10th International Society for Music Information Retrieval Conference (ISMIR 2009)

EVALUATING AND ANALYSING DYNAMIC PLAYLIST GENERATION
HEURISTICS USING RADIO LOGS AND FUZZY SET THEORY

Klaas Bosteels
Ghent University, Gent, Belgium
klaas.bosteels@ugent .be

ABSTRACT

In this paper, we analyse and evaluate several heuristics
for adding songs to a dynamically generated playlist. We
explain how radio logs can be used for evaluating such
heuristics, and show that formalizing the heuristics using
fuzzy set theory simplifies the analysis. More concretely,
we verify previous results by means of a large scale eval-
uation based on 1.26 million listening patterns extracted
from radio logs, and explain why some heuristics perform
better than others by analysing their formal definitions and
conducting additional evaluations.

1. INTRODUCTION

In January 2009, Arbitron and Edison Research measured
the popularity of digital music platforms by means of a
survey of 1,858 American people aged 12+ .! They esti-
mated that 42 million Americans tune to online radio on a
weekly basis, which is more than twice their number from
2005, and claim that the number of 12+ year old Ameri-
cans owning a digital music player increased from 14% in
2005 to 42% in 2009. They also found that the vast ma-
jority of these people own an Apple iPod or iPhone. Ev-
idently, the Apple products dominate their market, which
is commonly attributed to their innovating design and user
interfaces. The recent “Genius” feature is a nice example
of such innovation. Using this feature, users can automat-
ically create coherent playlists by selecting a seed song,
i.e., an example of a song of interest, and pressing a sin-
gle button. Many of the popular online radio stations are
similar in concept. The user supplies one or more seeds,
and the system generates a corresponding list of tracks that
is turned into a custom radio station. Hence, automatic
playlist generation can be seen as a technology that is, to
some extent, responsible for the recent growth established
by certain digital music platforms, and its commercial im-
portance is likely to increase further in the near future.
This paper is about simple heuristics for automatically
generating playlists. More precisely, we will discuss sim-

'http://www.arbitron.com/study/digital_radio_
study.asp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2009 International Society for Music Information Retrieval.

Elias Pampalk
Last.fm Ltd., London, UK Ghent University, Gent, Belgium
elias@last.fm

351

Etienne E. Kerre

etienne.kerre@ugent.be

ple rules of thumb for choosing the song to be played next,
given a set of candidate songs. This set of candidates can
consist of all available tracks, but usually it is restricted to
a limited subset. In order to avoid repetition, for instance,
the set of candidates has to be restricted to the songs that
have not been played yet. A realistic scenario is to select
the candidates using some other method, effectively turn-
ing the heuristic into an enhancement rather than a playlist
generation method on its own.

A very simple way to improve upon random selection,
is to repeatedly choose the candidate that is most similar to
a given seed song [1]. This playlist generation heuristic is
said to be static because the song sequence is completely
determined from the seed, without taking any additional
user input into account. Dynamic heuristics, on the other
hand, rely on user feedback to dynamically improve the se-
lection process [2]. For example, the aforementioned static
heuristic can be made dynamic by letting it pick the song
that is most similar to any of the accepted songs, where
the set of accepted songs consists of the seed song as well
as all tracks that were not skipped [3]. When there is no
given seed, the set of accepted songs can initially be empty
and the next track can be chosen at random until there is
at least one accepted song. This latter heuristic could eas-
ily be added to any system that returns multiple candidate
songs for being played next.

Putting it in one sentence, we discuss simple dynamic
playlist generation heuristics in this paper. In comparison
with alternative techniques, such heuristics are interesting
because they (i) are simple and thus easy to compute and
implement, and (ii) can easily be added as an enhancement
to many existing playlist generation systems.

