

IMPROVING CONTENT-BASED SIMILARITY MEASURES BY
TRAINING A COLLABORATIVE MODEL

 Richard Stenzel, Thomas Kamps
 Fraunhofer IPSI

Dolivostr. 15
D-64293 Darmstadt

stenzel@ipsi.fraunhofer.de
kamps@ipsi.fraunhofer.de

ABSTRACT
We observed that for multimedia data – especially music
- collaborative similarity measures perform much better
than similarity measures derived from content-based
sound features. Our observation is based on a large scale
evaluation with >250,000,000 collaborative data points
crawled from the web and >190,000 songs annotated
with content-based sound feature sets. A song mentioned
in a playlist is regarded as one collaborative data point.
In this paper we present a novel approach to bridging the
performance gap between collaborative and content-
based similarity measures. In the initial training phase a
model vector for each song is computed, based on col-
laborative data. Each vector consists of 200 overlapping
unlabelled 'genres' or song clusters. Instead of using ex-
plicit numerical voting, we use implicit user profile data
as collaborative data source, which is, for example,
available as purchase histories in many large scale e-
commerce applications. After the training phase, we
used support vector machines based on content-based
sound features to predict the collaborative model vec-
tors. These predicted model vectors are finally used to
compute the similarity between songs. We show that
combining collaborative and content-based similarity
measures can help to overcome the new item problem in
e-commerce applications that offer a collaborative simi-
larity recommender as service to their customers.

Keywords: collaborative metadata, content based sound
feature similarity measures, music similarity, machine
learning, acoustic measures, evaluation, recommender

1 INTRODUCTION
From the point of view of e-commerce, organizing and
recommending items is an important but challenging
task. Collaborative metadata constitute an important ba-
sis to this end: Web server logs of our customers in the
area of newspaper publishing showed that 60 to 70% of

the links of a page are followed due to similarity rec-
ommendations like "people who liked this, also liked ...".

In today’s e-commerce shops for music, two domi-
nant approaches to generating similarity recommenda-
tion links can be found: (1) a genre-based approach,
where each song is assigned to one or more musical
genres and (2) a collaborative similarity approach,
where similarity is computed based on purchase histo-
ries.

The genre-based approach needs to label each song
by hand with some high level genre information like
jazz, blues, classical etc. Most shops (e.g. Amazon.com,
mp3.com, buy.com, Musicload.de, Musicline.de) pro-
vide a genre-based navigation schema. Because a shop
may sell more than 800,000 songs, a small number of
high level categories would result in huge song classes
and are therefore mostly not sufficient. In order to create
smaller classes, some shops use more fine grained cate-
gories. Musicline.de, for example, uses about 220 genre
classes for categorisation. Such a system has some se-
vere drawbacks. First, all songs have to be labelled
manually. Second, even with 220 genres and a perfectly
balanced distribution of the 800,000 songs across all
genres, each genre still would contain an average of
3,636 songs, which is far too large an amount for a user
to navigate. As a further drawback it has to be consid-
ered that effective access by fine-grained genres is only
possible for a musicologist. Finally, genres are highly
subjective. As [1] has shown, given 20 genres, only
70% percent of all songs are correctly classified by test
users.

Currently much research is being done in assigning
genres to songs automatically (e.g. [1,2,3]). Based on
our experiments with the genre information of the Ger-
man Amazon product catalogue, we come to the conclu-
sion that their genre classification is not well suited for
similarity search in large music databases. Our evalua-
tion (Section 4) shows, that when tested against real life
music listening habits, Amazon-genre based similarity is
outperformed by pure content-based sound-feature simi-
larity.

The second area of research is similarity recommen-
dation using collaborative data. Amazon, for example,
provides a list of recommendations for each music CD.
This item-to-item recommendation is based on data
mining in the history of purchases [4]. Even if the re-
sults of this collaborative similarity recommender are
considered to be good, this approach has the drawback
of the new item problem. It is not possible to recom-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

© 2005 Queen Mary, University of London

264

mend new music CDs, because shortly after their release
they do not occur in enough (or any) purchase histories
yet.

 In this paper we present a novel approach which at-
tacks the new item problem of collaborative similarity
recommendations, i.e. a methodology to compute a list
of recommendations of songs given only one song with-
out purchase histories. The methodology described in
this paper is a first step towards a CF/CN (collaborative
filtering/content-based) meta-level recommender ac-
cording to Burke [5].

