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ABSTRACT 
The use of HMM (Hidden Markov Models) for speech 
recognition has been successful for various applications 
in the past decades. However, the use of continuous 
HMM (CHMM) for melody recognition via acoustic 
input (MRAI for short), or the so-called query by sing-
ing/humming, has seldom been reported, partly due to 
the difference in acoustic characteristics between speech 
and singing/humming inputs. This paper will derive the 
formula of CHMM training for frame-based MRAI. In 
particular, we shall propose enhancement to CHMM and 
demonstrate that with the enhancement scheme, CHMM 
can compare favourably with DTW in both efficiency 
and effectiveness. 
 
Keywords: HMM, Continuous HMM, Query by Sing-
ing/Humming, Melody Recognition via Acoustic Input 
(MRAI), Speech Recognition.  

1 INTRODUCTION 
It is well known that HMM (Hidden Markov Models) is 
a standard and successful approach to speech recognition 
for the past few decades. In particular, for large-
vocabulary speaker-independent speech recognition 
tasks, CHMM (Continuous HMM) has been exceedingly 
successful in creating practical real-word applications. 
However, the use of HMM for melody recognition via 
acoustic input (MRAI) has not been extensively reported. 
In fact, most previous approaches to MRAI using HMM 
employ note-based method, in which the user needs to 
hum in “ta” or “da” in order to facilitate note segmenta-
tion. The note-specific information is then used to build 
the DHMM (discrete HMM) of a given song (Shifrin et 
al., 2002; Meek & Birmingham, 2001; Liu & Li 2003). 
Shih et al. (Shih et al., 2002) proposed the use of 
CHMM for humming transcription and note segmenta-
tion, but it is not used for frame-based MRAI directly. 
Needless to say, the most obvious drawback of the note-

based approach rested in the requirement of humming in 
“ta” or “da”, which could greatly limit the presentation 
style of the user. On the other hand, if we allow the user 
to sing the lyrics, then the note segmentation will be 
error-prone due to the continuous variations in acoustic 
intensity. As a result, we have proposed a frame-based 
approach using DTW(Jang et al., 2001; Jang & Lee, 
2001; Jang et al., 2004) to achieve high accuracy while 
allowing the user to use any presentation style that 
he/she feels most comfortable with. 

While DTW is highly effective in retrieving relevant 
songs, it is computation intensive. An alternative is to 
use mathematical analysis to design a hierarchical filter-
ing method (Jang & Lee, 2001). In this paper, we look 
into another direction that uses a frame-based CHMM 
for achieving a better balance between accuracy and 
efficiency.  Specifically, we shall derive the evaluation 
and training procedures for CHMM. Moreover, we shall 
propose an enhancement scheme to be used with 
CHMM for achieving both efficiency and effectiveness 
in MRAI. Experimental results demonstrate that the 
proposed method compares favourably with DTW, and 
scale up nicely when the size of the database increases.  

In order to promote the research of MRAI, we have 
put the song dataset and the singing voice corpus on the 
first user’s homepage for public access. As far as we 
know, this is also the first singing voice corpus for 
MRAI evaluation. 

2 CHMM FOR SINGING/HUMMING 
QUERIES 

In our CHMM-based singing query retrieval system, 
each song (or theme) in the database is represented by a 
CHMM. We will describe the CHMM structure used in 
our system. We will also propose two approaches to the 
parameter identification of the CHMM. 

2.1 CHMM Structure 

An intuitive way to model the probabilistic character-
istics of the pitch of each song (or theme) is by a left-
right CHMM where each note is represented by a state. 
If there are consecutive notes of the same pitch level, 
then they are represented by a joined state in a CHMM. 
The following is the CHMM for the song “10 little Indi-
ans”: 
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Figure 1. CHMM for “10 Little Indians” 

 
In general, each state in the CHMM model is charac-

terized by a d -dimensional Gaussian probability den-
sity function (PDF): 
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where x  is a d -dimensional observation vector, µ  
and Σ  are the mean vector and covariance matrix of the 
PDF, respectively. For simplicity, we assume the obser-
vation is the pitch of the query input, hence x  is a sca-
lar and the original d -dimensional Gaussian PDF re-
duces to the following well-known1-dimensional ver-
sion: 
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where x  is a scalar observation, µ  and 2σ  are the 
mean and variance of the PDF, respectively. For a given 
observation x , the value of ),,( 2

jjxg σµ  for state j  is 

referred to as the “state probability” of observation x  in 
state j , denoted by ),( jxps . In our implementation, 
we use “the sum of log probabilities” instead of “the 
product of probabilities” to avoid round-off errors. We 
also define a “transition probability” between state i  
and j , denoted by ),( jipt . For our left-right model, 
possible next moves for observation at state i  are only 
state i  (self transition) or state 1+i  (next transition). 
Therefore we have the following constraints on transi-
tion probabilities: 
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In the above constraints, n  is the number of states and 
1),( =nnpt  indicates that the only possible move 

from the last state is self-transition to itself. 

