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ABSTRACT

This paper explores the vocal and non-vocal music classifi-

cation problem within popular songs. A newly built labeled

database covering 147 popular songs is announced. It is de-

signed for classifying signals from 1sec time windows. Fea-

tures are selected for this particular task, in order to capture

both the temporal correlations and the dependencies among

the feature dimensions. We systematically study the per-

formance of a set of classifiers, including linear regression,

generalized linear model, Gaussian mixture model, reduced

kernel orthonormalized partial least squares and K-means

on cross-validated training and test setup. The database is

divided in two different ways: with/without artist overlap

between training and test sets, so as to study the so called

‘artist effect’. The performance and results are analyzed in

depth: from error rates to sample-to-sample error correla-

tion. A voting scheme is proposed to enhance the perfor-

mance under certain conditions.

1 INTRODUCTION

The wide availability of digital music has increased the in-

terest in music information retrieval, and in particular in

features of music and of music meta-data, that could be

used for better indexing and search. High-level musical fea-

tures aimed at better indexing comprise, e.g., music instru-

ment detection and separation [13], automatic transcription

of music [8], melody detection [2], musical genre classifica-

tion [10], sound source separation [18], singer recognition

[16], and vocal detection [4]. While the latter obviously is

of interest for music indexing, it has shown to be a surpris-

ingly hard problem. In this paper we will pursue two ob-

jectives in relation to vocal/non-vocal music classification.

We will investigate a multi-classifier system, and we will

publish a new labeled database that can hopefully stimulate

further research in the area.

While almost all musical genres are represented in digital

forms, naturally popular music is most widely distributed,

and in this paper we focus solely on popular music. It is

not clear that the classification problem can be generalized

between genres, but this is a problem we will investigate in

later work.

Singing voice segmentation research started less than a

decade ago. Berenzweig and Ellis attempted to locate the

vocal line from music using a multi-layer perceptron speech

model, trained to discriminate 54 phone classes, as the first

step for lyric recognition [4]. However, even though singing

and speech share certain similarities, the singing process in-

volves the rapid acoustic variation, which makes it statisti-

cally different from normal speech. Such differences may

lie in the phonetic and timing modification to follow the

tune of the background music, and the usage of words or

phrases in lyrics and their sequences. Their work was in-

spired by [15] and [19], where the task was to distinguish

speech and music signals within the “music-speech” corpus:

240 15s extracts collected ‘at random’ from the radio. A set

of features have been designed specifically for speech/music

discrimination, and they are capable of measuring the con-

ceptually distinct properties of both classes.

Lyrics recognition can be one of a variety of uses for vo-

cal segmentation. By matching the word transcriptions, it

is applicable to search for different versions of the same

song. Moreover, accurate singing detection could be po-

tential for online lyrics display by automatically aligning

the singing pieces with the known lyrics available on the

Internet. Singer recognition of music recordings has later

received more attention, and has become one of the pop-

ular research topics within MIR. In early work of singer

recognition, techniques were borrowed from speaker recog-

nition. A Gaussian Mixture Model (GMM) was applied

based on Mel-frequency Cepstral Coefficients (MFCC) to

detect singer identity [20]. As briefly introduced, singing

voices are different from the conventional speech in terms

of time-frequency features; and vocal and non-vocal fea-

tures have differences w.r.t. spectral distribution. Hence

the performance of a singer recognition system has been

investigated using the unsegmented music piece, the vocal

segments, and the non-vocal ones in [5]. 15% improve-

ment has been achieved by only using the vocal segments,

compared to the baseline of the system trained on the un-

segmented music signals; and the performance became 23%
worse when only non-vocal segments were used. It demon-

strated that the vocal segments are the primary source for

recognizing singers. Later, work on automatic singer recog-

nition took vocal segmentation as the first step to enhance

121



ISMIR 2008 – Session 1c – Timbre

the system performance, e.g. [16].

Loosely speaking, vocal segmentation has two forms. One

is to deal with a continuous music stream, and the locations

of the singing voice have to be detected as well as classi-

fied, one example is [4]. The second one is to pre-segment

the signals into windows, and the task is only to classify

these segments into two classes. Our work follows the sec-

ond line, in order to build models based on our in-house Pop

music database. A detailed description of the database will

be presented in section 4. The voice is only segmented in

the time domain, instead of the frequency domain, mean-

ing the resulting vocal segments will still be a mixture of

singing voices and instrumental background. Here we will

cast the vocal segments detection in its simplest form, i.e. as

a binary classification problem: one class represents signals

with singing voices (with or without background music); the

other purely instrumental segments, which we call accom-

paniment.