Because of the lack of large purchase histories, we
have crawled the web for collaborative data. In the do-
main of music, collaborative data can be found when
searching for personal music playlists, similar to [6] and
[7]. Our work is therefore based a large scale evaluation
with >250.000.000 collaborative data points, each data
point representing one song mentioned in a playlist and
>190.000 sound feature sets, each set representing the
music of one song. From analysis of the collaborative
data points, we created 200 unlabelled and overlapping
genres. Our fully automated approach generates as a
first step a collaborative model. The principal idea is
that this collaborative model consists of one model vec-
tor per song. A model vector itself consists of 200 com-
ponents, each reflecting one of our predefined unla-
belled and overlapping genres. Each component of such
a model vector contains the binary information, whether
a song belongs to a specific unlabelled genre or not.
This is decided according to the analysis of the playlists.
Each song is assigned to a minimum of 4 and a maxi-
mum of 33 genres. Similarity between two songs is de-
fined as the similarity between their model vectors. The
major advantage of the generated model, besides its
predictive quality, is the ease of prediction given only
content-based sound features.

Having both the collaborative model vectors and the
content-based sound features for a song, it is possible to
train supervised classifiers (support vector machines),
which predict for any given sound feature set the 'gen-
res' to which it belongs. Even though we currently use
only 30 sound features generated by the MARSYAS
framework [1], our experiments show that our method
outperforms the Amazon genre-based similarity recom-
mender as well as similarity recommenders based on
pure sound feature data. Due to the fact that a super-
vised machine learning approach is used, all possible
sound feature extractors can be used to improve our
system. Even hand labelled genre data can be added to
create better recommendations.

2 RELATED WORK
The methodology presented in this paper is an attempt
to combine two groups of similarity recommenders. One
group aims to create similarity measures based on con-
tent-based sound features. The other group aims to cal-
culate similarities from collaborative metadata.

Our work heavily depends on the generation of de-
scriptive content-based sound features created from

audio signals. First attempts to create similarity meas-
ures based on raw audio signal analysis have been un-
dertaken by [8]. The system used a FFT (Fast Fourier
Transformation) to compute windowed MFCCs (Mel-
Frequency Cepstrum Coefficients) which were quan-
tized and accumulated in histograms. These histograms
were used to compute similarities, using the cosine of
two histogram vectors. Later on, more complex sound
features were used. Welsh et al.'s approach [9], for ex-
ample, used 1248 sound features per song which, in
addition to frequency and amplitude, derived higher
level concepts such as temporal data. Another system
[10] aims at generating playlists based on content-based
features.

Instead of creating similarity measures, some re-
search focuses on automatic genre classification based
on raw audio data. Most systems (e.g. [1,2,3]) use a two
step approach. First of all, sound features from raw au-
dio data are extracted. In a second step, supervised clas-
sification is used to categorize feature vectors into gen-
res. From the viewpoint of similarity search, the classi-
fication into genres is an ideal test bed for evaluation of
the descriptiveness of sound features.

The use of collaborative metadata is a much investi-
gated area. Most research uses explicit votes on Likert-
scales to predict future user voting (e.g. [11]). This
might be due to the existence of the MovieLens Dataset,
which acts as a perfect test bed for evaluations. In this
paper we focus on music similarities, an application area
where a gold standard for evaluation does not exist [12].
In [6] several similarity measures are compared. One of
their conclusions is, that similarity measures derived
from subjective data (co-occurrence analysis of play-
lists) is the most useful gold standard. Accordingly to
this, we use subjective collaborative data as gold stan-
dard for our evaluation.

Another interesting collaborative approach, which we
do not consider in our work, is the use of textual meta-
data from the web for artist classification [13,14].

3 METHOD
An item-to-item recommender needs to measure similar-
ity between individual songs. One possibility is to derive
a similarity measure from collaborative metadata like
purchase histories [4] or playlists. This method produces
good results but has the "new item problem". Another
option is to compute a similarity measure calculated
from content-based features like rhythm and spectral
features [9]. Content-based similarity measures do not
have the "new item problem" but do not produce as good
results as collaborative approaches [6].

In our basic approach we first build a collaborative
model from playlists we crawled from the web. In order
to produce good results and to avoid the "new item
problem" of collaborative recommenders, we then feed
content-based sound features (generated by Marsyas
[1]) into an auto-learning process that trains our col-
laborative model. This training is carried out by a ma-
chine learning process that maps content-based sound

265

features to collaborative model vectors. The results are
clearly improved content-based similarity measures.

