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ABSTRACT 
We observed that for multimedia data – especially music 
- collaborative similarity measures perform much better 
than similarity measures derived from content-based 
sound features. Our observation is based on a large scale 
evaluation with >250,000,000 collaborative data points 
crawled from the web and >190,000 songs annotated 
with content-based sound feature sets. A song mentioned 
in a playlist is regarded as one collaborative data point. 
In this paper we present a novel approach to bridging the 
performance gap between collaborative and content-
based similarity measures. In the initial training phase a 
model vector for each song is computed, based on col-
laborative data. Each vector consists of 200 overlapping 
unlabelled 'genres' or song clusters. Instead of using ex-
plicit numerical voting, we use implicit user profile data 
as collaborative data source, which is, for example, 
available as purchase histories in many large scale e-
commerce applications. After the training phase, we 
used support vector machines based on content-based 
sound features to predict the collaborative model vec-
tors. These predicted model vectors are finally used to 
compute the similarity between songs. We show that 
combining collaborative and content-based similarity 
measures can help to overcome the new item problem in 
e-commerce applications that offer a collaborative simi-
larity recommender as service to their customers. 

 
Keywords: collaborative metadata, content based sound 
feature similarity measures, music similarity, machine 
learning, acoustic measures, evaluation, recommender 

1 INTRODUCTION 
From the point of view of e-commerce, organizing and 
recommending items is an important but challenging 
task. Collaborative metadata constitute an important ba-
sis to this end: Web server logs of our customers in the 
area of newspaper publishing showed that 60 to 70% of 

the links of a page are followed due to similarity rec-
ommendations like "people who liked this, also liked ...".  

In today’s e-commerce shops for music, two domi-
nant approaches to generating similarity recommenda-
tion links can be found: (1) a genre-based approach, 
where each song is assigned to one or more musical 
genres and (2) a collaborative similarity approach, 
where similarity is computed based on purchase histo-
ries.  

The genre-based approach needs to label each song 
by hand with some high level genre information like 
jazz, blues, classical etc. Most shops (e.g. Amazon.com, 
mp3.com, buy.com, Musicload.de, Musicline.de) pro-
vide a genre-based navigation schema. Because a shop 
may sell more than 800,000 songs, a small number of 
high level categories would result in huge song classes 
and are therefore mostly not sufficient. In order to create 
smaller classes, some shops use more fine grained cate-
gories. Musicline.de, for example, uses about 220 genre 
classes for categorisation. Such a system has some se-
vere drawbacks. First, all songs have to be labelled 
manually. Second, even with 220 genres and a perfectly 
balanced distribution of the 800,000 songs across all 
genres, each genre still would contain an average of 
3,636 songs, which is far too large an amount for a user 
to navigate. As a further drawback it has to be consid-
ered that effective access by fine-grained genres is only 
possible for a musicologist. Finally, genres are highly 
subjective. As [1] has shown, given 20 genres, only 
70% percent of all songs are correctly classified by test 
users.  

Currently much research is being done in assigning 
genres to songs automatically (e.g. [1,2,3]). Based on 
our experiments with the genre information of the Ger-
man Amazon product catalogue, we come to the conclu-
sion that their genre classification is not well suited for 
similarity search in large music databases. Our evalua-
tion (Section 4) shows, that when tested against real life 
music listening habits, Amazon-genre based similarity is 
outperformed by pure content-based sound-feature simi-
larity. 

The second area of research is similarity recommen-
dation using collaborative data. Amazon, for example, 
provides a list of recommendations for each music CD. 
This item-to-item recommendation is based on data 
mining in the history of purchases [4]. Even if the re-
sults of this collaborative similarity recommender are 
considered to be good, this approach has the drawback 
of the new item problem. It is not possible to recom-
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mend new music CDs, because shortly after their release 
they do not occur in enough (or any) purchase histories 
yet.  

 In this paper we present a novel approach which at-
tacks the new item problem of collaborative similarity 
recommendations, i.e. a methodology to compute a list 
of recommendations of songs given only one song with-
out purchase histories. The methodology described in 
this paper is a first step towards a CF/CN (collaborative 
filtering/content-based) meta-level recommender ac-
cording to Burke [5].  