2. RELATED WORK

Dynamic playlist generation can be seen as a special case
of the well-known relevance feedback paradigm from in-
formation retrieval [4]. In this paradigm, the user is asked
to give explicit feedback by labeling results as either rel-
evant or irrelevant, which leads to additional information
that can be used by the system to refine the search strat-
egy and generate a better list of results. Several rounds
of feedback can be conducted, each bringing the results
closer to the user’s implicit target concept. Hence, dy-
namic playlist generation is basically relevance feedback
with the returned set of results restricted to one item. In
case of this paper, the feedback taken into account is also
implicit rather than explicit, but there is no reason to as-

Oral Session 4: Music Recommendation and Playlist Generation

sume that dynamic playlist generation heuristics could not
be based on more explicit feedback like “thumbs up/down”
buttons instead of skipping behavior.

Over the past few years, relevance feedback has received
quite a lot of research attention. In particular, some rele-
vance feedback techniques have already been applied to
music information retrieval, including training a decision
tree [5], a vector quantizer [6], and an SVM [7]. Since
the number of examples is very low when the returned
set of results is restricted to one item [2], using these ma-
chine learning techniques for dynamic playlist generation
might be problematic, however. For the custom-tailored
heuristics described in this paper, this is less of a prob-
lem. Moreover, their simplicity can be considered an addi-
tional advantage from a computational and implementation
point of view. Furthermore, as we already mentioned in
the introductory section, the described heuristics can also
be thought of as a refinement that can be added to a more
complex relevance feedback system.

3. FORMALIZATION

The definition of playlist generation heuristics can be for-
malized using fuzzy set theory [8]. In this section, we ex-
plain this formalization in detail, since we rely on it exten-
sively in the subsequent sections.

3.1 Fuzzy Sets

Let U denote a universe, i.e., a (crisp) set of considered
objects. A fuzzy set F in U isa U — [0, 1] mapping that
associates a degree of membership F'(u) with each element
u from U [9]. The higher F(u), the more u is a member
of F. In particular, u fully belongs to F' when F'(u) = 1,
and F'(u) = 0 implies that u is not at all an element of F.
We use the notation F(U) for the class of fuzzy sets in U,
which can be regarded a superclass of P(U), the class of
crisp sets in U. A (binary) fuzzy relation L in U is a fuzzy
setinU x U,ie., L€ F(U xU) [9].

The fuzzy set Sim x, with X a crisp set in the (finite)
universe C' of songs to be explored, is the main stepping
stone towards the fuzzy formalization. It is given by

Simx (u) = l;ng)(cM(u,az) ()
for all u € U, where U is the subset of C' consisting of all
candidate songs. In this definition, M is a fuzzy relation in
C such that each relationship degree M (c, d), with (¢, d) €
C?, corresponds to the degree to which c is similar to d.
Putting it in words, Simx is a fuzzy set in U such that
Simx (u) can be interpreted as the degree to which w is
similar to any song in X.

In order to obtain a crisp set of tracks from a fuzzy song
set, we rely on the following formal operator:

forall X € P(C)and F € F(C),i.e., X|F isthe crisp set
consisting of the elements from X with the greatest mem-
bership degree in F'. Using this operator, we can formally

= max F(y))

X]F:{m€X|F($) max

352

define the dynamic heuristic discussed in the introductory
section of this paper as U'|Sim 4, with A the set of all ac-
cepted songs. In practice, the set U]Sim 4 will be a sin-
gleton most of the time, but theoretically speaking it can
contain up to |U| elements. We can choose one element at
random when |U]Sim 4| > 1, however, since each song
from the set can be considered equally suitable for being
played next. In the remainder of this paper, we silently
assume that this procedure is followed for all introduced
heuristics, i.e., we will define the heuristics as crisp sets
and assume that one element is chosen at random when
this set has several members.

3.2 Operations on Fuzzy Sets

The set-theoretic operations complement, intersection, and
union can be generalized to fuzzy sets as follows:

(con F)(u) = N (F(u)) 3
(F' N7 G)(u) = T(F(u),G(u)))
(FUsG)(u) = S(F(u), G(u)))

for each u € U, with F,G € F(U), N a negator, T a
t-norm, and S a t-conorm. We restrict the sheer number of
possibilities by only considering the widely-used standard
negator N given by Ns(z) = 1 — z for all z € [0, 1], the
three prototypical t-norms [10] given by

Te(z,y)=x-y (7

Ti(z,y) = max(x +y — 1,0) (8)
for all z,y € [0, 1], and their duals

SM (Iv y) = max(x, y) (9)

Sp(r,y)=rz+y—x-y (10)

Sp(z,y) = min(z +y,1) (11)

for all z,y € [0,1]. In the remainder, we will abbreviate
con, by co since Ny is the only negator we consider.