3.1 A Collaborative Item-to-Item Model

Given a set of songs S = { s1, s2 … sK } and a set of play-
lists or purchase histories S = { Si | Si S} we compute a
collaborative model C = { c1, c2, … ck } which assigns a
collaborative model vector ci to each song si.

Many researchers use supervised classification to
predict a musical genre for each song ([1,2,3]). An ex-
tension to this approach is to use multiple classifiers
which classify each song to multiple overlapping 'gen-
res'. Two songs which share the most 'genres' should be
the most similar. This leads to the idea that our collabo-
rative model consists of multiple overlapping 'genres',
i.e. a collaborative model vector C C is assigned to
each song and each component Ci of C is related to one
'genre'. If a song belongs to a genre, the corresponding
component Ci is set to 1, otherwise to 0.

 In order to assign a collaborative model vector
ci C to each song si S, we proceed in two steps. In
step (a) unlabelled 'genres' are generated by unsuper-
vised clustering of playlists. In step (b), based on the
occurrence of songs in playlists which occur in 'genre'
clusters, each song is assigned to a set of 'genres'.

The unsupervised clustering algorithm in step (a)
computes a projection S PS which assigns each play-
list Si S to an unlabelled 'genre' cluster Pj using an
unsupervised k-means clustering algorithm [15].

While clustering, we treat each playlist Si S as a

vector v RK with each component vk = |{sk| sk Si}|.
Similarities and distances are computed according to the
Euclidean norm. Because of the sparseness of the play-
list data (our vectors contain 99.988% zeros) an iterative
approach has been used.

1) Randomly pick one playlist vector Si S for each

playlist cluster Pj as initial centroid
2) Compute the centroid Pj,center for each playlist

cluster Pj

∑=
iS i

i

j
centerj S

S
P

P
||||||||

1:,

r (2)

3) Assign each playlist Si S to the closest centroid
Pj using the cosine as similarity function.

||||*||||
),cos(

ji

ji
ji SS

SS
SS vv

vv
vv ⋅

= (3)

4) Goto 2) until no more changes occur

In step (b) of the generation of the collaborative item-
to-item model, a model vector D is computed for each
song ss S. Given a set of clusters PS of playlists con-
taining songs, each component Dk of D consists of the
number of playlists in cluster Pk PS containing the song
ss S.

Dk := |{ Si | ss Si Si Pk }| with 1 k |PS| (4)

Due to the fact that binary classification is more ac-

curate than prediction of real numbers, all nonzero
components in Dk could be set to 1, i.e. whenever a
song occurs in a playlist cluster Pk, the corresponding
vector component Dk could be set to 1, otherwise to 0.
This discretisation leads to bad results, because playlists
are highly noisy, which means that some songs occur in
too many clusters only once or twice. Therefore, we
have used a threshold, i.e. we compute a vector C C
for each song where all components Ck are set to 1 if
Dk > threshold value and set to 0 otherwise.

)5(1
0

01.01
S

k

k Pkwith
otherwise

D
D

if
C ≤≤

⎪⎩

⎪
⎨
⎧ <

=

The threshold value of 0.01 has been determined em-
pirically by maximizing in our evaluation results (Sec-
tion 4). The evaluation will show that each step de-
scribed above reduces the predictive quality of the col-
laborative model when using the cosine as similarity
measure. The collaborative model nonetheless makes
better predictions than a pure sound-feature-based re-
commender.

3.2 Predicting a Model Vector from Raw Sound
Data

In the previous section we generated a collaborative
model C = {c1 … ck} which assigns each song si S a
collaborative model vector ci C. In this section we use
machine learning techniques to learn a mapping from
raw sound data of song si S to a collaborative model
vector ci C. Having learned this mapping, it is possible
to predict collaborative model vectors for songs, which
are not in the initial training set S, i.e. once the mapping
is learned it is possible to compute 'collaborative' simi-
larities between songs using the collaborative model
even for songs which do not occur in playlists Si S.

There are two steps to learning a mapping from raw
sound data of songs si S to model vectors ci C. First
we have to extract content-based sound features fi F
from each song si S. In a second step |PS| classifiers
are trained to map feature vectors fi F to components
of model vectors ci C.

