number of subsequent uploaders, the time cost
of Ding et al.’s scheme [6] and our scheme is much less
than Yang et al.’s scheme [28]. Figure 7 indicates that
Ding et al.’s scheme [6], Yang et al.’s scheme [28] and our
scheme have almost the same time overhead. In addition,
we can see that the time cost of Yang et al.’s scheme [28]
is much more than Ding et al.’s scheme [6] and our scheme
in Figure 8. Since Yang et al.’s scheme [28] and our
scheme do not introduce an authorized party to complete
key distribution, we only show the time cost of Ding et
al.’s scheme [6] in Figure 9. As shown in Figure 10, we
compare the total computation cost in key distribution
process. The computation time of Yang et al.’s scheme [28]
is far more than Ding et al.’s scheme [6] and our scheme.
Moreover, during the key distribution process, Ding et
al.’s scheme [6] and Yang et al.’s scheme [28] require the
assistance of online data owners and the authorized party,
respectively. Therefore, our scheme is secure and efficient
in the key distribution process.

8 Conclusions

In this paper, we have proposed a secure and efficient client
side deduplication scheme with public auditing. We utilize
zero-knowledge proof and aggregates proofs structure to
achieve high detection rate of client missing blocks. Mean-
while, the proposed scheme achieves key distribution by
the O-PRF protocol and proxy re-encryption technology.
In addition, all data owners of the proposed scheme can
audit cloud storage data by employing proxy re-signing
technology. The security analysis shows that the proof of
ownership scheme is sound, complete and zero-knowledge.

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 473

Table 3: Efficiency comparison in key distribution

Entities Algorithm Ding et al. [6] Yang et al. [28] Our scheme
Setup 1Exp 2Exp+1Pair 1Exp

First uploader Data upload 2Exp+2ModExp 2cExp 2Exp+4ModExp
Rekey generation − cExp −

System setup − − 1Exp
CSP Re-encryption cPair cPair cPair

Rekey generation − − cExp
Subsequent uploaders System setup cExp 2cExp+cPair cExp

Decrypt ciphertext cExp+cModExp cExp cExp+3cModExp
AP System setup 1Exp − −

Rekey generation cExp − −
Total computational (c+ 2)ModExp+ (6c+ 2)Exp+ (3c+ 4)ModExp+

costs (3c+ 4)Exp+cPair (2c+ 1)Pair (3c+ 4)Exp+cPair

Table 4: Efficiency comparison in public auditing

Schemes Liu et al. [20] Our scheme
Tag computation n(s+ 1)Exp n(s+ 1)Exp+2ModExp

Proof computation 2dExp 2dExp
Check proof d(s+ 1)Exp+2Pair d(s+ 1)Exp+2Pair

Total computational costs (ns+ n+ ds+ 3d)Exp+2Pair (ns+ n+ ds+ 3d)Exp+2Pair+2ModExp

10 20 30 40 50
0

5

10

15

20

25

30

The Number of Subsequent Uploaders

T
im

e
C

os
t (

m
s)

Scheme[6]
Scheme[26]
Our scheme

Figure 6: The computation cost of the first uploader

10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

The Number of Subsequent Uploaders

T
im

e
C

os
t (

m
s)

Scheme[6]
Scheme[26]
Our scheme

Figure 7: The computation cost of the CSP

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 474

10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

The Number of Subsequent Uploaders

T
im

e
C

os
t (

m
s)

Scheme[6]
Scheme[26]
Our scheme

Figure 8: The computation cost of the subsequent upload-
ers

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

The Number of Subsequent Uploaders

T
im

e
C

os
t (

m
s)

Scheme[6]

Figure 9: The computation cost of the AP

10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

The Number of Subsequent Uploaders

T
im

e
C

os
t (

m
s)

Scheme[6]
Scheme[26]
Our scheme

Figure 10: The total computation cost

Our scheme can protect the clients’ symmetric key from
being recovered by the server and other collusive clients
for key distribution. In addition, our auditing scheme
demonstrates the correctness and unforgeability. Finally,
performance evaluation shows that the proposed scheme
is practical and efficient.