Because of the lack of large purchase histories, we 
have crawled the web for collaborative data. In the do-
main of music, collaborative data can be found when 
searching for personal music playlists, similar to [6] and 
[7]. Our work is therefore based a large scale evaluation 
with >250.000.000 collaborative data points, each data 
point representing one song mentioned in a playlist and 
>190.000 sound feature sets, each set representing the 
music of one song. From analysis of the collaborative 
data points, we created 200 unlabelled and overlapping 
genres. Our fully automated approach generates as a 
first step a collaborative model. The principal idea is 
that this collaborative model consists of one model vec-
tor per song. A model vector itself consists of 200 com-
ponents, each reflecting one of our predefined unla-
belled and overlapping genres. Each component of such 
a model vector contains the binary information, whether 
a song belongs to a specific unlabelled genre or not. 
This is decided according to the analysis of the playlists. 
Each song is assigned to a minimum of 4 and a maxi-
mum of 33 genres. Similarity between two songs is de-
fined as the similarity between their model vectors. The 
major advantage of the generated model, besides its 
predictive quality, is the ease of prediction given only 
content-based sound features. 

Having both the collaborative model vectors and the 
content-based sound features for a song, it is possible to 
train supervised classifiers (support vector machines), 
which predict for any given sound feature set the 'gen-
res' to which it belongs. Even though we currently use 
only 30 sound features generated by the MARSYAS 
framework [1], our experiments show that our method 
outperforms the Amazon genre-based similarity recom-
mender as well as similarity recommenders based on 
pure sound feature data. Due to the fact that a super-
vised machine learning approach is used, all possible 
sound feature extractors can be used to improve our 
system. Even hand labelled genre data can be added to 
create better recommendations. 

2 RELATED WORK 
The methodology presented in this paper is an attempt 
to combine two groups of similarity recommenders. One 
group aims to create similarity measures based on con-
tent-based sound features. The other group aims to cal-
culate similarities from collaborative metadata. 

Our work heavily depends on the generation of de-
scriptive content-based sound features created from 

audio signals. First attempts to create similarity meas-
ures based on raw audio signal analysis have been un-
dertaken by [8]. The system used a FFT (Fast Fourier 
Transformation) to compute windowed MFCCs (Mel-
Frequency Cepstrum Coefficients) which were quan-
tized and accumulated in histograms. These histograms 
were used to compute similarities, using the cosine of 
two histogram vectors. Later on, more complex sound 
features were used. Welsh et al.'s approach [9], for ex-
ample, used 1248 sound features per song which, in 
addition to frequency and amplitude, derived higher 
level concepts such as temporal data. Another system 
[10] aims at generating playlists based on content-based 
features. 

Instead of creating similarity measures, some re-
search focuses on automatic genre classification based 
on raw audio data. Most systems (e.g. [1,2,3]) use a two 
step approach. First of all, sound features from raw au-
dio data are extracted. In a second step, supervised clas-
sification is used to categorize feature vectors into gen-
res. From the viewpoint of similarity search, the classi-
fication into genres is an ideal test bed for evaluation of 
the descriptiveness of sound features. 

The use of collaborative metadata is a much investi-
gated area. Most research uses explicit votes on Likert-
scales to predict future user voting (e.g. [11]). This 
might be due to the existence of the MovieLens Dataset, 
which acts as a perfect test bed for evaluations. In this 
paper we focus on music similarities, an application area 
where a gold standard for evaluation does not exist [12]. 
In [6] several similarity measures are compared. One of 
their conclusions is, that similarity measures derived 
from subjective data (co-occurrence analysis of play-
lists) is the most useful gold standard. Accordingly to 
this, we use subjective collaborative data as gold stan-
dard for our evaluation. 

Another interesting collaborative approach, which we 
do not consider in our work, is the use of textual meta-
data from the web for artist classification [13,14]. 

