
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

AN EFFICIENT SIGNAL-MATCHING APPROACH
TO MELODY INDEXING AND SEARCH

USING CONTINUOUS PITCH CONTOURS AND WAVELETS

Woojay Jeon, Changxue Ma, and Yan Ming Cheng

Applied Research and Technology Center

Motorola, Inc.

Schaumburg, IL, U.S.A.

{woojay, Changxue.Ma, fyc002}@motorola.com

ABSTRACT

We describe a method of indexing and efficiently searching

music melodies based on their continuous dominant fun-

damental frequency (f0) contours without obtaining note-

level transcriptions. Each f0 contour is encoded by a re-

dundant set of wavelet coefficients that represent its shape

in level-normalized form at various locations and time sc-

ales. This allows a query melody to be exhaustively com-

pared with variable-length portions of a target melody at

arbitrary locations while accounting for differences in key

and tempo. The method is applied in a Query-by-Humming

(QBH) system where users may search a database of record-

ed pop songs by humming or singing an arbitrary part of

the melody of an intended song. The system has fast re-

trieval times because the wavelet coefficients can be ef-

fectively indexed in a binary tree and a vector distance

measure instead of dynamic programming is used for com-

parisons. Using automatic pitch extraction to obtain all

f0 contours from acoustic data, the method demonstrates

practical performance in an experiment with an existing

monophonic data set and in a preliminary experiment with

real-world polyphonic music.

1. INTRODUCTION

It has been suggested in the past that using “continuous”

(or frame-based) pitch contours may result in more robust

matches of music melodies [1] compared to using sym-

bolic string representations (usually note transcriptions).

Both methods require reliable extraction of the dominant

pitch contour from both query and target for matches to be

successful, but the latter approach requires an extra tran-

scription stage of converting the continuous contours to

symbolic strings, which can exacerbate the effect of pitch

tracking errors because it makes hard decisions on note

boundaries and quantization levels. However, the former

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

approach also has the major drawback of high computa-

tional complexity, especially when applying string match-

ing techniques to handle differences in tempo and key as

well as the well-known insertion, deletion, and substitu-

tion errors. Piecewise approximations of the contours have

been used for greater efficiency [2], but this still requires

query and target melodies to have roughly similar tempi.

Another problem in melody search is the length and

location of queries within their target songs. Query-by-

Humming(QBH) applications often limit queries to spe-

cific music phrases or hooks, hence simplifying the search

space, but in other melody search scenarios, the query may

be a completely random portion of a song, e.g. a briefly au-

dible segment of a tune in a TV commercial that the viewer

wishes to identify.

In this study, we present a method that tries to address

both issues – the computational complexity when using

continuous pitch contours and allowing the search of par-

tial melodies at arbitrary locations – by using redundant

wavelet transformations to index and match pitch contours.

The method avoids edit-distance comparisons and instead

uses distance measures between fixed-dimension vectors

while explicitly resolving tempo and key differences from

the very beginning of the search process. This is done by

dividing target melodies into overlapping, level-normalized

segments over a range of lengths and using wavelets to

efficiently represent the segments and match them with

queries. The wavelet coefficients are stored in vectors that

are in turn indexed in a binary K-D Tree [3] for fast search.

Although rhythmic inconsistencies within queries are ig-

nored for computational efficiency, the results show that in

practice we can achieve reasonable performance. Search-

ing continuous pitch contours at arbitrary locations was

tried in the past [4], but computation-intensive dynamic

programming was used for the matching.

While we agree that symbolic melody descriptions are

the future for robust melody-matching, with reliable music

modeling and transcription methods pending we believe it

worthwhile to explore the use of continuous pitch contours

in a somewhat traditional, signal-matching framework that

is fast enough for practical use.

In addition, it is hard to tell from QBH experiments

using MIDI target data how well the same system would

681

Poster Session 4

perform on arbitrary polyphonic music for which the tran-

scriptions are unavailable and must be extracted automat-

ically and crudely. Assuming perfect note transcriptions

could lead to QBH methods that are overly sensitive to

the integrity of the transcription and turn out to have little

value in such real-world scenarios. Therefore, in this study

we also conduct a preliminary QBH experiment on “real-

world” data, i.e., commercial recordings of polyphonic mu-

sic from which dominant pitch contours are obtained using

an automatic f0 tracking method.

Wavelets [5] have a rich history of diverse applications

in the areas of signal coding and matching. In particu-

lar, they have been used in the past to match whole image

contours [6] with robustness to affine transformations, and

also to encode f0 contours for speaker identification [7].

In the former case, the wavelet coefficients were used to

match whole contours, while in the latter, to encode the

f0 contour using compact dyadic wavelet coefficients. In

our study, to match f0 contours for the purpose of melody

matching, we employ “redundant” sets of wavelets defined

on non-integer scale and time indices to encode segments

of varying locations and time scales.

Note that throughout this paper, we conveniently as-

sume that “main melody” and “dominant pitch contour”

both mean “dominant f0 contour,” although strictly speak-

ing, all three concepts have subtle differences.

