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Abstract

Ishigami and Tani studied VC-dimensions of deterministic fi-
nite automata. We obtain analogous results for the nondeter-
ministic case by extending a result of Champarnaud and Pin,
who proved that the maximal deterministic state complexity
of a set of binary words of length n is

n∑
i=0

min(2i, 22
n−i

− 1).

We show that for the nondeterministic case, if we fully re-
strict attention to words of length n, then we at most need the
strictly increasing initial terms in this sum.

Introduction
Consider the set of points F = {(−1, 0), (0, 0), (1, 1)}. We
can separate {(1, 1} from {(−1, 0), (0, 0)} by the straight
line y = x/2. In general, such a separation can be made pro-
vided the three points do not all lie on the same line. How-
ever, with four points a new difficulty arises. Consider the
set of points

{(0, 0), (0, 1), (1, 0), (1, 1)}.

There is no straight line that separates {(1, 0), (0, 1)} from
{(0, 0), (1, 1)}. There is no way to get (1, 0) and (0, 1) to
lie on one side of the separating line, and (0, 0) and (1, 1)
on the other. This can be summarized by saying that our sta-
tistical model, involving finding parameters (w1, w2, b) such
that w1x+w2y = b, has a Vapnik–Chervonenkis dimension
that is at least 3, but not at least 4. In other words, the VC
dimension is exactly 3. A set of three points can be shattered
but some sets of four points cannot.

For this model, no set of size 4 can be shattered. This may
be demonstrated by consider two cases.
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1. No three points lie on the same line and the four points
form the corners of a convex quadrilateral. In this case,
the two points diagonally across from each other cannot
be separated from the other two.

2. One point z lies inside the convex hull of the other points
w, x, y. In this case, x cannot be separated from {w, x, y}.

The observation that existence of a shattered set may often
lead to every set being shattered, leads us to define a notion
of lower VC-dimension.

This notion will in particular be relevant in the setting of
finite automata, where we will obtain our main results.

As usual we let L(M) denote the language accepted by
the automaton M .

Definition 1. We define the (upper) (n, q)-VC dimension
of NFA (nondeterministic finite automata), V Cupper

n,q , to be
the largest number m such that there are distinct binary
words x1, . . . , xm of length n such that for each set F ⊆
{1, . . . ,m}, there is an NFA M with q states, such that

L(M) ∩ {x1, . . . , xm} = F.

We say that {x1, . . . , xm} is shattered. The lower (n, q)-
VC dimension of NFA, V C lower

n,q , is defined similarly, but
replacing an existential quantifier by a universal one: it is
the largest number m such that for all distinct binary words
x1, . . . , xm of length n, and for each set F ⊆ {1, . . . ,m},
there is an NFA M such that L(M) ∩ {x1, . . . , xm} = F .

More generally, the lower VC-dimension of a set of au-
tomata S for a set of words W is the largest number
m such that for all distinct words x1, . . . , xm and F ⊆
{x1, . . . , xm} ⊆ W , there is an M ∈ S such that L(M) ∩
{x1, . . . , xm} = F .

Theorem 2. There exists a set of automata S such that the
lower VC-dimension of S for {0, 1}∗ is finite and the upper
VC-dimension of S for {0, 1}∗ is infinite.

Proof. Let S consist of NFAs with no restriction on the
number of states, but using a unary alphabet Σ = {0}. In
this case the upper VC-dimension is infinite, as these au-
tomata can shatter {0k : k ≤ n} for any n. The lower VC-
dimension is 0 as these NFAs cannot accept {1}.



Computational complexity of upper and lower VC-
dimension. In a way an example of non-shatterability is
more intelligible since it gives a specific set and a specific
subset that cannot be achieved by any automaton, where to
witness shatterability we need to give a long list of automata.
In this sense, lower VC-dimension is one level lower in the
computational complexity hierarchy and more amenable to
direct study. On the other hand, the upper VC-dimension
is the one that is important for learning theory via the
Glivenko–Cantelli theorem.

Remark 1. The (4,2)-VC dimension of NFA is at
least 3, because you can take X = {x1, x2, x3} =
{0000, 0101, 1000}. Each singleton F is fairly easy to find
an M for in this case, and for the sets F of size 2, we
can note that {0000, 0101} consists of the elements of X
starting with “0”; {0000, 1000} similarly ending with 0; and
{0101, 1000} are the elements of X containing at least one
“1”.

The choice X = {0000, 1111, 0101} on the other hand
does not seem to work. So we are interested in which choices
of X are suitable in general, and how this relates to au-
tomatic complexity. The complexity of a set S of words
of a given length, studied by Champarnaud and Pin [2],
Campeanu and Ho [1], and Kjos-Hanssen and Liu [7], is re-
lated to the shatterability of S. In fact, Ishigami and Tani [5]
use the result of Champarnaud and Pin to show that the VC-
dimension of DFA for 2 letters is Θ(n log n). Ishigami and
Tani’s result applies to lower VC-dimension as well.