For this paper, however, we mainly need a generalized
set-theoretic difference, which can be obtained by defining

(F\z G)(u) = Ns(Z(F(u), G(u))) (12)

for every u from U, with F,G € F(U) and Z an impli-
cator. We consider two ways of generating implicators in
this paper, namely, S-implicators and R-implicators. The
S-implicator induced by a t-conorm S and the standard
negator Ng is the [0,1]2 — [0, 1] mapping Zs defined as
Is(z,y) = S(Ns(x),y), for all z,y € [0,1], and the R-
implicator induced by a t-norm 7 is the [0,1]> — [0,1]
mapping Z7 given by, for all z,y € [0,1], Zr(z,y) =
sup{v € [0,1] | 7 (z,7) < y}. For the above-mentioned
prototypical t-norms and the corresponding t-conorms, this
leads to the following implicators:

ISM (x,y) = max(l - Z, y) (13)
Isp(z,y)=1—z+a-y (14)
ISL (l',y) = mln(l —z+Y, 1) (15)

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

1 ifx<
Iny, (z,y) = { =Y (16)
y otherwise
1 ifz<y
I ,Y) = - 17
7 (2,9) {i otherwise 17
ITL(%Z/) = ISL,Ns(xay) (18)

forall z,y € [0,1].

3.3 Formal Heuristics

Having the operations on fuzzy sets at our disposal, we
can incorporate the set R of all rejected songs by replac-
ing Sim 4 in U]Sim, with a set-theoretic expression in
terms of both Sim 4 and Simpg. The heuristic defined as
Ul(Sima \z Simp), for instance, selects the songs that
are similar to an accepted song but not similar to any re-
jected ones, as illustrated by Fig. 4(a). By taking into ac-
count the fact that (U] F)|F = U]F foreach F € F(U),
we can easily define slightly more fine-grained heuristics,
however. Instead of replacing Sim 4 in U|Sim 4, we can
first rewrite U] Sim 4 as (U]Sim4)]|Sim4 and then re-
place only the first occurrence of Sim 4, which effectively
leads to heuristics of the form (U] P)]Sim 4, where P is a
set-theoretic expression in Sim 4 and Simpi. We call this
expression P the preselection expression, since it imple-
ments a preselection step that precedes further filtering by
Sim 4. As values for P, we consider the set-theoretic ex-
pressions illustrated by Fig. 4(a), Fig. 4(b), Fig. 4(c), which
leads to the following heuristics:

HE = (U](Sim 4 \z Simg))]Sim 4 (19)
Hy, =U]|Sima (20)
HI = (U)co(Simp \z Sima))]Sim 4 21

For the value of the parameter Z in HZ and HZ, we will
consider the five different implicators discussed in the pre-
vious subsection, namely, Is,,, Isp, Is., I1y, and Ir,.

The contour plots in Fig. 1 show how the implemented
preselection strategy varies for the considered implicators.
For each preselection expression P, there exists a corre-
sponding [0,1]> — [0, 1] mapping p such that P(u) =
p(Sima(u), Simg(u)) for all w € U. Table 1 lists these
mappings for all considered (non-trivial) preselection ex-
pressions, and the plots in Fig. 1 each illustrate one of these
mappings. Essentially, these plots provide a top view of
the three-dimensional plots for the [0,1]> — [0, 1] map-
pings. More precisely, the lines connect points for which
the illustrated mapping yields the same value, leading to a
partitioning of the [0, 1]? square into different areas. The
darker the area, the higher the values returned by the map-
ping in this area. Hence, songs u for which the point
(Sim 4 (u), Simpg(w))is in a dark area are given preference
by the preselection strategy in question.