Acknowledgments

We are grateful to the anonymous reviewers for their in-
valuable suggestions. This work is supported by the Na-
tional Natural Science Foundation of China under Grants
No.61472470 and 61702401.

References

[1] A. Agarwala, P. Singh, and P. K. Atrey, “Dice: A dual
integrity convergent encryption protocol for client
side secure data deduplication,” in IEEE Interna-
tional Conference on Systems, Man and Cybernetics,
pp. 2176–2181, Oct. 2017.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dup-
less: server-aided encryption for deduplicated storage,”
in Usenix Conference on Security, pp. 179–194, Aug.
2013.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart,
“Message-locked encryption and secure deduplication,”
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, vol. 7881,
pp. 296–312, 2013.

[4] Z. Cao, L. Liu, and O. Markowitch, “Analysis of
one scheme for enabling cloud storage auditing with
verifiable outsourcing of key updates,” International
Journal of Network Security, vol. 19, no. 6, pp. 950–
954, 2017.

[5] S. Deshpande and R. Ingle, “Evidence based trust
estimation model for cloud computing services,” In-
ternational Journal of Network Security, vol. 20, no. 2,
pp. 291–303, 2018.

[6] W. Ding, Z. Yan, and R. H. Deng, “Secure encrypted
data deduplication with ownership proof and user re-
vocation,” in International Conference on Algorithms
and Architectures for Parallel Processing, pp. 297–312,
Aug. 2017.

[7] C. C. Erway, C. Papamanthou, and R. Tamassia, “Dy-
namic provable data possession,” ACM Transactions
on Information and System Security (TISSEC’15),
vol. 17, no. 4, pp. 1–29, 2015.

[8] L. Gonzalez-Manzano and A. Orfila, “An efficient
confidentiality-preserving proof of ownership for dedu-
plication,” Journal of Network and Computer Appli-
cations, vol. 50, pp. 49–59, 2015.

[9] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-
Peleg, “Proofs of ownership in remote storage sys-
tems,” in ACM Conference on Computer and Com-
munications Security, pp. 491–500, Oct. 2011.

International Journal of Network Security, Vol.22, No.3, PP.462-475, May 2020 (DOI: 10.6633/IJNS.202005 22(3).12) 475

[10] D. Harnik, B. Pinkas, and A. Shulmanpeleg, “Side
channels in cloud services: Deduplication in cloud
storage,” IEEE Security and Privacy, vol. 8, no. 6,
pp. 40–47, 2010.

[11] W. F. Hsien, C. C. Yang, and M. S. Hwang, “A
survey of public auditing for secure data storage in
cloud computing,” International Journal of Network
Security, vol. 18, no. 1, pp. 133–142, 2016.

[12] M. S. Hwang, C. C. Lee, and T. H. Sun, “Data error
locations reported by public auditing in cloud storage
service,” Automated Software Engineering, vol. 21,
no. 3, pp. 373–390, 2014.

[13] M. S. Hwang, T. H. Sun, and C. C. Lee, “Achieving
dynamic data guarantee and data confidentiality of
public auditing in cloud storage service,” Journal of
Circuits, Systems and Computers, vol. 26, no. 5, 2017.

[14] K. Kim, T. Y. Youn, N. S. Jho, and K. Y. Chang,
“Client-side deduplication to enhance security and
reduce communication costs,” Etri Journal, vol. 39,
no. 1, pp. 116–123, 2017.

[15] L. Lei, Q. Cai, B. Chen, and J. Lin, “Towards efficient
re-encryption for secure client-side deduplication in
public clouds,” in International Conference on In-
formation and Communications Security, pp. 71–84,
Nov. 2016.

[16] C. Li, H. Cheung, and C. Yang, “Secure and efficient
authentication protocol for power system computer
networks,” International Journal of Network Security,
vol. 20, no. 2, pp. 337–344, 2018.