2.2 CHMM Evaluation 

Given a CHMM (with corresponding parameters for 
state and transition probabilities) and a sequence of ob-
servations (pitch vector), we need to evaluate the model 
by finding the likelihood of the observations generated 
by the model. This is usually accomplished by dynamic 
programming.  More specifically, for a given observed 

pitch vector [ ]mxxxx ,..., 21=  of length m , and a 
CHMM represented by n  states, we need to construct 
an nm×  table H , where each entry of the table is 
computed by the following recurrent equation: 
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where w  is a weighting factor for the transition prob-
ability. In other words, ),( jiH denotes the maximum 
cumulated log likelihood of the event that the first i  
observations [ ]ixxx ,..., 21  are generated by the first j  
states of the CHMM model. The initial conditions for the 
above recurrent equation are: 
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And the overall maximum likelihood of the observations 
[ ]mxxxx ,..., 21=  generated by this model is equal to 

),(max
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. Once the maximum likelihood is found, 

we can back track to find the optimum path that assign 
each pitch point to a state. 
 

Therefore for a given observed pitch sequence 
[ ]mxxxx ,..., 21= , we can apply the above formula to 

find the likelihood of each song’s model. The model 
with the maximum likelihood is then picked as the an-
swer to the singing/humming query. For simplicity, we 
have two assumptions in this study: 
1. The singing/humming query is from the beginning 

of the intended song. In other words, the first state 
is the “start state” and the first pitch point must be-
long to this state. 

2. A user is required to keep singing for 8 seconds. 
Therefore any state could be the “end state” which 
holds the last pitch point. 

The case of “match beginning” of assumption 1 can 
be relaxed by setting every state to be a “start state” to 
accommodate “match anywhere”. It is also straightfor-
ward to change the recurrent equation and the initial 
conditions to take this case of “match anywhere” into 
consideration. 

Figure 2 demonstrates a typical example of model 
evaluation, where the model is the song “10 Little Indi-
ans” and the observation is a pitch vector derived from 
an 8-second clip of a real user’s singing. 
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Figure 2. A typical example of model evaluation, where 
the model is “10 Little Indians”. (a) The original ob-
served pitch and the induced matched pitch. (b) The H 
table shown as a 3D surface. (c) The H table (shown as 
an image) and the corresponding optimum path (shown 
as white dots.)  
 
Before model evaluation, we should take key transposi-
tion into consideration since the user may not sing or 
hum in the same key level as that of the intended song 
in the database. This issue will be addressed in subsec-
tion 4.2. 
 
Obviously the retrieval results are greatly influenced by 
the parameters of the model. In the next subsection, we 
will explain how the optimum parameters can be de-
rived.  
 
2.3 CHMM Training 

 
Before we can perform model evaluation, we need to 

identify the optimum parameters for a CHMM. This can 
be achieved based on the availability of either music 
scores or clips of users’ inputs. We shall refer to these 
two methods as “score-based training” and “corpus-
based training”. 

 
Score-based training 

 
Each song in the database is actually a monophonic 

sequence of music notes, where each note is represented 
by its pitch (in semitone) and duration (in second). For a 
given music score of this format, we can find the corre-
sponding CHMM according to the following steps: 
1. Basically, each state in the CHMM represents a 

music note (or several consecutive notes of the 
same pitch level) in the song. The µ  of each state 
is equal to the note’s pitch level in semitone. 

2. The 2σ  of each state is set to 1 subjectively. 
3. Let k  equal to the pitch points within this state. 

Since only the last pitch point of this state will tran-
sit to the next state, therefore the transition prob-

ability )1,( +iipt is equal to 
k
1

. Hence ),( iipt  

is set to )1,(1 +− iipt . For the last note, we have 

1),( =nnpt  and 0)1,( =+nnpt . For instance, 
in our implementation, sampling rate = 8000 Hz, 
frame size = 256, overlap = 0, then for a state rep-
resenting a note of duration 0.5 second, the corre-
sponding value of k  is 
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In our system, the actual music scores are in MIDI 
format and they could be polyphonic. However, for the 
purpose of singing/humming retrieval, we only consider 
the melody or vocal track of a MIDI file for constructing 
the corresponding CHMM. 

The above procedure for “score-based training” is 
quite intuitive. Only the value of 2σ  is set in a subjec-
tive manner; all the other parameters are set according to 
the song’s characteristics. However, it does not reflect 
the characteristics of recordings from users’ sing-
ing/humming. Therefore we have developed “corpus-
based training” that can further tune the model to 
achieve better performance. 