All previously-introduced playlist generation heuristics
can be formalized in this way [8]. In particular, the well-
performing heuristic defined as

For each candidate song, let d, be the distance to
the nearest accepted, and let ds be the distance to

353

preselection expression [0,1]% — [0, 1] mapping

Sima \1s,, Simp min(z,1 —y)
SimA\ISP Simp T—x-Yy
Sima \1s, Simpg max(z — y,0)
0 ifr <y
Sim Sim -
A\In, R {1 —y otherwise
0 ifx <y
Sim Sim -
A\, R {1 — ¥ otherwise

co(Simp \1s,, Sima) max(1l —y, z)
l—-y+y-z

min(l —y+z,1)

CO(SimR \ISP SimA)
co(Simp \rs, Sima)

1 ify<
co(Simp \rp. Sima) = x
M x otherwise
1 ify<z
co(Sim Sim -
(S \ir, A) {Zj otherwise

Table 1. Corresponding [0, 1]?> — [0, 1] mappings for the
considered (non-trivial) preselection expressions.

@ HM () B,F (@ HY () HTP (o) Hy™
- |
® HM () Ho%P () HoOV Gy HO™) B P

Figure 1. Contour plots illustrating the preselection strate-
gies of the considered instances of HZ and HZ. Every can-
didate song u corresponds to a point (Sim 4 (u), Simpg(u))
in each of these plots, and the points in the darker areas are
given preference by the strategy in question.

the nearest skipped. If d, < ds, then add the candi-
date to the set S. From S play the song with small-
est d,. If S is empty, then play the candidate song
which has the best (i.e. the lowest) d, /d; ratio.

in [2], is equivalent to HCI P In addition to being more
concise and precise, the formal definition of this heuris-
tic was also obtained more systematically and is easier to
analyse, as we will demonstrate later on in this paper.

4. BASIC EVALUATION

The evaluations described in [2] and [8] are all based on
the fairly simplistic assumption that a song is a good ad-
dition to a playlist when it is from the same genre as the
seed. For this paper, however, we evaluated the considered
heuristics using patterns extracted from Last.fm radio logs.
More precisely, we looked for sequences of 22 tracks for
which the last two tracks did not both get accepted or re-
jected, i.e., one of them got accepted while the other got

Oral Session 4: Music Recommendation and Playlist Generation

rejected. Tracks were considered accepted when the user
listened to more than 50% of them. In order to make sure
that the extracted patterns represent genuine user interac-
tions, we imposed two additional restrictions: (i) at least
5 and at most 15 of the first 20 tracks got accepted, and
(i1) the last song of the sequence was not the last song of a
listening session. In this way, we avoid problems like, e.g.,
the user falling asleep or getting distracted while listening
to the radio station, or the last song being considered a skip
whereas the user really just turned off the radio while this
song was playing.

All of the patterns used for our evaluation were extrac-
ted from log files produced by Last.fm “playlist” radio sta-
tions, which basically shuffle randomly through user-gene-
rated lists of tracks. Last.fm provides its users the abil-
ity to create and share playlists, and subscribers can listen
to these playlists in random shuffle mode when they con-
tain at least 45 playable tracks by 15 different artists. We
considered 1,260,271 patterns extracted from log files gen-
erated by such stations, involving 53,768 unique listeners
and 516,261 different tracks from 70,306 artists.

The similarity values used for our evaluation were de-
rived from tag data using the well-known cosine similarity
measure [4], i.e., songs to which Last.fm users applied the
same tags were considered similar to each other. Since the
values from [0, 1] obtained in this way can directly be in-
terpreted as membership degrees, we did not have to apply
any normalization procedures in order to obtain the fuzzy
relation M on which the definition of Sim x is based.

For each considered pattern, we made every heuristic
choose between the last two tracks based on the acceptance
history for the 20 previous tracks, and counted how many
times they picked the wrong one. More formally, each pat-
tern corresponds to a (A, R, 7, w) tuple, where A and R
are the sets of accepted and rejected songs, respectively,
and r and w are the right and the wrong choice. The fail-
ure rate for a given heuristic is then obtained by putting
U = {r, w} for each pattern and counting how many times
w is returned by the heuristic.