3 METHOD 
An item-to-item recommender needs to measure similar-
ity between individual songs. One possibility is to derive 
a similarity measure from collaborative metadata like 
purchase histories [4] or playlists. This method produces 
good results but has the "new item problem". Another 
option is to compute a similarity measure calculated 
from content-based features like rhythm and spectral 
features [9]. Content-based similarity measures do not 
have the "new item problem" but do not produce as good 
results as collaborative approaches [6]. 

In our basic approach we first build a collaborative 
model from playlists we crawled from the web. In order 
to produce good results and to avoid the "new item 
problem" of collaborative recommenders, we then feed 
content-based sound features (generated by Marsyas 
[1]) into an auto-learning process that trains our col-
laborative model. This training is carried out by a ma-
chine learning process that maps content-based sound 
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features to collaborative model vectors. The results are 
clearly improved content-based similarity measures. 

3.1   A Collaborative Item-to-Item Model 

Given a set of songs S = { s1, s2 … sK } and a set of play-
lists or purchase histories S = { Si | Si  S} we compute a 
collaborative model C = { c1, c2, … ck } which assigns a 
collaborative model vector ci  to each song si. 

Many researchers use supervised classification to 
predict a musical genre for each song ([1,2,3]). An ex-
tension to this approach is to use multiple classifiers 
which classify each song to multiple overlapping 'gen-
res'. Two songs which share the most 'genres' should be 
the most similar. This leads to the idea that our collabo-
rative model consists of multiple overlapping 'genres', 
i.e. a collaborative model vector C  C is assigned to 
each song and each component Ci of C is related to one 
'genre'. If a song belongs to a genre, the corresponding 
component Ci is set to 1, otherwise to 0. 

 In order to assign a collaborative model vector         
ci   C to each song si  S, we proceed in two steps. In 
step (a) unlabelled 'genres' are generated by unsuper-
vised clustering of playlists. In step (b), based on the 
occurrence of songs in playlists which occur in 'genre' 
clusters, each song is assigned to a set of 'genres'. 

The unsupervised clustering algorithm in step (a) 
computes a projection S  PS  which assigns each play-
list Si  S to an unlabelled 'genre' cluster Pj using an 
unsupervised k-means clustering algorithm [15]. 

 
 

 
While clustering, we treat each playlist Si  S as a 

vector v  RK with each component vk = |{sk| sk Si}|. 
Similarities and distances are computed according to the 
Euclidean norm. Because of the sparseness of the play-
list data (our vectors contain 99.988% zeros) an iterative 
approach has been used.   

 
1) Randomly pick one playlist vector Si S for each 

playlist cluster Pj as initial centroid 
2) Compute the centroid Pj,center for each playlist 

cluster Pj 
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In step (b) of the generation of the collaborative item-
to-item model, a model vector D is computed for each 
song ss  S. Given a set of clusters PS of playlists con-
taining songs, each component Dk of D consists of the 
number of playlists in cluster Pk  PS containing the song 
ss  S. 

 
Dk := |{ Si | ss  Si  Si  Pk }| with 1  k  |PS| (4) 

 
Due to the fact that binary classification is more ac-

curate than prediction of real numbers, all nonzero 
components in Dk could be set to 1, i.e. whenever a 
song occurs in a playlist cluster Pk, the corresponding 
vector component Dk could be set to 1, otherwise to 0. 
This discretisation leads to bad results, because playlists 
are highly noisy, which means that some songs occur in 
too many clusters only once or twice. Therefore, we 
have used a threshold, i.e. we compute a vector C  C 
for each song where all components Ck are set to 1 if   
Dk > threshold value and set to 0 otherwise.  
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The threshold value of 0.01 has been determined em-
pirically by maximizing in our evaluation results (Sec-
tion 4). The evaluation will show that each step de-
scribed above reduces the predictive quality of the col-
laborative model when using the cosine as similarity 
measure. The collaborative model nonetheless makes 
better predictions than a pure sound-feature-based re-
commender. 

