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ABSTRACT

Music can be described best by music. However, current

research in the design of user interfaces for the explo-
ration of music collections has mainly focused on visual-

ization aspects ignoring possible benefits from spatialized
music playback. We describe our first development steps

towards two novel user-interface designs:

The Sonic Radar arranges a fixed number of proto-
types resulting from a content-based clustering process in

a circle around the user’s standpoint. To derive an aural-

ization of the scene, we introduce the concept of an au-
ral focus of perception that adapts well-known principles

from the visual domain.

The Sonic SOM is based on Kohonen’s Self-
Organizing Map. It helps the user in understanding the

structure of his music collection by positioning titles on a

two-dimensional grid according to their high-dimensional
similarity. We show how our auralization concept can be

adapted to extend this visualization technique and thereby

support multimodal navigation.

Keywords: Content-based Music Retrieval, Explo-

ration, Visualization, Auralization, User Interface

1 INTRODUCTION

Ongoing technological advances especially in the field
of data compression, storage capacity and network band-

width have lead to a drastic increase in the size of music

collections that are available to today’s listener. Online
music portals offer their users direct access to an over-

whelming number of songs.

To efficiently use this huge amount of music, new ac-
cess methods have to be developed. These can be roughly

categorized into two groups:

1. If the user has a dedicated song in mind and is able to

articulate his information demand in some way, well-
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known music information retrieval techniques can

be applied. These include standard database queries

on song metadata such as title or artist and content-
based queries e.g. following the popular Query-By-

Humming application scenario.

2. Sometimes the information retrieval goal cannot be

defined precisely. Instead of this, the user might want

to explore the music collection, take a closer look at
pieces that he finds interesting and move around fur-

ther.

Despite our belief, that the latter paradigm resembles
the way customers often behave in music stores, current

research in the music information retrieval community has

mainly focused on the first approach.

1.1 Related Work

If we restrict ourselves to standard metadata of songs,
well-known data visualization techniques developed in the

data mining community are applicable. Torrens et al. re-

view three of them (discs, rectangles and tree-maps) in the
context of the visualization of personal music libraries [1].

Pampalk calculates an overall song similarity based on

perceptual features that mainly model rhythmic aspects of
the piece and organizes them on a Self-Organizing Map

that preserves the topology of the song space [2]. Titles
that are perceptually similar are visualized by so called

”Islands of Music”.

Despite their difference in the features they use, both
approaches rely solely on visual communication between

the system and the user. The impedance mismatch re-

sulting from a visual representation of audio information
seems unnatural and unnecessary having in mind the hu-

man capabilities to process sound information. The well

known cocktail party effect can be seen as an example of
the powerful audio information processing that our brain

is capable of.

Brazil et al. investigate combinations of visual and au-
ral access methods for sound collections [3]: In their first

implementation, sound objects are placed on a grid ac-

cording to selectable properties. The user can navigate
this visualization by positioning a cursor on the plane that

is surrounded by a circular aura: All sound objects that
are placed inside this shaded area are played simultane-

ously and spatialized according to their relative position
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to the cursor that models the user’s actual position in the

sound space.

With the help of the Marsyas audio information re-
trieval framework the Sonic Browser has been extended

to an Audio Retrieval Browser that facilitates the use of

content-based features as visualization dimensions [4].
The SoundSpace browser contained in Tzanetakis’ au-

dio suite Marsyas3D [5] follows a similar approach: Au-

tomatically generated audio thumbnails for music in the
neighborhood of the actual selection are played simultane-

ously. Tailored to its usage in the context of the Princeton

Display Wall equipped with a 16-speaker surround sys-
tem, he is thereby able to realize an intuitive and immer-

sive browsing environment.
Despite these first approaches we believe that more ef-

fort is needed to develop content-based multimodal music

exploration tools to complement the search-centered ac-
tivities in the music information retrieval community.

In the next section we briefly discuss two measures

to quantify song similarity. This is followed by an in-
troduction to our content-based aural music exploration

environment soniXplorer. We present two alternative ap-

proaches, namely the Sonic Radar and the Sonic SOM.
We proceed with some more technical remarks on our pro-

totype and conclude with ideas for future extensions of

this work in progress.

2 SONG SIMILARITY

What makes two songs similar? Similarity is a very high-

dimensional measure that can incorporate many different
aspects of music, e.g. its melody, harmony, genre, lyrics,

etc. Additionally, the notion of similarity is highly user-

and context-dependent. So it seems unrealistic to assume
a formula that is capable of modelling overall song sim-

ilarity precisely. Nevertheless, there has been some re-

search to find approximations concentrating on different
perspectives.