Fig. 2 shows the results of our basic evaluation. The
circles mark the failure rates, and the lines through them
represent the 95% binomial confidence intervals computed
by approximating the binomial distribution with a normal
distribution. These results roughly confirm the findings ob-
tained in [8]. Again, HCI L and HCI " perform significantly
better than the other heuristics, although the difference be-
tween HCI ™ and HCI P is just barely significant in this case.
It still remains unclear why exactly these two heuristics
perform best, however, which is precisely the motivation
for the subsequent sections of this paper.

5. INCONSISTENT USER PREFERENCES

With each pattern considered for our basic evaluation, we
can associate two pairs of the form (similarity with ac-
cepted tracks, % listened), one for the right choice and an-
other for the wrong one. Similarly, we can also associate
two pairs of the form (similarity with rejected tracks, % lis-
tened) with each pattern. Fig. 3 shows the distribution of

354

Isyn |
Ha M

Isp |
H.F

Isy, |
a

Iy |
H,™
Irp [
Ha
Hyp |
Isyv |
HSM
Isp |
H.F
Isy, |
He™™
Ty |
H.™
Imp |
c

44.5 45 45.5

failure rate (%)

43.5 44 46

Figure 2. Results of the basic evaluation. The circles mark
the failure rates, and the lines represent the 95% binomial
confidence intervals.

100

80

60

40

20
0

similarity with accepted

% listened

W—

similarity with rejected

Figure 3. Two-dimensional histograms for the (similar-
ity with accepted tracks, % listened) and (similarity with
rejected tracks, % listened) pairs corresponding to the con-
sidered patterns. Darker regions contain more pairs, and
the thick black lines were obtained using linear regression.

these pairs for the considered patterns. The two thick black
lines in this figure are the linear regression lines, i.e., the
best-fitting straight lines through all of the points in terms
of least squares. As illustrated by these regression lines,
users apparently tend to avoid songs that are similar to the
skipped tracks in favor of the ones similar to the tracks that
were not skipped, which is the main assumption behind
the dynamic heuristics discussed in this paper. However,
the regression lines are only slightly tilted, suggesting that
the user preferences are often driven by reasons unrelated
to the (computed) similarity with the accepted or rejected
tracks. We say such preferences are inconsistent, and dis-
tinguish the resulting inconsistent skipping behavior into
two categories: (i) an inconsistent accept occurs when an
accepted song is either similar to a rejected track, or not
similar to any of the accepted ones, and (ii) an inconsistent
reject occurs when a rejected song is similar to an accepted
track or not similar to any rejected tracks. In the context
of a radio station, for instance, an eclectic user might not
mind when a song is not similar to any of the already ac-
cepted songs, leading to an inconsistent accept. On the
other hand, the user might reject a particular track because
she happens to dislike the corresponding artist for certain
(unmeasurable) reasons, even though the track is very sim-
ilar to the already accepted songs, resulting in an inconsis-
tent reject which might in turn lead to inconsistent accepts,
since the user is likely to accept songs that are similar to

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

, , L X
Sim Simpg Sima

@ >

o U
Sim Simpg

[OB

CO

Sim 4 Simg v

CO

Sim Simp

COD

Simg U

(@) Sima \ Simp (b) Sim 4

(c) co(Simp \ Sim4)

(d) co(Sim4) U Simp (e) Sim4 Uco(Simp)

Figure 4. The dark areas in these Venn diagrams depict the main set-theoretic expressions considered in this paper.

selections non-selections
Sim 4 Simpg U Sim 4 Simp U
T
H a
Sim g Simp U Sim g Simp U
Hy,
Sim g Simp U Sim g Simp U
A
HC

Figure 5. The inconsistent selections and non-selections
area for all considered heuristics.

the inconsistently rejected track.