3.2   Predicting a Model Vector from Raw Sound 
Data 

In the previous section we generated a collaborative 
model C = {c1 … ck} which assigns each song si  S a 
collaborative model vector ci  C. In this section we use 
machine learning techniques to learn a mapping from 
raw sound data of song si  S to a collaborative model 
vector ci  C. Having learned this mapping, it is possible 
to predict collaborative model vectors for songs, which 
are not in the initial training set S, i.e. once the mapping 
is learned it is possible to compute 'collaborative' simi-
larities between songs using the collaborative model 
even for songs which do not occur in playlists Si  S.  

There are two steps to learning a mapping from raw 
sound data of songs si  S to model vectors ci  C. First 
we have to extract content-based sound features fi  F 
from each song si  S. In a second step |PS| classifiers 
are trained to map feature vectors fi  F  to components 
of model vectors ci  C. 

The first step, content-based feature extraction, is 
currently based on the Marsyas Framework [1], which 
extracts 30 real valued features from each sound file 
si S, resulting in a feature vector fi F for each song. 
These 30 real valued features, which are called 'genre-
features' in Marsysas, include averaged timbral texture 
features (e.g. spectral centroid), rhythmic content fea-
tures (e.g. beats per minute) and pitch content features. 
In principle, other kinds of features can be added, re-
gardless of whether they are real valued or binary (e.g. 
existing hand labelled classifications).  
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In the second step we train |PS| binary support vector 
machine (SVM) classifiers (RN=30  [0,1]), one for each 
component Ci of C  C using the WEKA toolkit [16]. 
Good parameters for the SVM RBF kernel (support 
vector machine with radial basis function kernel), are 
identified by means of a grid search. 

After the training phase, similarities between two 
new songs s'1 and s'2 which do not occur in any playlist 
Si  S can be calculated using the collaborative model. 
This is done in three steps.  
 

1. (S  F') Extraction of the sound features  
f'1,f'2  F ' from songs s'1 and s'2, based on the 
audio-signal 

2. (F  Ci    with F  F '  C  C ') Prediction of 
the two model vectors c'1,c'2  C ' by applying 
the |PS| trained SVMs to the sound features vec-
tors f'1 and f'2, i.e. each component of c'1,i  and 
c'2,i of c'1 and c'2 is predicted independently. 

3. Computation of the similarity between c'1 and c'2, 
which is defined as the cosine of c'1 and c'2. 

 

 
Figure 1: Overall Block Diagram of our Method 

By predicting the collaborative model vectors from 
sound features, collaborative recommenders can be 
seamlessly extended with content-based similarity to 
deal with the new item problem. Our method can be 
employed for completely new songs. For songs which 
have a large purchase history, a purely collaborative 
approach can be used. For songs which have not been 
sold very often, a combination of collaborative and con-
tent-based methods could be used. The combination 
could be arrived at, for example via a weighted sum of 
two model vectors C  C, where one vector is based on 
our method, the other one on collaborative data.  

The use of binary components in C and the inde-
pendent training of SVMs for each component Ci of C  
C is not optimal. This is due to the fact that the compo-
nents Di (4) of our collaborative model vectors D are 
not mutually independent, because each component of a 
vector D is based on a cluster of playlists. Playlist clus-
ters themselves have similarities to each other, i.e. it is 
likely that if a song occurs in one playlist cluster it will 
occur in the most similar clusters too. This means that if 
one component Di (=cluster) in D is set to a specific 
value, the most similar components of D will have simi-
lar values. It would have been nice to train a mapping 
from sound features F F to D without any discretiza-
tions (D C) using an algorithm, which learns vector-
valued functions (RN R|PS|). Unfortunately, research on 
learning vector-valued functions is still at a rather early 
stage [17]. A simpler approach is to neglect the mutual 
dependence of components Di of D and train independ-
ent classifiers to predict binary classes of Ci.  