In this paper we study this problem from a different an-

gle. Several classifiers are invoked, and individual perfor-

mance (errors and error rates) is inspected. To enhance per-

formance, we study the possibility of sample-to-sample cross-

classifier voting, where the outputs of several classifiers are

merged to give a single prediction. The paper is organized as

follows. Section 2 explains the selection of features. Clas-

sification frameworks are covered by section 3. With the

purpose of announcing the Pop music database, we intro-

duce the database design in section 4. In section 5, the ex-

periments are described in depth, and the performance char-

acteristics are presented. At last, section 6 concludes the

current work.

2 ACOUSTIC FEATURES

2.1 Mel-Frequency Cepstral Coefficients

MFCCs are well-known in the speech and speaker recog-

nition society. They are designed as perceptually weighted

cepstral coefficients, since the mel-frequency warping em-

ulates human sound perception. MFCCs share two aspects

with the human auditory system: A logarithmic dependence

on signal power and a simple bandwidth-to-center frequency

scaling so that the frequency resolution is better at lower fre-

quencies. MFCCs have recently shown their applicability

in music signal processing realm, e.g. [1] for music genre

classification, [16] and [5] for singer recognition, and [14]

for vocal segmentation, and many more exist.

Features are extracted from short time scales, e.g. 20ms,

due to the stationarity of music signals. To process win-

dows at longer time scales, temporal feature integration is

needed. Features at different time scales may contain dif-

ferent information. A small frame size may result in a noisy

estimation; and a long frame size may cover multiple sounds

(phonemes) and fail to capture appropriate information.

2.2 Multivariate AR

During the course of searching for appropriate features, re-

searchers have realized that system performance can be im-

proved by combining short-time frame-level features into

clip-level features. Feature integration is one of the meth-

ods to form a long-time feature, in order to capture the dis-

criminative information and characterize how frame-level

features change over longer time periods for a certain task.

Often the mean and variance of several short-time features

are extracted as the clip-level features [17], using multi-

variate Gaussian model or a mixture of them. However,

both the mean-variance and mean-covariance model fail to

capture the temporal correlations. A frequency band ap-

proach has been proposed in [9], and the energy of the fea-

tures was summarized into 4 frequency bands. Even though

this method can represent temporal development, it does not

model the feature correlations.

The multivariate autoregressive model (MAR) was re-

cently introduced to music genre classification [11], and a

detailed comparison of different temporal feature integra-

tion methods was reported. MAR being able to capture both

the temporal correlations and the dependencies among the

feature dimensions, has shown its superiority for represent-

ing music. We adapt this model in the feature extraction

phase on top of short-time MFCCs. Here, a brief descrip-

tion of MAR will be given, for detail, see [11].

Assume the short-time MFCC at time t is denoted as xt,

which is extracted from a short period of stationary signals.

The MAR can be stated as,

xt =
P∑

p=1

Apxt−p + ut, (1)

where ut is the Gaussian noise N (v,Σ), assumed i.i.d. Ap

is the coefficients matrix for order p; and if it is defined as

a diagonal matrix, dependencies among dimensions will not

be considered. P indicates the order of the multivariate auto

regressive model, meaning that xt is predicted from the pre-

vious P short-time features. It is worth to mention that the

mean of MFFCs m is related to the mean of the noise v in

the following way (note: I is an identity matrix),

m = (I−
P∑

p=1

Ap)−1v. (2)

3 CLASSIFICATION FRAMEWORKS

We have examined a number of classifiers: linear regres-

sion model (LR), generalized linear model (GLM), Gaus-

sian mixture model (GMM), reduced kernel orthonormal-

ized partial least squares (rKOPLS) and K-means.

As the problem is a binary task, only a single dimension

is needed for linear regression, and the labels are coded as
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Figure 1. Distribution of Pop music among artists

±1. The model is ln = wTy. A 1 is added to the fea-

ture vector to model offset. Least squares is used as the

cost function for training, and the minimum solution is the

pseudo inverse. The prediction is made based on the sign
of the output: we tag the sample as a vocal segment if the

output is greater than zero; and as a non-vocal segment oth-

erwise.