The first step, content-based feature extraction, is
currently based on the Marsyas Framework [1], which
extracts 30 real valued features from each sound file
si S, resulting in a feature vector fi F for each song.
These 30 real valued features, which are called 'genre-
features' in Marsysas, include averaged timbral texture
features (e.g. spectral centroid), rhythmic content fea-
tures (e.g. beats per minute) and pitch content features.
In principle, other kinds of features can be added, re-
gardless of whether they are real valued or binary (e.g.
existing hand labelled classifications).

266

In the second step we train |PS| binary support vector
machine (SVM) classifiers (RN=30 [0,1]), one for each
component Ci of C C using the WEKA toolkit [16].
Good parameters for the SVM RBF kernel (support
vector machine with radial basis function kernel), are
identified by means of a grid search.

After the training phase, similarities between two
new songs s'1 and s'2 which do not occur in any playlist
Si S can be calculated using the collaborative model.
This is done in three steps.

1. (S F') Extraction of the sound features
f'1,f'2 F ' from songs s'1 and s'2, based on the
audio-signal

2. (F Ci with F F ' C C ') Prediction of
the two model vectors c'1,c'2 C ' by applying
the |PS| trained SVMs to the sound features vec-
tors f'1 and f'2, i.e. each component of c'1,i and
c'2,i of c'1 and c'2 is predicted independently.

3. Computation of the similarity between c'1 and c'2,
which is defined as the cosine of c'1 and c'2.

Figure 1: Overall Block Diagram of our Method

By predicting the collaborative model vectors from
sound features, collaborative recommenders can be
seamlessly extended with content-based similarity to
deal with the new item problem. Our method can be
employed for completely new songs. For songs which
have a large purchase history, a purely collaborative
approach can be used. For songs which have not been
sold very often, a combination of collaborative and con-
tent-based methods could be used. The combination
could be arrived at, for example via a weighted sum of
two model vectors C C, where one vector is based on
our method, the other one on collaborative data.

The use of binary components in C and the inde-
pendent training of SVMs for each component Ci of C
C is not optimal. This is due to the fact that the compo-
nents Di (4) of our collaborative model vectors D are
not mutually independent, because each component of a
vector D is based on a cluster of playlists. Playlist clus-
ters themselves have similarities to each other, i.e. it is
likely that if a song occurs in one playlist cluster it will
occur in the most similar clusters too. This means that if
one component Di (=cluster) in D is set to a specific
value, the most similar components of D will have simi-
lar values. It would have been nice to train a mapping
from sound features F F to D without any discretiza-
tions (D C) using an algorithm, which learns vector-
valued functions (RN R|PS|). Unfortunately, research on
learning vector-valued functions is still at a rather early
stage [17]. A simpler approach is to neglect the mutual
dependence of components Di of D and train independ-
ent classifiers to predict binary classes of Ci.

4 EXPERIMENTS
In our experiments we build and evaluate four types of
similarity measures, varying in their data sources. These
similarity measures are based on data from

• Collaborative sources
• Content-based sound features
• Amazon's genre data
• Collaborative sources and content-based sound

features (our method)
Based on the similarity measures a song recom-

mender for each measure is created. Each recommender
computes for each given song si S the N most similar
songs TopN = {t1…tN | ti S}. In order to evaluate the
predictive performance of each recommender, we fol-
low the observations of Berenzweig [6] that collabora-
tive data sources are the best gold standard. This means
that our evaluation metric is based on collaborative
playlist data Stest = { Si,test | Si,test S} which is not used
in the training phase. Precision, Recall and F1 are calcu-
lated for each song ssong S and averaged over all
songs.

 ∑
∩

∈
=

testS

testi

testisongtesti TopN
TopNS

SsS
precision ,

,, }|{
1 (6)

 ∑
∩

∈
=

testS testi

testi

testisongtesti S

TopNS

SsS
recall

,

,

,, }|{
1 (7)

recallprecision
recallprecisionF

+
=

**21 (8)

F1 is the classic information retrieval measure for over-
all retrieval performance. In our evaluation metrics "pre-
cision" reflects the probability given one song by the
user that this user would add the recommended song in
a playlist together with the given one.