4 EXPERIMENTS 
In our experiments we build and evaluate four types of 
similarity measures, varying in their data sources. These 
similarity measures are based on data from 

• Collaborative sources 
• Content-based sound features 
• Amazon's genre data 
• Collaborative sources and content-based sound 

features (our method) 
Based on the similarity measures a song recom-

mender for each measure is created. Each recommender 
computes for each given song si  S the N most similar 
songs TopN = {t1…tN | ti  S}. In order to evaluate the 
predictive performance of each recommender, we fol-
low the observations of Berenzweig [6] that collabora-
tive data sources are the best gold standard. This means 
that our evaluation metric is based on collaborative 
playlist data Stest = { Si,test | Si,test  S} which is not used  
in the training phase. Precision, Recall and F1 are calcu-
lated for each song ssong  S and averaged over all 
songs. 

 ∑
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F1 is the classic information retrieval measure for over-
all retrieval performance. In our evaluation metrics "pre-
cision" reflects the probability given one song by the 
user that this user would add the recommended song in 
a playlist together with the given one.  

 

Collaborative Playlist Data  S 

Cluster Playlists:  S PS 

Compute C  C  for each Song ss  S 
by Thresholding Dk := |{ Si | ss  Si  Si   Pk }| 

Collaborative model C = {c1 … ck} 
For each Song si:     ci = [1 0 0 … 1 0]  R|PS| 

Train/Use |PS | SVM-Classifiers RN  [0,1] 
F  Ci    with F  F    C  C 

Features F = {f1…fK |  fi  RN }   

Sound Feature Extraction  S  F 

Raw Sound Data of Songs S = {s1 … sK} 

Similarity := cos(ci, ck) 

Section: Predicting a Model Vector from Raw Sound Data 

Section: A Collaborative Item-to-Item model 
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In the following subsection we show that it is possi-
ble to create collaborative similarity measures by crawl-
ing music playlists from the web. We show in a large 
scale evaluation that the quantity of the crawled data if a 
key factor regarding the predictive performance of this 
approach. In Section 4.2 we create and evaluate a simi-
larity measure like proposed in Section 3.1, which is 
based on crawled collaborative data. As a testing base-
line we create and evaluate similarity measures based on 
pure content-based sound features and based on Ama-
zon's genre-data in Section 4.3. Finally in Section 4.4 
we train and predict a collaborative model based on 
content-based sound features like proposed in section 
3.2.  

4.1  Crawling the Web for Music Playlists 

In this section a song item-to-item recommender based 
on 250,000,000 collaborative data points crawled from 
the web is built and evaluated. We show that 'size mat-
ters', i.e. the quality of recommendation increases with 
the quantity of collaborative data or, more formally, that 
the averaged F1 measure of the overall system is propor-
tional to log(|Data|). 

A collaborative model of music similarity which can 
be tested against real world data (e.g. user playlists, ra-
dio programme histories) should cover a large portion 
of current music. [7], for example, used a 2800 album 
dataset which was used by a closed community. Be-
cause of the lack of a free dataset, we choose to crawl 
the web for real world playlists.  

Some programs (e.g. WinAmp, XMMS) produce 
HTML pages with playlists. Due to the low cost of pub-
lishing web pages, many people put "the playlist of our 
last party" online. These pages have simple structures 
and can be found using common search engines (e.g. 
altavista, google).  The idea is to search for specific 
words within the auto generated HTML page (e.g. for 
WinAmp +"WinAmp generated playlist") in combina-
tion with artist names (e.g. +"Eric Clapton").  Artist 
names can be taken from a music catalogue, such as 
Amazon. Unfortunately, not all playlists contain valu-
able information, e.g. some contain "all tracks I have on 
my harddisk". To decide, if a playlist should be used, 
we employed a rule based filter. The rules are: a playlist 
must contain at least three different artists, have at most 
300 entries and tracks may not be sorted alphabetically. 

Due to limitations of search engines, such as a re-
striction on queries per day and computer, the crawler 
has to run in a distributed manner and should automati-
cally crawl the immediate area of a match. After two 
years of crawling we have gathered >250,000,000 play-
list member datasets.  