Generalized linear model relates a linear function of the

inputs, through a link function to the mean of an exponential

family function, μ = g(wT xn), where w is a weight vector

of the model and xn is the n’th feature vector. In our case

we use the softmax link function, μi = ew
T
i xn

i∑
j e

wT
j

xn
j

. w is

found using iterative reweighted least squares [12].

GMM as one of the Bayesian classifiers, assumes a known

probabilistic density distribution for each class. Hence we

model data from each class as a group of Gaussian clus-

ters. The parameters are estimated from training sets via the

standard Expectation-Maximization (EM) algorithm. For

simplicity, we assume the covariance matrices to be diago-

nal. Note that although features are independent within each

mixture component due to the diagonal covariance matrix,

the mixture model does not factorize over features. The di-

agonal covariance constraint posits the axes of the resulting

Gaussian clusters parallel to the axes of the feature space.

Observations are assigned to the class having the maximum

posterior probability.

Any classification problem is solvable by a linear classi-

fier if the data is projected into a high enough dimensional

space (possibly infinite). To work in an infinite dimensional

space is impossible, and kernel methods solve the problem

by using inner products, which can be computed in the orig-

inal space. Relevant features are found using orthonormal-

ized partial least squares in kernel space. Then a linear clas-

sifier is trained and used for prediction. In the reduced form,

rKOPLS [3] is able to handle large data sets, by only using

a selection of the input samples to compute the relevant fea-

tures, however all dimensions are used for the linear classi-

fier, so this is not equal to a reduction of the training set.

K-means uses K clusters to model the distribution of each

class. The optimization is done by assigning data points

to the closest cluster centroid, and then updating the clus-

ter centroid as the mean of the assigned data points. This

is done iteratively, and minimizes the overall distances to

cluster centroids. Optimization is very dependent on the ini-

tial centroids, and training should be repeated a number of

times. Prediction is done by assigning a data point to the

class of the closest cluster centroid.

4 DATABASE

The database used in the experiments is our recently built

in-house database for vocal and non-vocal segments classi-

fication purpose. Due to the complexity of music signals and

the dramatic variations of music, in the preliminary stage of

the research, we focus only on one music genre: the pop-

ular music. Even within one music genre, Berenzweig et

al. have pointed out the ‘Album Effect’. That is songs from

one album tend to have similarities w.r.t. audio production

techniques, stylistic themes and instrumentation, etc. [5].

This database contains 147 Pop mp3s: with 141 singing

songs and 6 pure accompaniment songs. The 6 accompani-

ment songs are not the accompaniment of any of the other

singing songs. The music in total lasts 8h 40min 2sec. All

songs are sampled at 44.1 kHz. Two channels are averaged,

and segmentation is based on the mean. Songs are man-

ually segmented into 1sec segments without overlap, and

are annotated second-by-second. The labeling is based on

the following strategy: if the major part of this 1sec music

piece is singing voice, it is tagged as vocal segment; oth-

erwise non-vocal segment. We believe that the long-term

acoustic features are more capable of differentiating singing

voice, and 1sec seems to be a reasonable choice based on

[14]. Furthermore labeling signals at this time scale is not

only more accurate, but also less expensive.

Usually the average partition of vocal/non-vocal in Pop

music is about 70%/30%. Around 28% of the 141 singing

songs is non-vocal music in the collection of this database.

Forty-seven artists/groups are covered. By artists in Pop mu-

sic we mean the performers (singers) or bands instead of

composers. The distribution of songs among artists is not

even, and Figure 1 gives the total number of windows (sec-

onds) each artist contributes.