Collaborative Playlist Data S

Cluster Playlists: S PS

Compute C C for each Song ss S
by Thresholding Dk := |{ Si | ss Si Si Pk }|

Collaborative model C = {c1 … ck}
For each Song si: ci = [1 0 0 … 1 0] R|PS|

Train/Use |PS | SVM-Classifiers RN [0,1]
F Ci with F F C C

Features F = {f1…fK | fi RN }

Sound Feature Extraction S F

Raw Sound Data of Songs S = {s1 … sK}

Similarity := cos(ci, ck)

Section: Predicting a Model Vector from Raw Sound Data

Section: A Collaborative Item-to-Item model

267

In the following subsection we show that it is possi-
ble to create collaborative similarity measures by crawl-
ing music playlists from the web. We show in a large
scale evaluation that the quantity of the crawled data if a
key factor regarding the predictive performance of this
approach. In Section 4.2 we create and evaluate a simi-
larity measure like proposed in Section 3.1, which is
based on crawled collaborative data. As a testing base-
line we create and evaluate similarity measures based on
pure content-based sound features and based on Ama-
zon's genre-data in Section 4.3. Finally in Section 4.4
we train and predict a collaborative model based on
content-based sound features like proposed in section
3.2.

4.1 Crawling the Web for Music Playlists

In this section a song item-to-item recommender based
on 250,000,000 collaborative data points crawled from
the web is built and evaluated. We show that 'size mat-
ters', i.e. the quality of recommendation increases with
the quantity of collaborative data or, more formally, that
the averaged F1 measure of the overall system is propor-
tional to log(|Data|).

A collaborative model of music similarity which can
be tested against real world data (e.g. user playlists, ra-
dio programme histories) should cover a large portion
of current music. [7], for example, used a 2800 album
dataset which was used by a closed community. Be-
cause of the lack of a free dataset, we choose to crawl
the web for real world playlists.

Some programs (e.g. WinAmp, XMMS) produce
HTML pages with playlists. Due to the low cost of pub-
lishing web pages, many people put "the playlist of our
last party" online. These pages have simple structures
and can be found using common search engines (e.g.
altavista, google). The idea is to search for specific
words within the auto generated HTML page (e.g. for
WinAmp +"WinAmp generated playlist") in combina-
tion with artist names (e.g. +"Eric Clapton"). Artist
names can be taken from a music catalogue, such as
Amazon. Unfortunately, not all playlists contain valu-
able information, e.g. some contain "all tracks I have on
my harddisk". To decide, if a playlist should be used,
we employed a rule based filter. The rules are: a playlist
must contain at least three different artists, have at most
300 entries and tracks may not be sorted alphabetically.

Due to limitations of search engines, such as a re-
striction on queries per day and computer, the crawler
has to run in a distributed manner and should automati-
cally crawl the immediate area of a match. After two
years of crawling we have gathered >250,000,000 play-
list member datasets.

The listed songs in playlists do not have globally
identifiable keys. Usually a playlist entry contains only
a string like "track01.mp3" or "(eagles)-the long run-04
the disco strangler.ogg". Our first attempt to match the
text strings (>17.000.000) with the free CDDB failed,
because the CDDB is not itself normalized (e.g.
"Track01" is a common track name in the CDDB). In

order to produce high quality results, we have used the
Amazon product catalogue as a dictionary to match
against. Even if Amazon sells only a small portion of
existing music, and not all CDs in the catalogue contain
track information, we were able to match about 7.5% of
our playlist entries against this reliable source (com-
pared to 39% using the CDDB, where "Track01" is in-
cluded).

The result of crawling and matching is a data set with
176,930 songs, 880,985 playlists and 18,769,469 play-
list entries. Compared to other research systems, our
approach (>8,000,000 playlists before tagging and fil-
tering) is an extremely large scale approach. E.g. [6],
who stated that the similarity measures created with
playlist data, is the "most useful ground truth" (gold
standard), used only 29,000 playlists from "The Art of
the Mix" (www.artofthemix.org), which is a small sub-
set of our data (about 0.3% of our data set).

To evaluate the improvement in prediction accuracy
with the increase of data, we have produced a simple
artist similarity recommender. The similarity between
two artists is defined by the cosine between their play-
list occurrence vectors. Test data was taken to compute
an averaged F1 measure. The evaluation results are
shown in Figure 2. The F1 measure is approximately
proportional to log(|Data|).

 Figure 2: Each line represents a collaborative
artist similarity recommender, evaluated against
playlists. The lowest line is built from 1% of all
available playlist data, the highest from 100%.
The F1 measure (Y-Axis) increases roughly with
log(|Data|). The number of recommended Items
(X-Axis) influences F1.