Now, by thinking of the fuzzy sets as if they were crisp
sets, we can intuitively determine how well the preselec-
tion expressions from the heuristics comply with inconsis-
tent user preferences. A song v from U selected by a crisp
preselection expression P can lead to an inconsistent ac-
cept when either u ¢ Sim4 or u € Simpg. Hence, the
area corresponding to potential inconsistent accepts for a
preselection expression P is the intersection of P with the
set-theoretic expression shown by Fig. 4(d). We call this
area the inconsistent selections area. Similarly, we can de-
fine the inconsistent non-selections area as the intersec-
tion of co(P) and the expression shown by Fig. 4(e). The
larger the inconsistent selections area, the better the prese-
lection expression complies with inconsistent accepts, and
the larger the inconsistent non-selections area, the better it
complies with inconsistent rejects.

Fig. 5 shows the inconsistent selections and non-selec-
tions area for all considered heuristics. Judging from this
figure, HZ should perform best when inconsistent rejects
occur more frequently than inconsistent accepts, HZ is ex-
pected to perform best when inconsistent accepts are more
common, and H should perform similarly under both cir-
cumstances. In order to verify these theoretical insights,
we conducted some additional evaluations.

6. ADDITIONAL EVALUATIONS

By disregarding some of the extracted patterns, we can
control the level of inconsistent accepts and rejects. As
illustrated by Fig. 6(a), for example, the relative number
of inconsistent accepts can be increased by ignoring all
patterns for which either s, — o > 0.6 or 1 — sg —
Ig > 0.6 holds, with (sa,ls) and (sg,lr) a (similarity
with accepted tracks, % listened) and a (similarity with re-

355

jected tracks, % listened) pair, respectively, corresponding
to the pattern in question. Disregarding patterns in this
way actually removes inconsistent rejects, but this effec-
tively leads to a higher percentage of inconsistent accepts
in the obtained dataset. Increasing the level of inconsistent
rejects can be done analogously. By considering several
cut-off values, we generated 9 different datasets that grad-
ually move from a high level of inconsistent accepts to a
high level of inconsistent rejects, as illustrated by Fig. 6.

We conducted the basic evaluation for every generated
dataset, which led to the plots shown in Fig. 7. In accor-
dance with Fig. 5, the dash-dotted line is below the dashed
one in the left part of each of these plots, whereas it is al-
ways above the dashed one in the right part. The solid line,
on the other hand, is roughly symmetrical along the dotted
vertical divider, which also complies nicely with Fig. 5.
Although their magnitudes vary a lot depending on the
used value for the implicator Z, the differences in perfor-
mance are clearly visible in each subfigure, confirming the
insights we obtained by analysing the formal definitions of
the heuristics.

Now that we linked the performance of the heuristics to
inconsistent user preferences, we can finally explain why
the failure rate for the best performing instance of HZ is
significantly smaller than those for all instances of HaI in
Fig. 2. The reason for this is simply that the full collec-
tion of extracted listening patterns contains more incon-
sistent accepts than inconsistent rejects, which can easily
be demonstrated by reducing the granularity of the two-
dimensional histograms from Fig. 3 and summing up the
counts for certain bins. For instance, we can get a rough
idea of the number of inconsistent accepts by considering
merely four bins and summing up the counts for the bins
highlighted in Fig. 8(a). Similarly, we can roughly deter-
mine the number of inconsistent rejects by summing up the
counts for the bins highlighted in Fig. 8(b). The following
numbers were obtained in this way: 1,222,094 inconsistent
accepts and 1,186,155 inconsistent rejects. Moreover, the
dataset illustrated by Fig. 6(a) consists of 554,614 patterns,
while the one corresponding to Fig. 6(e) is made up of only
440,171 patterns. Hence, the original dataset indeed seems
to contain more inconsistent accepts than inconsistent re-
jects. The difference is not that large, however, which ex-
plains why there is only a very small gap between the per-
formance of HCISL and HaISP in Fig. 2.

Note that Fig. 7 also illustrates that Ig, can be seen as a
balanced compromise between the extremes Is,, and I7,,.
For the other implicators, the measured performance tends
to vary a lot for different heuristics, but Ig, rarely leads
to significantly worse performance than any of the other
considered implicators. In Fig. 2 as well in as all empirical

Oral Session 4: Music Recommendation and Playlist Generation

e s

(a) dataset 1 (b) dataset 3

S

(c) dataset 5

(d) dataset 7 (e) dataset 9

Figure 6. Two-dimensional histograms that illustrate how the 9 generated datasets gradually move from a high level of

inconsistent accepts to a high level of inconsistent rejects.