2. INDEXING VIA REDUNDANT WAVELETS

2.1 Brief Overview of Wavelets and Notation

0 0.5 1

−1

0

1

t

Figure 1. The Haar wavelet, ψ(t)

It is well known that a real, continuous-time signal x(t)
may be decomposed into a linear combination of a set of

wavelets that form an orthonormal basis of a Hilbert Space

[5]. First, we define a wavelet as

ψm,n (t) = 2−m/2ψ
(

2−mt− n
)

(1)

for m,n ∈ R (real numbers) where m is a dilation factor, n

is a displacement factor, and ψ(t) is some mother wavelet

function. In this paper, we use the Haar Wavelet in Fig.1.

It is easy to see that the support of (1), then, is

t ∈ [n2m, (n + 1) 2m) (2)

The corresponding wavelet coefficient of a signal x(t) is

〈x (t) , ψm,n (t)〉 =

∫ +∞

−∞

x (t)ψm,n (t) dt (3)

It is well known that when m,n are integers j, k ∈ Z (inte-

gers), {ψj,k} form an orthonormal basis and x(t) is a linear

2

2

2

2

4

4

4

4

6

6

6

6

8

8

8

8

10

10

10

10

12

12

12

12

14

14

14

14

16

16

16

16

t

t

t

t

T

T

T

T

f0

j=0
m=log

2
T

n=k=0

j=−1
m=log

2
T−1

n=k=0,1

j=−2
m=log

2
T−2

n=k=0,1,2,3

Figure 2. Example query pitch contour q(t) with support

[0, T) and “dyadic-equivalent” wavelets ψm,n that corre-

spond to some of the dyadic wavelets ψj,k of q(Tt). The

vertical dotted line indicates T . The wavelet amplitudes in

the figure are not plotted to scale.

combination of the resulting “dyadic” wavelet coefficients:

x (t) =
∑

j,k∈Z

〈x (t) , ψj,k (t)〉ψj,k (t) (4)

Since signals are often represented by a compact set of co-

efficients, we can efficiently compare real signals using

∫ +∞

−∞

{x (t)− y (t)}
2
dt =

∑

j,k∈Z

(〈x, ψj,k〉 − 〈y, ψj,k〉)
2

(5)

Throughout this paper, we always assume m,n ∈ R and

j, k ∈ Z .

2.2 Application of Wavelets to Pitch Contour

Matching

Assume some query f0 contour q(t), shown in Fig. 2.

Also assume a pitch contour p(t) of a target song, shown

in Fig. 3 representing the “dominant” f0 in a piece of poly-

phonic music. The query contour closely resembles a por-

tion of the target contour, and our goal is to locate this

segment. Given two contour segments representing iden-

tical melody, there are two different types of scaling that

must be considered before attempting to directly compare

them. The first one is in frequency, resulting from differ-

ence in musical key, which will cause one contour to be a

scaled version of the other in the linear frequency domain.

In the log-frequency domain, it will be a linear translation.

The second scaling is in the time domain, resulting from

difference in tempo. Notice that the two example melodies

are sung at different speeds. The query is about 17 seconds

long, while the matching segment in the target is about 12

seconds long. Both of these issues prevent us from directly

comparing p(t) and q(t), and they will now be addressed.

2.2.1 Key Normalization

First, assume some signal x(t) defined arbitrarily on [0, 1)
and 0 elsewhere. Since ψj,0 = 2−j/2 in [0, 1) when j > 0,

we have

〈x, ψj,0〉 = 2−j/2Sx (j > 0) , Sx ,

∫ 1

0

x (t) dt (6)

682

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Also note that 〈x, ψj,k〉 = 0 in [1, 0) for j > 0 and k 6= 0.

From these relations it follows that the wavelet expansion

of x(t) can be decomposed as follows:

x (t) =
∑

j≤0,k∈Z

〈x, ψj,k〉ψj,k +
∑

j>0,k=0

〈x, ψj,k〉ψj,k

+
∑

j>0,k 6=0

〈x, ψj,k〉ψj,k

= xN (t) + Sx

∑

j>0,k=0

2−j + 0 = xN (t) + Sx (7)

where we have defined

xN (t) ,
∑

j≤0,k∈Z

〈x, ψj,k〉ψj,k (8)

From the orthogonality property of the wavelets, and the

fact that x(t) is 0 outside of [0, 1), note that

〈xN , ψj,k〉 =

{

〈x, ψj,k〉 (j, k) ∈ W
0 all other j, k

(9)

where we define the set W of tuplets (j, k) that correspond

to the dyadic wavelets in [0, 1):

W =
{

(j, k) : j ≤ 0, 0 ≤ k ≤ 2−j − 1, j ∈ Z, k ∈ Z
}

(10)