Due to the fact, that we did not know whether the re-
sults are specific to the cosine algorithm, we used an
association rules algorithm and some variants. The dif-
ferent algorithms did not change the result in principle.
The normalisation rules, such as the rule that every artist
occurs only once in a playlist, have more influence on
the results than alternative algorithms have.

In addition to the automated evaluation against
crawled playlists, we ran a web based test, where three
different recommender engines were randomly pre-
sented to test users. The test users had to express their
satisfaction with the recommended results. The three
recommender engines only differ in the amount of data
used to train them (1%, 8% and 100% of all playlist

268

data). Interestingly, even if the test users did not know
which engine was presented, their ranking corresponded
with the F1 measures of our automated evaluation.

4.2 Creating a Collaborative Model

With 30 content-based features per song provided by the
Marsyas framework we cannot realistically train high
dimensional collaborative models. Thus we need to re-
duce the dimension of the collaborative model. To inves-
tigate the effect of reducing dimensions we have per-
formed the following experiment:

Using the playlist data set described above, it is pos-
sible to build a collaborative model described in Section
3.1. In the creation process, there are four steps in which
a similarity measure between songs can be computed
and evaluated against real life playlist data. In each step,
a feature vector is assigned to each song. Similarity be-
tween two songs can be evaluated using the cosine
measure between the feature vectors.

In the first step we used the raw playlist data to create
a similarity measure. Even if the cosine measure is not
the first choice for computing similarity, we use it to be
compatible with the other steps. Each component of a
song's feature vector in this step is a playlist. If the song
occurs in the playlist, the component is set to 1, other-
wise to 0. The evaluation of the resulting similarity
measure is the highest line (best performance) in figure
3, marked as 'collaborative'.

The second line from the top, marked as 'clustered
songs', shows the performance of the second step, in
which the feature vector D is used to create a similarity
measure, i.e. at this point all playlists are clustered in
|PS| = 200 clusters using the k-means algorithm de-
scribed in section 3.1. Each vector D for a song ssong S
has 200 components Di and each of these components
contains the number of occurrences of song ssong in play-
list cluster Pi.

Our experiments show that if we create less than 200
clusters, the predictive precision decreases. Creating
more than 200 clusters does not increase the precision.
The difference in the results of precision when creating
200 or 400 playlist clusters is about 4±0.5 percent.

Figure 3: Evaluation of reduction steps described
in Section 3.1 against a test set of playlists.

The third step and third line in figure 3 uses D/||D|| as
feature vector with all components <0.01 set to 0. And
finally, the bottom line in figure 3 uses the binary fea-
ture vector C C as source for the similarity measure,
where the feature vector from step 3 is taken and all
components >0 are set to 1.

It is obvious that each step decreases the predictive
performance of the similarity measure. On the other
hand, even the bottom line of the collaborative model
performs far better than purely content-based similarity
measures (Section 4.3).

4.3 Comparing a Content-based and a Genre-based
Music Recommender

In this section we set up a testing baseline by generating
and evaluating three similarity measures based on three
different data sources. One similarity measure is based
on 30 dimensional content-based sound feature data pro-
vided by Marsyas [1], the second one is based on Ama-
zon's genre-data and the third is based on a 30 dimen-
sional random vector.

In order to build a content-based music recom-
mender, it is necessary to have a large database of sound
features. Due to the lack of a common set of free test
songs, or a free large scale collection of sound features,
we created a sound feature extraction utility based on
Marsyas [1] which extracts a 30 dimensional feature
vector per song. The extraction utility, which sends ex-
tracted metadata via http to a central server, runs on our
students' private music collections. Unfortunately, the
collection is not completely balanced across genres,
which means that nearly 70% percent of all data is re-
lated to the genres Pop / Rock / Independent.

In total we were able to extract >190,000 files. After
eliminating duplicates and matching against the Ama-
zon (Germany) product catalogue, we obtained 41,816
tagged feature sets.

For the purpose of performance comparison, we
build a simple sound-feature-based music recommender.
Similarity between two songs or two feature vectors is
defined as the cosine of the two feature vectors. Before
the cosine calculation, each feature was linearly scaled
to the range [-1...1]. The underlying assumption of this
straightforward implementation is that all features con-
tribute equally to the subjective perception of music
similarity and all features are equally noisy across all
types of music. This assumption makes it hard to add
new features from different frameworks and even if the
current features are carefully selected the assumption
may not hold.