Definition 3. The deterministic state complexity of a set of
binary words F of length n is the minimum number of states
s(F ) of a DFA M such that L(M) = F .

Theorem 4 (Champarnaud and Pin [2]).

max
F⊆{0,1}n

s(F ) =

n∑
i=0

min(2i, 22
n−i

− 1).

Theorem 4 does not require that all words have the same
length, but it will be important for our nondeterministic ver-
sion in Theorem 10. For instance,

q0 = 1,

q1 = min(20, 22
1−0

− 1) + min(21, 22
1−1

− 1) = 2,

q2 = 1 + min(21, 22
2−1

− 1) + 1 = 4.

The equation q2 = 4 tells us that with 4 states, we can im-
plement any function on words of length 2 and hence we can
shatter {00, 01, 10, 11}. In other words, the VC-dimension
at q = 4 and n = 2 is at least 4 for (non-total) DFAs. Next,

q3 = 1 + 2 + 3 + 1 = 7.

This tells us that the (n = 3, q = 7) VC-dimension is
at least 23 = 8. The sequence continues as in Table 1.
In each case the (n, q)-VC dimension is at least 2n for
q ≥ maxF⊆{0,1}n s(F ).

The fact that the n = 5, q = 14 entry in Table 2 is at least
24 follows from Theorem 13. Similarly the n = 4, q = 6
entry follows from Theorem 12.

n q
0 1 1
1 2 1 +1
2 4 1+2 +1
3 7 1+2 +3+1
4 11 1+2+4 +3+1
5 19 1+2+4+8 +3+1
6 34 1+2+4+8 +15+3+1
7 50 1+2+4+8+16 +15+3+1
8 82 1+2+4+8+16+32 +15+3+1

Table 1: Champarnaud–Pin bounds.

Connection to the Separating Words problem. This
problem has been studied by Shallit and others [3] and con-
cerns shattering of a set of size 2. The problem is well de-
scribed at [10]: we let sep(w, x) be the smallest number of
states in a DFA that accepts one of w, x but not the other.
Then we let

S(n) = max
|w|=|x|=nw 6=x

sep(w, x).

Computing S(n) is then equivalently described as follows:
Given n, for which q is the lower VC-dimension above 2?
Robson [9] showed that S(n) = O(n2/5(log n)3/5).

Shattering sets of long words
Inspection of Table 2 suggests the following.

Conjecture 1. The upper VC-dimension of NFA is non-
decreasing in the word length n for a fixed number of states
q.

Informally, Conjecture 1 says that automata with a fixed
number of states can shatter sets of long words just as well as
they can shatter sets of short words. A possible counterex-
ample, subject to calculation, is n = 5, q = 3 vs. n = 4, q =
3. By adding an extra bit like 0 we can at least conclude that
V Cupper

n,q ≤ V Cupper
n+1,q+1.

Definition 5. For a nonnegative integer k, we let [k] =
{1, . . . , k}. For a fixed q let us say that two sequences of
strings x1, . . . , xk and y1, . . . , yk are ≈q-similar if for each
F ⊆ [k] there is an automaton M with q states that accepts
all the words xi, i ∈ F and yi, i ∈ F , but none of the words
xi, i 6∈ F and yi, i 6∈ F . (We may allow changing the accept
states here.) Let us say that two sets of strings are ∼-similar
if there are orderings of them that are ≈-similar. That is, the
sets of strings are shattered by automata with q states for
“the same reason”.

One way to prove that V Cupper
n,q ≤ V Cupper

n+1,q would be
if each shattered set of strings of length n is similar to a
shattered sets of strings of length n+ 1.

For instance, when q = 1 we have {0n, 1n} ∼
{0n+1, 1n+1} because (0n, 1n) ≈ (0n+1, 1n+1).

And, to show that at q = 2, (00, 01, 10, 11) 6≈
(000, 001, 010, 011), we could proceed by trying to
show that there is no 2-state NFA that accepts all of
{00, 01, 10, 000, 001, 010} but none of {11, 011}.



q ∞
1/

1
2/

2
4/

4
8/

8
16

/1
6

32
/3

2
64

/6
4

..
.

..
.

..
.

..
.

..
.

..
.

15
1/

1
2/

2
4/

4
8/

8
16

/1
6

32
/3

2
?

..
.

14
1/

1
2/

2
4/

4
8/

8
16

/1
6

(≥
24

)/
?

?
..
.

..
.

..
.

..
.

..
.

..
.

7
1/

1
2/

2
4/

4
8/

8
16

/1
6

?
?

6
1/

1
2/

2
4/

4
8/

8
≥

12
/?