5 EXPERIMENTS AND RESULTS

We have used a set of features extracted from the music

database. First, we extracted the first 6 original MFCCs over

a 20ms frame hopped every 10ms. The 0th MFCC repre-

senting the log-energy was computed as well. The means

were calculated on signals covering 1sec in time. MAR

were afterwards computed on top of the first 6 MFCCs with

P = 3, and we ended up with a 6-by-18 Ap matrix, a 1-by-6

123



ISMIR 2008 – Session 1c – Timbre

0 10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

SPLIT INDEX

E
R

R
O

R
 R

A
T

E
S

TEST CLASSIFICATION ERROR

 

 

lr

glm

gmm

rkopls

kmeans

Figure 2. Classification error rates as a function of splits of

five classifiers on test sets.

vector v and a 6-by-6 covariance matrix Σ. Since Σ is sym-

metric, repetitions were discarded. Ap, v and Σ all together

form a 135-dimensional feature set. The choice for 6 MFCC

is on one hand empirical, and on the other hand to reduce the

computational complexity. All in all, for 1sec music signal

we concatenated 135-d MAR, the means of both 0th and 6
original MFCCs to form a 142-d feature vector.

5.1 Data Dependency and Song Variation

We used one type of cross-validation, namely holdout vali-

dation, to evaluate the performance of the classification frame-

works. To represent the breadth of available signals in the

database, we kept 117 songs with the 6 accompaniment songs

to train the models, and the remaining 30 to test. We ran-

domly split the database 100 times and evaluated each clas-

sifier based on the aggregate average. In this way we elimi-

nated the data set dependencies, due to the possible similar-

ities between certain songs. The random splitting regarded

a song as one unit, therefore there was no overlap song-wise

in the training and test set. On the other hand artist overlap

did exist. The models were trained and test set errors were

calculated for each split. The GLM model from the Netlab

toolbox was used with softmax activation function on out-

puts, and the model was trained using iterative reweighted

least squares. As to GMM, we used the generalizable gaus-

sian mixture model introduced in [7], where the mean and

variance of GMM are updated with separate subsets of data.

Music components have earlier been considered as ‘noise’

and modeled by a simpler model [16], thus we employed

a more flexible model for the vocal than non-vocal parts: 8

mixtures for the vocal model, and 4 for the non-vocal model.

For rKOPLS, we randomly chose 1000 windows from the

training set to calculate the feature projections. The average

error rates of the five classification algorithms are summa-

rized in the left column of Table 1.

A bit surprisingly the performance is significantly better

for the linear models. We show the performance of the cho-

Error Rates

Artists overlap no overlap

LR 19.03±2.25% 20.52±3.5%

GLM 18.46±2.02% 19.82±2.81%

GMM 23.27±2.54% 24.50±2.99%

rKOPLS 22.62±1.85% 24.60±3.14%

K-means 25.13±2.11% NA

Table 1. The average error rates (mean ± standard devia-

tion) of 5 classifiers on test sets.
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Figure 3. Test classification error rates for individual songs

by GLM model. The dash line gives the average error rates

of the 100-split cross-validation.

sen classifiers as a function of splits in Figure 2. Each curve

represents one classifier, and the trial-by-trial difference is

quite striking. It proved our assumption that the classifica-

tion performance depends heavily on the data sets, and the

misclassification varies between 13.8% and 23.9% for the

best model (GLM). We envision that there is significant vari-

ation in the data set, and the characteristics of some songs

may be distinguishing to the others. To test the hypothesis,

we studied the performance on individual songs. Figure 3

presents the average classification errors of each song pre-

dicted by the best model: GLM, and the inter-song variation

is obviously revealed: for some songs it is easy to distin-

guish the voice and music segments; and some songs are

hard to classify.

5.2 Correlation Between Classifiers and Voting

While observing the classification variation among data splits

in Figure 2, we also noticed that even though classification

performance is different from classifier to classifier, the ten-

dency of these five curves does share some similarity. Here

we first carefully studied the pair-to-pair performance corre-

lation between the classification algorithms. In Table 2 the

degree of matching is reported: 1 refers to perfect match; 0

to no match. It seems that the two linear classifiers have a

very high degree of matching, which means that little will

be gained by combining these two.

The simplest way of combining classification results is
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LR GLM GMM rKOPLS K-means

LR 1.0000 0.9603 0.8203 0.8040 0.8110

GLM 0.9603 1.0000 0.8141 0.8266 0.8091

GMM 0.8203 0.8141 1.0000 0.7309 0.7745

rKOPLS 0.8040 0.8266 0.7309 1.0000 0.7568

K-means 0.8110 0.8091 0.7745 0.7568 1.0000

Table 2. A matrix of the degree of matching.
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Figure 4. Voting results. It gives the voting performance

among GMM, rKOPLS and K-means. The light dash line

shows the baseline of random guessing for each data split.

by majority voting, meaning that the class with the most

votes is chosen as the output. The voting has been done

crossing all five classifiers, unfortunately the average voting

results (error rates) on the test sets was 18.62%, which is

slightly worse than the best individual classifier. The reason

seems to be that even though the other classifiers are not so

correlated with the linear ones, the miss classification rate is

too high to improve performance.