In order to compare the basic sound feature recom-
mender to an alternative approach we build a music
similarity recommender based on hand labelled genre
information. Because we matched all music titles
against the product catalogue of Amazon (Germany), it
seems reasonable to use their genre information. The
highest level of genre information at Amazon.de divides
all music into twelve top level genres, but most songs
belong to more than one genre, e.g. "The Beatles – All

269

You Need is Love" belongs to the genres "Jazz&Blues",
"Pop", "Rock" and "Classics". Of course, this is not a
musicological categorisation but a real life example.

To create a similarity recommender based on genre
information, we represent the genre information as bi-
nary feature information, i.e. each genre is one dimen-
sion in a song's feature vector. If the song belongs to the
genre, that component is set to 1, otherwise to 0. Just as
for the sound-feature-based music similarity recom-
mender, similarity between two songs or two feature
vectors is defined as the cosine of the feature vectors.

As a testing baseline we employed a similarity en-
gine, with 30 real valued random features per song, with
random numbers in the range [0…1]. Again, similarity
between two songs or two random-feature vectors is
defined as the cosine of the two feature vectors. Even if
in theory the predictive precision of random-features
should be constant in an equally distributed test set, the
real world test bed shows a small increase in precision
with an increase in the number of recommended items.

Figure 4: Comparison of three music similarity
recommendation engines based on sound fea-
tures, Amazon (Germany) genres seen as binary
features and random features.

All three similarity engines were tested against
654,506 human generated playlists. The results (preci-
sion against number of recommendations) are shown in
Figure 4. It can be seen, that the sound-feature-based
similarity engine as well as the Amazon genre-based
engine produce far better results than the random-
feature based engine. More interesting is that the sound-
feature-based similarity recommender outperforms the
hand labelled Amazon genre-based recommender.

4.4 Predicting the Collaborative Model

In this section we create a similarity measure with our
method described in Section 3.2. In an evaluation we
compare our approach with a content-based approach.

In the previous sections we created a collaborative
model which represents each song as a binary feature
vector C C, in our case with 200 binary dimensions.
Additionally, we have used the MARSYAS framework
to create for each song a content-based feature vector
with 30 dimensions. On this basis, we can use a super-
vised learning approach to learn a mapping from fea-
tures F to the collaborative model C. After the one time

training, for each new song a collaborative feature vec-
tor C C ' can be predicted using the learned mapping
from F to C.

We have collaborative data for 176,930 songs and
41,816 tagged content-based feature sets. The intersec-
tion of both sets contains 36,916 songs.

As stated in Section 3, even if the dimensions of each
collaborative model vector C C are not independent,
we have to assume that they are independent because of
the lack of appropriate vector-valued learning methods.
This means that we trained 200 binary support vector
machines using a radial basis function kernel (SVM
with RBF kernel) to predict each binary component Ci
of C C independently, based on the feature vector
F F provided by MARSYAS.

To evaluate our method we predicted, based on the
sound feature vectors F, for each song of our test set
data a collaborative model vector C C '. After this
prediction similarities of the predicted vectors C are
computed using the cosine as similarity function. The
resulting similarities are tested against 301,227 human
generated playlists.

Figure 5: Comparison of three music similarity
engines: our method (top line), sound features
(middle) and random features (bottom line).

Of course, it would have been preferable to present a
ten-fold cross validation instead of only one run, but the
training of one SVM takes (incl. automated optimization
of the RBF-kernel parameters) about 3.4 hours which
results in 28 days for 200 SVMs.

The evaluation results in figure 5 show that our
method (top-line) nearly doubles the precision for the
'most similar' item (TopN=1), i.e. given one song by the
user, the probability that this user would add the rec-
ommended song in a playlist with the given one is dou-
bled by our method compared to a pure content-based
approach and more than doubled compared to a recom-
mender based on Amazon's genre-data (Section 4.3).

5 CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach to improv-
ing purely content-based similarity measures by training
a collaborative model with content-based sound features.
With our approach we were able to almost double the
precision of similarity-based recommendations com-

270

pared to a content-based approach when tested in a real-
life test bed against human generated playlists. In addi-
tion to that, our approach is open to any progress in the
area of content-based feature extraction. The more de-
scriptive new sound features are, the better the result
should be.