The listed songs in playlists do not have globally 
identifiable keys. Usually a playlist entry contains only 
a string like "track01.mp3" or "(eagles)-the long run-04 
the disco strangler.ogg". Our first attempt to match the 
text strings (>17.000.000) with the free CDDB failed, 
because the CDDB is not itself normalized (e.g. 
"Track01" is a common track name in the CDDB). In 

order to produce high quality results, we have used the 
Amazon product catalogue as a dictionary to match 
against. Even if Amazon sells only a small portion of 
existing music, and not all CDs in the catalogue contain 
track information, we were able to match about 7.5% of 
our playlist entries against this reliable source (com-
pared to 39% using the CDDB, where "Track01" is in-
cluded). 

The result of crawling and matching is a data set with 
176,930 songs, 880,985 playlists and 18,769,469 play-
list entries. Compared to other research systems, our 
approach (>8,000,000 playlists before tagging and fil-
tering) is an extremely large scale approach. E.g. [6], 
who stated that the similarity measures created with 
playlist data, is the "most useful ground truth" (gold 
standard), used only 29,000 playlists from "The Art of 
the Mix" (www.artofthemix.org), which is a small sub-
set of our data (about 0.3% of our data set).  

To evaluate the improvement in prediction accuracy 
with the increase of data, we have produced a simple 
artist similarity recommender. The similarity between 
two artists is defined by the cosine between their play-
list occurrence vectors. Test data was taken to compute 
an averaged F1 measure. The evaluation results are 
shown in Figure 2. The F1 measure is approximately 
proportional to log(|Data|). 

 
 Figure 2: Each line represents a collaborative 
artist similarity recommender, evaluated against 
playlists. The lowest line is built from 1% of all 
available playlist data, the highest from 100%. 
The F1 measure (Y-Axis) increases roughly with 
log(|Data|). The number of recommended Items 
(X-Axis) influences F1. 

Due to the fact, that we did not know whether the re-
sults are specific to the cosine algorithm, we used an 
association rules algorithm and some variants. The dif-
ferent algorithms did not change the result in principle. 
The normalisation rules, such as the rule that every artist 
occurs only once in a playlist, have more influence on 
the results than alternative algorithms have. 

In addition to the automated evaluation against 
crawled playlists, we ran a web based test, where three 
different recommender engines were randomly pre-
sented to test users. The test users had to express their 
satisfaction with the recommended results. The three 
recommender engines only differ in the amount of data 
used to train them (1%, 8% and 100% of all playlist 
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data). Interestingly, even if the test users did not know 
which engine was presented, their ranking corresponded 
with the F1 measures of our automated evaluation. 

4.2 Creating a Collaborative Model 

With 30 content-based features per song provided by the 
Marsyas framework we cannot realistically train high 
dimensional collaborative models. Thus we need to re-
duce the dimension of the collaborative model. To inves-
tigate the effect of reducing dimensions we have per-
formed the following experiment:  

Using the playlist data set described above, it is pos-
sible to build a collaborative model described in Section 
3.1. In the creation process, there are four steps in which 
a similarity measure between songs can be computed 
and evaluated against real life playlist data. In each step, 
a feature vector is assigned to each song. Similarity be-
tween two songs can be evaluated using the cosine 
measure between the feature vectors. 

In the first step we used the raw playlist data to create 
a similarity measure. Even if the cosine measure is not 
the first choice for computing similarity, we use it to be 
compatible with the other steps. Each component of a 
song's feature vector in this step is a playlist. If the song 
occurs in the playlist, the component is set to 1, other-
wise to 0. The evaluation of the resulting similarity 
measure is the highest line (best performance) in figure 
3, marked as 'collaborative'.  

The second line from the top, marked as 'clustered 
songs', shows the performance of the second step, in 
which the feature vector D is used to create a similarity 
measure, i.e. at this point all playlists are clustered in 
|PS| = 200 clusters using the k-means algorithm de-
scribed in section 3.1. Each vector D for a song ssong  S 
has 200 components Di and each of these components 
contains the number of occurrences of song ssong in play-
list cluster Pi. 

Our experiments show that if we create less than 200 
clusters, the predictive precision decreases. Creating 
more than 200 clusters does not increase the precision. 
The difference in the results of precision when creating 
200 or 400 playlist clusters is about 4±0.5 percent. 

 
Figure 3: Evaluation of reduction steps described 
in Section 3.1 against a test set of playlists. 