50 50 50
7 -
40 - :."’ “\‘s.
. NS,
s NS,
. /‘, A :,"
8 0y
30 '.' \\
20 20 20
2 4 6 8 2 4 6 8 2 4 6 8
(a) Isy, (®) Isp (©) Isy, = Imy, (@ Irp (e) Ity

Figure 7. Results of the additional evaluations for HZ (--), Hy (=), and HZ (---). The numbers along the horizontal axis
are dataset identifiers, while the vertical axis shows failure rate percentages.

results described in [8], HiSL and HCISL perform at least
as well as all other instances of HZ and HZ, respectively.

7. CONCLUSION AND FUTURE WORK

The mathematical apparatus from the theory of fuzzy sets
proves to be very convenient for defining dynamic playlist
generation heuristics. Using the described fuzzy frame-
work, we obtained definitions that are not only systematic
and both concise and precise, but also intuitively clear and
easy to analyse. We relied on this latter benefit to relate the
performance of the considered heuristics to inconsistent
user preferences. More precisely, we established that HZ
performs best when inconsistent rejects occur more fre-
quently than inconsistent accepts, that HZ can be expected
to perform best when inconsistent accepts are more com-
mon, and that Hg performs similarly under both circum-
stances. We clearly confirmed these theoretical insights by
means of a new methodology for evaluating playlist gener-
ation heuristics based on listening patterns extracted from
radio logs, which allowed us to conduct accurate experi-
ments using massive amounts of data.

Since we mainly focussed on comparing the heuristics
with each other in this paper, it still remains largely un-
clear to what extent they can improve the performance of a
particular playlist generation system. Future work should
try to measure the performance impact of the considered
heuristics on specific playlist generations systems, and com-
pare them with potential alternatives. In order to obtain a
fairer comparison, the underlying fuzzy relation M could
then be based on a more advanced similarity measure than
simple tag-based cosine similarity.

8. ACKNOWLEDGEMENTS

The first author would like to thank the Fund for Scientific
Research—Flanders (FWO) for funding this research.

(a) inconsistent accepts (b) inconsistent rejects

Figure 8. Categorization of certain bins from the coarse-
grained two-dimensional histograms.

9. REFERENCES

[1] B. Logan. Content-based playlist generation: Ex-
ploratory experiments. In Proc. ISMIR Intl. Conf. on
Music Info. Retrieval, 2002.

[2] E. Pampalk, T. Pohle, and G. Widmer. Dynamic
playlist generation based on skipping behavior. Proc.
ISMIR Intl. Conf. on Music Info. Retrieval, 2005.

[3] B. Logan. Music recommendation from song sets. In
Proc. ISMIR Intl. Conf. on Music Info. Retrieval, 2004.

[4] H. Blanken, A. de Vries, H. Blok, and L. Feng, editors.
Multimedia retrieval. Springer, 2007.

[5] S. Pauws and B. Eggen. PATS: Realization and user
evaluation of an automatic playlist generator. In Proc.
ISMIR Intl. Conf. on Music Info.Retrieval, 2002.

[6] K. Hoashi, K. Matsumoto, and N. Inoue. Personaliza-
tion of user profiles for content-based music retrieval
based on relevance feedback. In Proc. ACM Intl. Conf.
on Multimedia, 2003.

[7] M. Mandel, G. Poliner, and D. Ellis. Support vector
machine active learning for music retrieval. Multime-
dia Systems, 12:3-13, 2006.

[8] K. Bosteels and E. Kerre. A fuzzy framework for defin-
ing dynamic playlist generation heuristics. Fuzzy Sets
and Systems. To appear.

[9] L. Zadeh. Fuzzy sets. Information and Control, 8:338—
353, 1965.

[10] E. Klement, R. Mesiar, and E. Pap. Triangular norms.
Kluwer Academic Publishers, 2000.

356