On the collaborative side, we created a collaborative
recommender from a large scale dataset (18,769,469
tagged data points). This recommender and two ver-
sions, trained with fewer data, have been tested by users
on the web. The users ranked their satisfaction with the
recommenders according to the offline predicted F1
measure and precision of the recommender, which
means that the test bed seems to reflect reality.

We conducted an experiment to build a similarity
measure based on the genre data of Amazon (Germany).
The evaluation results of the Amazon genre-based simi-
larity engine were outperformed by the similarities
gained through the pure sound-feature-based approach.
It emerges that an approach based on Amazon’s genres
is not suitable.

Figure 6: Performance comparison of 3 music
similarity recommenders: pure collaborative ap-
proach (top line), our approach (middle), sound-
feature-based (bottom line).

Fig. 6 shows that our method has much potential for
improvement. The theoretical maximum is the top line
in figure 6. One way to improve the performance of our
method could be to use more descriptive sound features,
another one is to build a better collaborative model. A
third way to improve the prediction rate is to find ma-
chine learning approaches which exploit the interde-
pendence of collaborative model vector components.

Simulations showed that if we could raise our current
average SVM prediction rate from 73.1% correctly pre-
dicted items to 95%, we could raise the precision for the
'most similar item' (one recommendation) in our method
from 0.0108 to 0.04, compared to 0.0054 with a purely
sound feature-based approach.

REFERENCES
[1] George Tzanetakis and Perry Cook: "Musical Genre

Classification of Audio Signals" IEEE Transactions
on Speech and Audio Processing, 10(5), 2002

[2] D. Pye, "Content-Based Methods for Managing
Electronic Music". In Proc ICASSP 2000, 2000

[3] T. Lambrou, P. Kudumakis, M. Sandler, R. Speller
and A. Linney, "Classification of Audio Signals
using Statistical Features on Time and Wavelet
Transform Domains". In Proc ICASSP 1998, 1998

[4] G. Linden, B. Smith, "Amazon.com
Recommendations: Item-to-Item Collaborative
Filtering", in IEEE Internet Computing, pp. 76-80,
Jeremy York Publication, January 2003

[5] R. Burke, "Hybrid Recommender Systems: Survey
and Experiment", User Modeling and User-Adapted
Interaction 12(4): 331-370; Nov 2002

[6] A. Berenzweig, B. Logan, D. Ellis, B. Whitman, "A
large-scale evaluation of acoustic and subjective
music similarity measures", Proc. ISMIR 2003, 2003

[7] W. W. Cohen, W. Fan, "Web-collaborative filtering:
recommending music by crawling the web". WWW9
/ Computer Networks, 33(1-6):685–698, 2000.

[8] J. T. Foote. "Content-based retrieval of music and
audio."In C.-C. J. Kuo et al., editor, Multimedia
Storage and Archiving Systems II, Proc. of SPIE,
Vol. 3229, pp. 138-147, 1997

[9] Matt Welsh, Nikita Borisov, Jason Hill, Rob von
Behren, and Alec Woo: "Querying Large Collections
of Music for Similarity", UC Berkeley Technical
Report UCB/CSD-00-1096, 1999

[10] B. Logan, "Content-based playlist generation:
Exploratory experiments'', Proc. ISMIR 2002, pp.
295-296 (2002)

[11] N. Good, J. Schafer, J. Konstan, A. Borchers, B.
Sarwar, J. Herlocker and J. Riedl, "Combining
collaborative Filtering with personal agents for better
recommendations" In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, 1999

[12] D. P. Ellis, B. Whitman, A. Berenzweig and S,
Lawrence, "The quest for ground truth in musical
artist similarity", Proc. ISMIR 2002, 2002

[13] P. Knees, E. Pampalk, and G. Widmer, "Artist
Classification with Web-based Data", Proc. ISMIR
2004, pp 517-524, (2004)

[14] B. Whitman, S. Lawrence "Inferring descriptions
and similarity for music from community metadata",
in Proc. ICMC 2002, 2002

[15] R. Duda, P. Hart, and D. Storck. "Pattern
classification" John Wiley & Sons, New York, 2000.

[16] I. H. Witten, E. Frank: "Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations", Morgan Kaufmann, 1999

[17] C. A. Micchelli, M. Pontil, "On Learning Vector-
Valued Functions" in Neural Computation, MIT
Press, vol. 17, no. 1, pp. 177-204(28), 2005

271