However voting does help enhance the performance, if

it performs among not so correlated classification results.

Figure 4 demonstrates the sample-to-sample majority voting

among three classifiers: GMM, rKOPLS and K-means. The

similar tendency was preserved in the voting results, and

there were only 10 splits out of 100, where the voting results

were worse than the best ones among these three. The aver-

age performance of voting on test sets was 20.90± 2.02%.

Here we will elaborate on the performance on individual

songs, by looking at the predicted labels from each classifier

and voting predictions. Figure 5 demonstrates how voting

works, and how the prediction results correlate. Two songs:

‘Do You Know What You Want’ by M2M, and ‘A Thousand

Times’ by Sophie Zelmani, have been chosen to illustrate

the ‘good’ and ‘bad’ cases, i.e. when voting helps and fails.

Vocal segments are tagged with ‘1’, and ‘0’ for non-vocal

ones. The ground truth is given as a reference. The voting

was carried out among GMM, rKOPLS and K-means, and

their predictions are shown. If the classifiers make mistakes

in a similar pattern, the voting cannot recover the wrong pre-

dictions, e.g. area B. If the predictions are not correlated to

a high degree voting helps, e.g. area A.
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Figure 5. Sample-to-sample errors and voting results. Two

songs represent the ‘good’ and ‘bad’ voting cases. Individ-

ual error rates for each classifier and voting results are given.

Two areas marked A & B indicate the scenarios when voting

helps and fails.
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Figure 6. Two manual label results of the same song: ‘Bird

Guhl’. It is obvious that the disagreement only appears in

the transition parts.

Moreover, we noticed that it is very likely for classifiers

to make wrong predictions in the transition sections, mean-

ing the changing from vocal to non-vocal parts, and vice

versa. We found this is reasonable comparing with man-

ual labels by different persons, shown in Figure 6. The song

was labeled carefully by both people, the absence of mind or

guessing should not be a concern. The mismatch indicates

the perception or judging difference, and it only happens in

the transition parts. The total mismatch is about 3% for this

particular song: ‘Bird Guhl’ by Antony and the Johnsons.

5.3 ‘Artist Effect’

In previous experiments, we randomly selected songs to form

training and test sets, hence the same artist may appear in

both sets. Taking the previous results as a baseline, we stud-

ied the ‘artist effect’ in this classification problem. We tried

to keep the size of test sets the same as before, and care-

fully selected around 30 songs in order to avoid artist over-

lap for each split, and formed 100 splits. The second column

of Table 1 summarizes the average error rates for 4 classi-
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fiers. The average results are a little worse than the previous

ones, and they also have bigger variance along the splits.

Therefore we speculate that artists do have some influence in

vocal/non-vocal music classification, and the influence may

be caused by different styles, and models trained on partic-

ular styles are hard to be generalized to other styles.

6 CONCLUSION AND DISCUSSION

We have investigated the vocal/non-vocal popular music clas-

sification. Experiments were carried out on our database,

containing 147 popular songs. To be in line with the label

set, the classifiers were trained based on features at 1sec
time scale. We have employed 142-d acoustic features, con-

sisting MFCCs and MAR, to measure the distinct properties

of vocal and non-vocal music. Five classifiers have been

invoked: LR, GLM, GMM, rKOPLS and K-means.

We cross-validated the entire database, and measured the

aggregate average to eliminate the data set dependency. GLM

outperformed all the others, and provided us with 18.46%
error rate on the baseline of 28%. The performance has great

variation among data splits and songs, indicating the vari-

ability of popular songs. The correlations among classifiers

have been investigated, and the proposed voting scheme did

help among less correlated classifiers. Finally we looked

into the ‘artist effect’, and it did degrade the classification

accuracy a bit by separating artists in training and test sets.

All in all vocal/non-vocal music classification was found to

be a difficult problem, and it depends heavily on the music

itself. Maybe classification within similar song styles can

improve the performance.
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