?
?

5
1/

1
2/

2
4/

4
8/

8
?

?
?

4
1/

1
2/

2
4/

4
8/

8
(≥

10
)/

?
?

?
3

1/
1

2/
2

4/
4

8/
8

9/
5

(≥
8

)/
4

(≥
8

)/
[2
,4

]
(≥

7)
/[2
,4

]
2

1/
1

2/
2

4/
4

5/
3

5/
2

5/
2

(≥
5

)/
1

(≥
5)

/1
1

1
2/

2
2/

1
2/

1
2/

1
2/

1
2/

1
2/

1
..
.

2/
1

0
1

2
3

4
5

6
7

..
.
∞

n

Ta
bl

e
2:

V
C

-d
im

en
si

on
of

N
FA

fo
r

va
ri

ou
s

ch
oi

ce
s

of
w

or
d

le
ng

th
n

an
d

nu
m

be
r

of
st

at
es
q,

in
th

e
fo

rm
“u

pp
er

/lo
w

er
”

or
ju

st
“u

pp
er

”.
Fo

r
n
≥

3
an

d
q
≥

2
se

e
[8

].
B

ol
d

nu
m

be
rs

in
di

ca
te

re
su

lts
de

riv
ed

fr
om

T
he

or
em

10
.

Combining Hyde and Champarnaud–Pin
Hyde [4] proved that nondeterministic automatic complex-
ity AN (x) for x of length n is generally at least bn/2c + 1.
Shallit and Wang originally [11] defined the automatic com-
plexity of a finite binary string x = x1 . . . xn to be the least
number AD(x) of states of a deterministic finite automaton
M such that x is the only string of length n in the language
accepted by M .

Definition 6 ([4]). The nondeterministic automatic com-
plexityAN (w) of a wordw is the minimum number of states
of an NFAM (having no ε-transitions) acceptingw such that
there is only one accepting path in M of length |w|.
Theorem 7 (Hyde). The nondeterministic automatic com-
plexity AN (x) of a string x of length n satisfies

AN (x) ≤ b(n) := bn/2c+ 1.

The proof for the case of an odd n = 2k + 1 is in outline
that there is an automaton with k + 1 states q0, . . . qk, that
accepts a word of length n uniquely along the path

q0, q1, . . . , qk−1, qk, qk, qk−1, qk−2, . . . , q1, q0.

Definition 8. Let a, t be nonnegative integers and let k =
t + a. The automaton Mt,a has states 0, 1, . . . , k, start state
0, final state 0, and the following edges: (i, i + 1) for each
0 ≤ i < k, (k, k), (i, i − 1) for each t + 1 ≤ i ≤ k, and
(t, 0).

The automaton Mt,a is shown in Figure 1.

Lemma 1. Let a, t be nonnegative integers and n = t +
2a+2. Suppose that t ≥ bn/2c. ThenMt,a accepts a unique
word of length n, along a unique accepting path.

Proof. Since 0 is both the start and accept state, we must
traverse the length t + 1 cycle (0, 1, . . . , t − 1, t, 0) at least
once. If we traverse it twice then

n ≥ 2(t+1) ≥ 2(bn/2c+1) ≥ 2((n/2−1/2)+1) = n+1,

a contradiction. This means that n− (t+1) symbols may be
read during the remainder of an accepting run. Let k = t+a.
Since n = 2(k + 1) − t, it follows that n − t is even and
n − (t + 1) is odd. This forces us to accept only along a
single path, as in Hyde’s Theorem 7.

Theorem 10 is a nondeterministic version of Theorem 4.
The difference is that we include only the strictly increasing
initial terms from Theorem 4.

Definition 9. The length-restricted nondeterministic state
complexity of a set F ⊆ {0, 1}n is the minimum number of
states s′N (F ) of an NFA M such that L(M)∩ {0, 1}n = F .

Theorem 10 (Main theorem). Let n be a nonnegative inte-
ger and F ⊆ {0, 1}n, then

s′N (F ) ≤
k∑

i=0

ai, where ai = min(2i, 22
n−i

− 1),

where k is greatest such that ak−1 < ak.
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Figure 1: The automaton Mt,a from Definition 8.

Proof. For a family of sets F ⊆ {0, 1}n, we construct a
binary tree and then turn around and go back when F is
“small enough”. See Figure 3 for an illustration of the idea.

The rapid decrease of the sequence 22
n−i − 1 is also used

in the proof, to ensure that no “shortcuts” can occur. Con-
sider the case n = 6. We arrange the states in columns of
1,2,4,8,15 and then let the 3 penultimate states be chosen
from among the column of 15. The general pattern is illus-
trated by the following example for n = 21. In Figure 2 we
are showing one state per column (i.e., level of the tree) and
connecting column i to column j if some state in column i
has an edge to column j. The displayed states are labeled by
the number of states of the automaton in the corresponding
column.