Pampalk reviewed five different sound similarity mod-

els [6] and found out in a simple evaluation, that the sim-
ilarity measures by Logan et al. and by Aucouturier et al.

outperformed the other approaches considered. Both mea-
sures concentrate on the spectral characteristics of a song:

Logan and Salomon [7] calculate for each piece a song

signature that is basically a weighted set of spectral seg-
ment clusters. They compare two signatures using the

Earth Mover’s distance with a symmetric variant of the

Kullback-Leibler divergence as ground distance.
Aucouturier and Pachet [8] represent the ”timbral

quality” of a song by a Gaussian mixture model (GMM)

for the space of MFCCs calculated on short segments. The
similarity between two pieces A and B is modelled as the

likelihood that A’s GMM generates B’s feature values. It

is approximated using Monte Carlo sampling.
We decided to utilize the approach by Logan and Sa-

lomon in our prototype, since its computational complex-

ity is significantly lower. However, this choice can eas-
ily be replaced by other alternatives for distance calcu-

lation. With the help of classical multidimensional scal-
ing (CMDS) we assign vector coordinates to each piece

so that the Euclidean distance between two song vec-

tors resembles the value in the distance matrix. When

the number of songs in the collection increases, CMDS

might become too time-consuming since its complexity is
quadratic in the number of pieces. In this case, the linear

FastMap algorithm [9] might be an alternative, although

CMDS seems to lead to mappings of higher quality in the
context of audio visualization systems [10].

3 SONIC RADAR

Tzantakis et al. mention that only 8 simultaneous audio

streams have proven to be practical in the scenario of the
16-speaker Princeton Display Wall [5]. This supports the

experience we gained in some initial experiments: Play-

ing back more than two complex songs (like e.g. modern
pop/rock-music that are characterized by high loudness

values over the whole spectrum) on full level in parallel

asks too much from the user’s listening capabilities even
if the audio streams are spatialized to different stereo-

channels: Instead of providing orientation and fast access

to the user, he is not even able to recognize one song any
more.

Therefore we enhance Brazil’s concept of a surround-

ing aura by introducing a focus of perception, that mim-
ics the concentration of our visual perception to the en-

vironment of the point we are looking at. We transfer
this idea to the audio domain by adjusting the playback

level not only according to the distance of the song from

the standpoint but also depending on the angle between
the beams towards the focus of perception and the piece’s

position (see figure 1). Although song1 and song2 share

Figure 1: Standpoint and Focus of Perception

the same distance to the user’s standpoint, song1 is played

back louder since |ϕ1| is significantly lower than |ϕ2|. We
model this influence on the sound level with a Gaussian

density function that is centered at ϕ = 0◦ and has an

user-adjustable variance σ2. Other windowing functions
could be used likewise.

Since we consider a 2-speaker or headphone environ-

ment we simply spatialize the mono song according to
a linear function depending on ϕ. If the piece is on the

beam between the standpoint and the focus of perception

(ϕ = 0◦), its signal is panned to the left and the right
channel equally. For positive ϕ, the signal is mapped to

the left, for negative ϕ it is mapped to the right channel.
The resulting discontinuity at ϕ = 180◦ has turned out

to be no problem since the Gaussian density function for
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reasonable ϕ disappears in this area.

We combine this approach with a simple visualization

technique:

Figure 2: Screenshot of the Sonic Radar prototype

First, the music collection is hierarchically partitioned

by successively applying k-means clustering for a user-

adjustable number of clusters k. For each cluster a proto-

type song is identified based on the smallest distance to the

cluster center. The prototypes of the current subclusters

are equally distributed on a circle around the standpoint
(see figure 2). This arrangement in conjunction with the

directional listening simulation explains the name Sonic
Radar for this exploration interface.

The user can rotate the circle to quickly scan through

the song prototypes. He can narrow or widen the variance
σ2 to focus on the currently playing piece ”in front” or to

integrate the surrounding titles in the playback, resp.

As shown in figure 2, the most central prototype is
highlighted. Furthermore, all pieces in this cluster are

listed on the right hand side of the window. Clicking on

one of these titles starts the playback of the song in the me-
dia player below. Double-clicking in the Sonic Radar-
area allows to step down in the cluster hierarchy and ex-

plore the subclusters of the current prototype visually and
aurally. Additionally, the user can rearrange the clustered

piece by dragging a title from the list and dropping it to a

cluster on the left hand side.

4 SONIC SOM

Partitioning a song collection into disjoint clusters we lose
much of the similarity information between pieces: The

vector space coordinates of a title are reduced to a crisp

membership to one cluster; information about the degree
of this membership given by the distance to the center and

the song’s similarity to pieces of other clusters is dropped.

Since humans are used to estimate distances between
points on a two-dimensional plane, visualization tech-

niques that map a high-dimensional space to a low-

dimensional representation preserving the similarity rela-
tionships as far as possible are in widespread use.

One approach based on artificial neural networks pro-

posed by Kohonen [11] is known as the Self-Organizing
Map. The (typically 2-dimensional) visualization space

is divided into disjoint cells {yi}. Each cell is associated
with a weight vector wi from the data vector space. In

each iteration step t a randomly chosen data point xj is as-

sociated with cell ycj
such that ||xj − wcj

|| is minimized.