 
Corpus-based training 

 
In order to proceed with corpus-based training of a 

model, we assume there is at least one recording of the 
corresponding song. The procedure of “corpus-based 
training” for a given model involves the following re-
estimation procedures: 
1. Use the result of “score-based training” as the initial 

parameters of the CHMM. 
2. For each recording of the song, perform model 

evaluation and keep the optimum alignment path. 
Also compute the overall likelihood as the sum of 
the maximum log probabilities of all recordings. 

3. For each state j  in the model, collect all pitch 
points (from all recordings) corresponding to this 
state based on the optimum alignment path in the 
previous step. If we concatenate these pitch points 
into a vector [ ]qyyy ,..., 21 (here we drop off the 

subscript j  for simplicity), then the optimum pa-
rameters can be derived based on the principle of 
maximum likelihood estimate, as follows: 
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)1,(1),( +−= jjpjjp st , 
where r  is the number of recordings for this model, 
and kd  the number of pitch points of recording k  
that belongs to state j . 

4. Repeat step 2 to 3 until the overall likelihood does 
not increase. 

 
It should be noted that the above procedure is re-

peated to find the optimum parameters of each CHMM 
of a song.  Moreover, the above procedure is based on 
EM (Expectation Maximization) and the overall likeli-
hood is guaranteed to be monotonically increasing until 
converged after several iterations. 

3 OTHER APPROACHES TO MRAI 
As we shall explain later, CHMM alone cannot guaran-
tee good performance. Our error analysis indicates that 
we need to use other approaches jointly with CHMM to 
achieve better performance. Hence this section will in-
troduce several approaches to MRAI, including LS (lin-
ear scaling) and DTW (dynamic time warping). 

3.1 Linear scaling 

LS (linear scaling) is one of the most simple and 
straightforward ways for comparing the input pitch with 
the song database. The basic idea is to compress or 
stretch the input pitch in a linear manner in order to 
match those in the song database. The following figure 
demonstrates the use of LS. 

 
Figure 3. A typical example of linear scaling, 
where the input pitch vector is linearly scaled 5 
times and the best match occurs when the input 
pitch is stretched by 1.5 of its original length. 

3.2 Dynamic time warping 

DTW (dynamic time warping) is one of the most effec-
tive methods for frame-based MRAI, as reported exten-
sively in the literature. However, due to the space limit, 
we do not give technical details of DTW. Interested 
readers can refer to the corresponding references (Jang 
et al., 2001; Jang & Lee, 2001; Jang et al., 2004; Zhu & 
Shasha, 2003; Hu & Dannenberg, 2002). 

4 OTHER MRAI RELATED ISSUES 
In the previous two sections, we have introduced 3 dif-
ferent approaches to compare the input pitch vector with 
those in the song database, including the newly proposed 
CHMM, and previously proposed LS and DTW. In this 
section, we shall discuss the specific ways we tackle 
several MRAI-related issues in our implementation, in-
cluding pitch tracking, key transposition, and rest han-
dling. 

4.1 Pitch tracking 

In general, pitch tracking in singing or humming is 
easier than in speech signals due to the fact that the 
pitch variations in singing/humming are usually not as 
drastic. For simplicity, in this paper we should adopt the 
human-labelled pitch (which is a part of the singing 
corpus SQC) as the input to our melody recognition 
engine. By using the presumably correct pitch, we can 
concentrate on the error analysis of the proposed recog-
nition approach, instead of worrying about the pitch 
tracking error. 

4.2 Key transposition 

To deal with key transposition, most note-based ap-
proaches apply the difference operator before invoking 
the comparison procedure. However, for frame-based 
approach proposed in this paper, the difference operator 
amplifies noises and deteriorates the performance. 
Hence we adopt a heuristic binary-search-like method 
(Jang & Lee, 2001) to shift the entire input pitch vector 
to a suitable position that can generate the minimum 
DTW distance. 

4.3 Rest handling 

General speaking, there are two ways to handle rests in 
both the input pitch and the pitch of the database songs: 

1. Remove all the rests. 
2. Replace the rests with its previous note’s 

pitch level. 
Both methods were used in our experiments and the 

results are discussed in the following section. 

5 EXPERIMENTAL RESULTS 
The section introduces the song database and the singing 
voice corpus used in our experiments, together with the 
experimental settings and the corresponding results. 