The third step and third line in figure 3 uses D/||D|| as 
feature vector with all components <0.01 set to 0. And 
finally, the bottom line in figure 3 uses the binary fea-
ture vector C  C as source for the similarity measure, 
where the feature vector from step 3 is taken and all 
components >0 are set to 1. 

It is obvious that each step decreases the predictive 
performance of the similarity measure. On the other 
hand, even the bottom line of the collaborative model 
performs far better than purely content-based similarity 
measures (Section 4.3). 

4.3  Comparing a Content-based and a Genre-based 
Music Recommender 

In this section we set up a testing baseline by generating 
and evaluating three similarity measures based on three 
different data sources. One similarity measure is based 
on 30 dimensional content-based sound feature data pro-
vided by Marsyas [1], the second one is based on Ama-
zon's genre-data and the third is based on a 30 dimen-
sional random vector.   

In order to build a content-based music recom-
mender, it is necessary to have a large database of sound 
features. Due to the lack of a common set of free test 
songs, or a free large scale collection of sound features, 
we created a sound feature extraction utility based on 
Marsyas [1] which extracts a 30 dimensional feature 
vector per song. The extraction utility, which sends ex-
tracted metadata via http to a central server, runs on our 
students' private music collections. Unfortunately, the 
collection is not completely balanced across genres, 
which means that nearly 70% percent of all data is re-
lated to the genres Pop / Rock / Independent. 

In total we were able to extract >190,000 files. After 
eliminating duplicates and matching against the Ama-
zon (Germany) product catalogue, we obtained 41,816 
tagged feature sets. 

For the purpose of performance comparison, we 
build a simple sound-feature-based music recommender. 
Similarity between two songs or two feature vectors is 
defined as the cosine of the two feature vectors. Before 
the cosine calculation, each feature was linearly scaled 
to the range [-1...1]. The underlying assumption of this 
straightforward implementation is that all features con-
tribute equally to the subjective perception of music 
similarity and all features are equally noisy across all 
types of music. This assumption makes it hard to add 
new features from different frameworks and even if the 
current features are carefully selected the assumption 
may not hold. 

In order to compare the basic sound feature recom-
mender to an alternative approach we build a music 
similarity recommender based on hand labelled genre 
information. Because we matched all music titles 
against the product catalogue of Amazon (Germany), it 
seems reasonable to use their genre information. The 
highest level of genre information at Amazon.de divides 
all music into twelve top level genres, but most songs 
belong to more than one genre, e.g. "The Beatles – All 
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You Need is Love" belongs to the genres "Jazz&Blues", 
"Pop", "Rock" and "Classics". Of course, this is not a 
musicological categorisation but a real life example.  

To create a similarity recommender based on genre 
information, we represent the genre information as bi-
nary feature information, i.e. each genre is one dimen-
sion in a song's feature vector. If the song belongs to the 
genre, that component is set to 1, otherwise to 0. Just as 
for the sound-feature-based music similarity recom-
mender, similarity between two songs or two feature 
vectors is defined as the cosine of the feature vectors. 

As a testing baseline we employed a similarity en-
gine, with 30 real valued random features per song, with 
random numbers in the range [0…1]. Again, similarity 
between two songs or two random-feature vectors is 
defined as the cosine of the two feature vectors. Even if 
in theory the predictive precision of random-features 
should be constant in an equally distributed test set, the 
real world test bed shows a small increase in precision 
with an increase in the number of recommended items. 

 
Figure 4: Comparison of three music similarity 
recommendation engines based on sound fea-
tures, Amazon (Germany) genres seen as binary 
features and random features. 

All three similarity engines were tested against 
654,506 human generated playlists. The results (preci-
sion against number of recommendations) are shown in 
Figure 4. It can be seen, that the sound-feature-based 
similarity engine as well as the Amazon genre-based 
engine produce far better results than the random-
feature based engine. More interesting is that the sound-
feature-based similarity recommender outperforms the 
hand labelled Amazon genre-based recommender. 