Here “on the way back to the start state (column 0)” we
are using

• at most 22
4 − 1 of the 216 available states in column 16,

• at most 22
3 − 1 of the 215 available states in column 15,

• at most 22
2 − 1 of the 214 available states in column 14,

and
• at most 22

1 − 1 = 3 of the 213 available states in column
13.

We have a cycle of more than half the length followed by a
Hyde–style module, so that the columns form an automaton
of the form Mt,a (Definition 8). This ensures that there is a
unique sequence of columns visited by any path of length n,
namely the intended one, by Lemma 1.

We only need to show that t ≥ bn/2c for each n to apply
Lemma 1.

It suffices to consider the worst case of n such that ak =

22
n−k − 1, since for other values of n we have t(n) = t(n−

1) + 1.
The long cycle will go from column 0 to column t where

the length k − t + 1 of the sequence 2t, . . . , 2k equals n −
k−1. Then we have k−t+1 = n−k−1 or t = 2k−n+2.
Then the claim is that t ≥ bn/2c.

To prove this, since we are in the worst case, we have
22

n−k − 1 = 2k − 1, i.e., n = k + log2 k. So we want to
show

t = 2k − (k + log2 k) + 2 = 2 + k − log2 k ≥ bn/2c.
Since 2 + k − log2 k is an integer, it suffices to show

2 + k − log2 k ≥ n/2−
1

2
,

which simplifies to

5 + k ≥ 3 log2 k

which holds for all k ≥ 1.

Corollary 11. The minimum number of states q such
that V Cupper

n,q = 2n is at most
∑k

i=0 ai where ai =

min(2i, 22
n−i − 1) and k is greatest such that ak−1 < ak.

Proof. Let S ⊆ {0, 1}n be a set of words of length n. To
accept all set words in a set F and reject all the words in
S \ F , it certainly suffices to accept all the words in F , and
reject all the words in {0, 1}n \ F , which is what Theorem
10 lets us do.

Remark 2. Figure 4 shows an automaton such that among
the words of length 4, it accepts exactly the ones with max-
imal nondeterministic automatic complexity. For reference,
they are:

{0010, 0011, 0100, 0110,

1101, 1100, 1011, 1001}.

This information is available online at [6]. We use round
brackets () for prefixes allowed and curly brackets {} for
suffixes allowed. For instance, (01), {0} means that we are
in that state after reading x1x2 = 01, and we are there again
if x4 = 0 will lead to accept. Dashed lines are for reading 0
and solid lines for reading 1.

In Theorems 12, 13, and 14 we collect some bounds on
small VC-dimensions.

Theorem 12. V Cupper
q=6,n=4 ≥ 12.

Proof. If F for n = 4 does not contain any word starting
with a certain length-2 prefix, say 11, then we can make do
with just 6 states. And then we can still have 16 − 4 = 12
words.

Theorem 13. V Cupper
q=14,n=5 ≥ 24.

Proof. For n = 5, if one prefix of length 3 is absent from F
then we can use one fewer states, namely 14, and still shatter
a set of size 32− 8 = 24.

We remark that Theorem 10 is not sharp. For instance, 4
states suffice for n = 3:

Theorem 14. The length-restricted nondeterministic state
complexity s′N (F ) of a set of binary words of length n = 3
is at most 4.

Proof. Use states corresponding to prefixes λ (the empty
word), 0, 1, 00 and treat the latter 3 as the penultimate states
in Champarnaud–Pin style:
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Figure 2: Automaton schema for Theorem 10.

sstart

s0 s1

s00

(Here dashed lines indicate reading a 0 whereas solid lines
indicate reading a 1.) For example, suppose we want to ac-
cept all words of length 3 except 001 and 010. This partly
dictates how we proceed. The state s00 must correspond to
the acceptance condition “accept only if the next bit is a 0”.
We can let states correspond to acceptance conditions as fol-
lows:

• s0: accept only if the last bit is 1.
• s1: accept no matter what the last bit is.
• s00: accept only if the last bit is 0.

(We could also have switched the acceptance conditions for
s0 and s1.) Then we can form the following automaton:

sstart

s0 s1

s00

We can do better than Theorem 14: a computation deter-
mined [8] that 3 states suffice, although the pattern may be
less uniform.
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Figure 3: An automaton for {x1 . . . x5 : x2 = x3, x4 6= x5}. Note that s0 has a dual function: in the beginning to record that
x1 = 0 and in the end to record that x4 = 1. Dashed edges are labeled 0 and ordinary edges are labeled 1. This automaton saves
more states than the general method of Theorem 10 guarantees, however.

()start

(0) (1)

(01), {0} (10), {1}(00) (11), {0, 1}

Figure 4: The n = 4 example from Remark 2.
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