After finding this Best Matching Unit the weight vectors

of ycj
and its topological neighbors on the map are up-

dated according to the following equation:

wi(t + 1) = wi(t) + α(t) · hicj
(t)[xj − wi(t)]

where α(t) denotes the learning rate and hicj
models

the neighborhood relation between cell yi and the Best

Matching Unit ycj
, typically by some Gaussian-like func-

tion. As both factors influencing the adaption strength de-

crease with time t, the SOM converges to a configuration
where the Best Matching Units of similar data points are

located close to each other on the map.

We apply this sequential training algorithm to calcu-
late a rectangular SOM of 50x50 cells. Depending on the

users’ current choice of visible area and zoom level this

map is converted to a visualization plane of pixels with
associated weight vectors that are calculated by bicubic

interpolation. The grey value of a pixel is given by the

distance of its weight vector to the closest data point. Ad-
ditionally, a pixel is colored red if its weight vector is the

nearest neighbor to a title in the music collection.

Figure 3: Screenshot of the Sonic SOM prototype

As can be seen in figure 3, this leads to bright areas

around clusters of similar titles. The user can change his

standpoint in the map, zoom in and out and rotate the
SOM plane.

The visual exploration of the SOM is supported by
an auralization of the surrounding titles, that resembles

the approach described for the Sonic Radar: A focus of

perception determines the playback level of the songs in
the neighborhood of the standpoint. However, in contrast

to the Sonic Radar, pieces can be located very close to

each other on the SOM leading to an intransparent mix of
different sounds if played simultaneously. Therefore we

partition the environment of the standpoint into k disjunct

slices and select the closest song in each of these direction
classes for playback. Moving to another standpoint, the

currently playing pieces are preferably chosen as the new

segment prototypes. Thereby we have reduced the SOM
auralization problem to a Sonic Radar-like situation.

The currently playing pieces are visualized by blink-

ing pixels. The user can change the current selection of ti-
tles by right-clicking on songs to toggle their membership

in the playback. Furthermore, the right hand side of the
window lists all currently displayed pieces in the collec-

tion sorted by their distance from the focus of perception.
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5 PROTOTYPE

We are currently developing a prototype to test and eval-

uate our interfaces. Since the described music similarity
measures are readily available in the Matlab toolbox by

Pampalk [6], we chose to use it for the calculation of the

title distance matrix and the mapping to a vector space by
multidimensional scaling.

The Sonic Radar and the Sonic SOM user interfaces
are realized as Java applications, that access the precalcu-

lated Matlab files. We tested Sun’s Java Sound implemen-

tation for Windows and found that its playback latency
is not acceptable for use in an immersive exploration sce-

nario. To overcome this problem and to be open for exten-

sions to multichannel playback we realized a Java-ASIO-
bridge that consists of a thin Java layer communicating

via JNI with a C++ layer that handles the function calls

and callback hooks to the ASIO interface, for which low-
latency drivers even for semi-professional soundcards ex-

ist.

For simplicity reasons, the SOM calculation is cur-
rently done in Matlab utilizing the SOM Toolbox1, al-

though we plan to implement it in Java since we consider
it to be part of the user interface.

6 CONCLUSIONS AND OUTLOOK

First experiments with our prototype revealed that aural

clues indeed improve the user’s exploration experience
and can help him to navigate the music collection. To

find out whether these improvements are significant and
which of the proposed interaction concepts is more suit-

able in which contexts remains to be done in upcoming

user studies.
There are still a lot of other open issues we plan to

investigate with our prototype:

• How well do the applied algorithms scale for larger
music collections?

• What is the effect of reducing the playback to auto-

matically generated song thumbnails as proposed by

Tzanetakis [5]? What summarization algorithms are
most suitable?

• How can the system be extended to home theater en-

vironments with e.g. 5 speakers? How strong is the
benefit of such an extension?

• What improvements in the exploration experience

can be achieved if not all ”activated” songs in the

environment sound simultaneously (kind of time-

domain multiplexing)?

• What improvements can be achieved by emphasiz-

ing different frequencies of simultaneously playing

songs (kind of frequency-domain multiplexing)?

Arranging our test music collection in the Sonic SOM
the presented content-based similarity features sometimes

resulted in incomprehensible clusters containing pieces
that could hardly be judged as similar. To our belief sig-

nificant improvements in estimating similarity of music

1http://www.cis.hut.fi/projects/somtoolbox

can only be achieved by combining different sources of

user-adaptive similarity estimates like e.g. presented by

Baumann et al. [12].
Strengthening the integration of the user into the IR

loop can be seen as a promising way to tackle the com-

plex music information retrieval problem. Our ongoing
research on multimodal exploration environments is a step

towards this demand for more sophisticated user interac-

tion concepts.
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