[17] J. Li, J. Li, D. Xie, and Z. Cai, “Secure auditing and
deduplicating data in cloud,” IEEE Transactions on
Computers, vol. 65, no. 8, pp. 2386–2396, 2016.

[18] C. W. Liu, W. F. Hsien, C. C. Yang, and M. S.
Hwang, “A survey of public auditing for shared data
storage with user revocation in cloud computing,”
International Journal of Network Security, vol. 18,
no. 4, pp. 650–666, 2016.

[19] H. Liu, H. Ning, Y. Zhang, and L. T. Yang,
“Aggregated-proofs based privacy-preserving authen-
tication for v2g networks in the smart grid,” IEEE
Transactions on Smart Grid, vol. 3, no. 4, pp. 1722–
1733, 2012.

[20] X. Liu, W. Sun, W. Lou, Q. Pei, and Y. Zhang,
“One-tag checker: Message-locked integrity auditing
on encrypted cloud deduplication storage,” in IEEE
Conference on Computer Communications, pp. 1–9,
May 2017.

[21] P. Mell and T. Grance, “Draft nist working definition
of cloud computing,” National Institute of Standards
and Technology, vol. 53, no. 6, pp. 50–50, 2009.

[22] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” ACM Transactions on Storage, vol. 7,
no. 4, pp. 1–20, 2012.

[23] S. Rezaei, M. Ali Doostari, and M. Bayat, “A
lightweight and efficient data sharing scheme for cloud

computing,” International Journal of Electronics and
Information Engineering, vol. 9, no. 2, pp. 115–131,
2018.

[24] Z. Wang, Y. Lu, G. Sun, “A policy-based de-
duplication mechanism for securing cloud storage,”
International Journal of Electronics and Information
Engineering, vol. 2, no. 2, pp. 70–79, 2015.

[25] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu,
“Rse-pow: A role symmetric encryption pow scheme
with authorized deduplication for multimedia data,”
Mobile Networks and Applications, vol. 23, no. 3,
pp. 650–663, 2018.

[26] J. Xiong, Y. Zhang, L. Lin, J. Shen, X. Li, and
M. Lin, “ms-PoSW: A multi-server aided proof of
shared ownership scheme for secure deduplication in
cloud,” Concurrency and Computation Practice and
Experience, no. 5, 2017.

[27] C. Yang, J. Ren, and J. Ma, “Provable ownership
of files in deduplication cloud storage,” Security and
Communication Networks, vol. 8, no. 14, pp. 2457–
2468, 2015.

[28] C. Yang, M. Zhang, Q. Jiang, J. Zhang, D. Li, J. Ma,
and J. Ren, “Zero knowledge based client side dedu-
plication for encrypted files of secure cloud storage
in smart cities,” Pervasive and Mobile Computing,
vol. 41, pp. 243–258, 2017.

[29] J. Yuan and S. Yu, “Secure and constant cost public
cloud storage auditing with deduplication,” in Com-
munications and Network Security, pp. 145–153, Oct.
2013.

[30] J. Zhang, P. Li, and M. Xu, “On the security of an mu-
tual verifiable provable data auditing in public cloud
storage,” International Journal of Network Security,
vol. 19, no. 4, pp. 605–612, 2017.

Biography

Qianlong Dang is a master degree student in the School
of Mathematics and Statistics at Xidian University. His
interest focuses on cryptography and network security.

Hua Ma is a professor in the School of Mathematics and
Statistics at Xidian University, Xi’an, China. Her research
includes security theory and technology in electronic com-
merce design and analysis of fast public key cryptography
theory and technology of network security.

Zhenhua Liu is a professor in the School of Mathematics
and Statistics at Xidian University, Xi’an, China. His
research interests include public key cryptography, crypto-
graphic theory and security protocols in cloud computing.

Ying Xie is a master degree student in the School of
Mathematics and Statistics at Xidian University. Her
interest focuses on cryptography and network security.