4.4  Predicting the Collaborative Model 

In this section we create a similarity measure with our 
method described in Section 3.2. In an evaluation we 
compare our approach with a content-based approach. 

In the previous sections we created a collaborative 
model which represents each song as a binary feature 
vector C  C, in our case with 200 binary dimensions. 
Additionally, we have used the MARSYAS framework 
to create for each song a content-based feature vector 
with 30 dimensions. On this basis, we can use a super-
vised learning approach to learn a mapping from fea-
tures F to the collaborative model C. After the one time 

training, for each new song a collaborative feature vec-
tor C  C ' can be predicted using the learned mapping 
from F to C. 

We have collaborative data for 176,930 songs and 
41,816 tagged content-based feature sets. The intersec-
tion of both sets contains 36,916 songs. 

As stated in Section 3, even if the dimensions of each 
collaborative model vector C  C are not independent, 
we have to assume that they are independent because of 
the lack of appropriate vector-valued learning methods. 
This means that we trained 200 binary support vector 
machines using a radial basis function kernel (SVM 
with RBF kernel) to predict each binary component Ci 
of C  C independently, based on the feature vector      
F  F provided by MARSYAS.  

To evaluate our method we predicted, based on the 
sound feature vectors F, for each song of our test set 
data a collaborative model vector C  C '. After this 
prediction similarities of the predicted vectors C are 
computed using the cosine as similarity function. The 
resulting similarities are tested against 301,227 human 
generated playlists. 

 
Figure 5: Comparison of three music similarity 
engines: our method (top line), sound features 
(middle) and random features (bottom line).  

Of course, it would have been preferable to present a 
ten-fold cross validation instead of only one run, but the 
training of one SVM takes (incl. automated optimization 
of the RBF-kernel parameters) about 3.4 hours which 
results in 28 days for 200 SVMs. 

The evaluation results in figure 5 show that our 
method (top-line) nearly doubles the precision for the 
'most similar' item (TopN=1), i.e. given one song by the 
user, the probability that this user would add the rec-
ommended song in a playlist with the given one is dou-
bled by our method compared to a pure content-based 
approach and more than doubled compared to a recom-
mender based on Amazon's genre-data (Section 4.3). 

5 CONCLUSIONS AND FUTURE WORK 
In this paper we have presented an approach to improv-
ing purely content-based similarity measures by training 
a collaborative model with content-based sound features. 
With our approach we were able to almost double the 
precision of similarity-based recommendations com-

270



   
 

 

pared to a content-based approach when tested in a real-
life test bed against human generated playlists. In addi-
tion to that, our approach is open to any progress in the 
area of content-based feature extraction. The more de-
scriptive new sound features are, the better the result 
should be. 

On the collaborative side, we created a collaborative 
recommender from a large scale dataset (18,769,469 
tagged data points). This recommender and two ver-
sions, trained with fewer data, have been tested by users 
on the web. The users ranked their satisfaction with the 
recommenders according to the offline predicted F1 
measure and precision of the recommender, which 
means that the test bed seems to reflect reality. 

We conducted an experiment to build a similarity 
measure based on the genre data of Amazon (Germany). 
The evaluation results of the Amazon genre-based simi-
larity engine were outperformed by the similarities 
gained through the pure sound-feature-based approach. 
It emerges that an approach based on Amazon’s genres 
is not suitable.  

 
Figure 6: Performance comparison of 3 music 
similarity recommenders: pure collaborative ap-
proach (top line), our approach (middle), sound-
feature-based (bottom line). 

Fig. 6 shows that our method has much potential for 
improvement. The theoretical maximum is the top line 
in figure 6. One way to improve the performance of our 
method could be to use more descriptive sound features, 
another one is to build a better collaborative model. A 
third way to improve the prediction rate is to find ma-
chine learning approaches which exploit the interde-
pendence of collaborative model vector components. 

Simulations showed that if we could raise our current 
average SVM prediction rate from 73.1% correctly pre-
dicted items to 95%, we could raise the precision for the 
'most similar item' (one recommendation) in our method 
from 0.0108 to 0.04, compared to 0.0054 with a purely 
sound feature-based approach.  
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