5.1 Song database and singing voice corpus 

We have collected a MIDI database of 38 children’s 
songs and a corresponding singing voice corpus called 
SQC (Sung Query Corpus) for evaluating our MRAI 
approach. This corpus contains 1460 wave files (up to 
recordings of the year 2004) of 8 seconds each, re-
corded by 64 subjects (51 males and 13 females). Each 
subject was asked to record 20~30 songs (out of the 38 
songs in the database) that he/she was most familiar 
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with. All recordings in SQC are in Microsoft .wav for-
mat, with a sampling rate of 8000 Hz, single channel 
(mono), bit resolution of 8 bits. For simplicity, all re-
cordings are from beginning of the intended songs. SQC 
is available from the first author’s homepage at 

http://www.cs.nthu.edu.tw/~jang 
Please follow the link of “MIR corpora” to download 
the SQC corpus and corresponding documents. 

In order to perform a fair evaluation, we have divided 
the corpus into two equal-size disjoint groups: A and B. 
For each song in the database, we tried to divide its re-
cordings evenly into two groups. In our experiments, we 
used group A for training CHMM and group B for test, 
and vice versa for checking the consistency of these two 
groups. In the following subsections, we shall describe 
our experiments and the corresponding results. 

5.2 CHMM and its enhancement 

After detailed error analysis, we found that the opti-
mum CHMM path can achieve the maximum cumulated 
log likelihood, but the path is not exactly what we 
wanted. For instance, a state can hold as few as a single 
pitch point, corresponding to a note duration of 1/32 
second, which is not likely to occur in practical situa-
tions. To fix this problem, we have tried several meth-
ods and found the best one is to use LS to identify note 
boundaries and then use the note’s Gaussian PDF com-
pute the cumulated likelihood. Note that the Gaussian 
PDFs are obtained from either score-based training (de-
noted by CHMM1) or corpus-based training (denoted 
by CHMM2). 

Figure 4 shows the recognition rates with respect to 
the computation time of each query with respect to 38 
songs in the database. (Here the recognition rates are 
based on group B while group A was used as the train-
ing data. Moreover, the rests are removed and the 
weighting factor of transition probabilities is set to 1.) 

 
Figure 4. Top-1 recognition rates with respect to 
the computation time of various methods. 

From the above figure, it is obvious that 
LS+CHMM2 has a higher recognition rate of 99.45% 
(with less computation time) than DTW (97.23%) and 
CHMM2 (93.21). LS (96.26%) also seems to be a de-

cent competitor, however, it does not scale up well, as 
shown in section 5.3. 

5.3 Rest handling and weight adjustment 

As mentioned earlier, we can either remove the rests or 
extend the rests with their previous notes’ pitch levels. 
For the weighting factor of transition probabilities, we 
employed a simple linear search to find its optimum 
value. The following bar chart shows the top-1 recogni-
tion rates of LS+HMM2 with respect to different settings. 

 
Figure 5. Top-1 recognition rates of LS+HMM2 
with respect to different settings. 

From the above bar chart, it seems that we can adopt 
either way to handle rests with only small difference in 
recognition rates. Moreover, the optimum weight (= 2.8) 
does increase the recognition rates in 3 out of 4 cases. 
For the experiments in the following next subsection, 
we used the optimum weight and the rests were all re-
moved. 

5.4 Recognition rates w.r.t. database sizes 

It is essential know how these methods scale up properly 
or not. To explore along this direction, we increased the 
song database by adding other real-world songs sequen-
tially till its size is 5000. Figure 6 plots the top-1 recog-
nition rates with respective to the sizes of the song data-
base. From the plot, it is obvious that “LS+CHMM2” 
has the highest recognition rate curve and degrades 
gracefully as the size of the database increases. CHMM2 
also degrades gracefully, though its initial recognition 
rates are not so high. On the other hand, DTW, LS, and 
LS+CHMM1 all have a high recognition rates when the 
database size is small, but degrade rapidly when the da-
tabase size increases. We can conclude that both 
LS+CHMM2 and CHMM2 scale up nicely due to its 
model identification via corpus-based training. 
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Figure 6. Top-1 recognition rates with respect to 
the sizes of the song database. CHMM1 is the 
CHMM via score-based training; CHMM2 is the 
CHMM via corpus-based training. 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed the use of CHMM and 
its enhancement scheme for singing/humming query for 
music retrieval. The proposed LS+CHMM method can 
achieve a higher recognition rate and less computation 
time when compared with the state-of-the-art frame-
based MRAI approach of DTW. Moreover, the proposed 
method also scales up nicely when the size of the song 
database increases. We have put the song database and 
the singing voice corpus on the web for public access. 
 

There are a lot of potential directions for future work. 
Some of the immediate ones include the use of “rest” 
states in CHMM for appropriately representing rests, a 
better way of incorporating key transposition into the 
evaluation and training procedures of CHMM, and the 
use of more features (such as pitch and delta pitch) in 
CHMM for achieving a better recognition rate. 
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