Now, assume another signal y(t) = x(t) + c in [1, 0) and

0 elsewhere. Since Sy = Sx + c, we can see from (7)

that yN (t) = xN (t). Hence, for any arbitrary x(t) and

y(t) on [0, 1), we can obtain “level-normalized” signals

xN (t) and yN (t) that are independent of constant bias. In

our case, “level” is in fact “key” when x(t) and y(t) are

log-frequency pitch contours, since key shifts will result in

constant biases. To compute their mean squared distance

in a “level(key)-normalized” way, we use, instead of (5),

∫ +∞

−∞

{xN (t)− yN (t)}
2
dt =

∑

j,k∈W

(〈x, ψ〉 − 〈y, ψ〉)
2

(11)

2.2.2 Time and Key Normalization of the Query

Assume that the query signal q(t) is defined arbitrarily in

[0, T) and 0 elsewhere. The first step is to time-scale it

into a “time-normalized” signal q′(t) defined on [0, 1) and

0 elsewhere:

q′ (t) , q (Tt) (12)

Using (3) and (1), it is easy to see that

〈q′ (t) , ψj,k (t)〉 = T−1/2 〈q (t) , ψm,n (t)〉

m = j + log2 T, n = k (j, k ∈ Z) (13)

Fig. 2 shows ψm,n for (j, k) ∈ W when j = 0,−1, and

−2, which corresponds to m = log2 T , −1 + log2 T , and

−2 + log2 T , respectively. The wavelets {ψm,n} could be

regarded as the “dyadic-equivalent” wavelets of q(t) – the

wavelets applied to q(t) that are equivalent to the dyadic

wavelets applied to its time-normalized version q′(t).

4 8 12 16 20 24 28 32 36

t

t

t

t

t

t

t

t

t

t

f0

m= 12

3

n= 1

8
w

u=0,v=0

m= 11

3

n= 1

8
w

u=1,v=0

m= 10

3

n= 1

8
w

u=2,v=0

m= 9

3

n= 1

4
w

u=0,v=1

m= 8

3

n= 1

4
w

u=1,v=1

m= 7

3

n= 1

4
w

u=2,v=1

m= 6

3

n= 1

2
w

u=0,v=2

m= 5

3

n= 1

2
w

u=1,v=2

m= 4

3

n= 1

2
w

u=2,v=2

Part of target resembling query
End of analysis range

Figure 3. Example target pitch contour p(t) and a re-

dundant set of wavelets with design parameters D = 3,

M = 12, V = 2, and E = 3 encoding the contour at dif-

ferent locations over a range of time scales. The bold bro-

ken line shows the segment resembling the query in Fig.2,

and the bold lines show the “dyadic-equivalent” wavelets

that encode this segment

Now, if we only compute those wavelet coefficients for

(j, k) ∈ W , we can obtained the key-normalized, time-

normalized signal q′N (t). From (9) and (13), we have

〈q′N , ψj,k〉 =







T−1/2 〈q, ψm,n〉
(j,k)∈W

m=j+log
2

T,n=k

0 all other j, k

(14)

2.2.3 Normalization and Redundant Encoding of Targets

For the target pitch contour p(t), we do a redundant wavelet

analysis so that we can search multiple, overlapping sec-

tions of varying time scales in p(t). Some sort of regular-

ity must be imposed on the scale factors and analysis in-

tervals so that the coefficients can be used efficiently. Note

that there can be many ways to do this, and here we are

proposing one such method. While we present a general

683

Poster Session 4

formulation of our design, the easiest way to understand

this section is by studying the specific example in Fig.3.

We compute a “redundant” set of wavelet coefficients

{〈p, ψm,n〉 : u, v, w}, where we set

m =
M − u

D
− v, u = 0, 1, · · · ,D − 1, v = 0, 1, · · · , V

(15)

The constant D represents the amount of resolution in the

time scales over which the redundant analysis is done. M >

D represents some upper limit in m, u is a time scale fac-

tor, v is a nonzero integer, and V < M
D represents some

lower limit in m. For each m, the possible values of n are

n =
1

2E−v
w, w = 0, 1, · · · (16)

E > V represents the amount of time resolution. Fig. 3

shows the wavelets with D = 3, M = 12, V = 2 and

E = 3.

Now, consider the part of p(t) in

t ∈ [n02
m0 , (n0 + 1) 2m0) (17)

which is exactly the support of ψm0,n0
by (2). We also

constrain m0 and n0 to conform to (15) and (16):















m0 =
M − u0

D
− v0

0 ≤ u0 ≤ D − 1, 0 ≤ v0 ≤ V,

u0, v0 ∈ Z

n0 =
1

2E
w0 w0 ≥ 0, w0 ∈ Z

(18)

The time-normalized version of this portion of p(t), as-

suming zero elsewhere, is

p′ (t) =

{

p (2m0 (t + n0)) t ∈ [0, 1)
0 elsewhere

(19)

It is easy to see that the corresponding key-normalized,

time-normalized signal p′N (t) will have wavelet coefficients

〈p′N , ψj,k〉 =















2−m0/2 〈p, ψm′,n′〉
(j,k)∈W

m′=m0+j

n′=k+2−jn0

0 all other j, k

(20)

Now, from (15), (16), and (18) one can see that all coef-

ficients 〈p, ψm′,n′〉 required above can always be found in

the set of wavelets {〈p, ψm,n〉 : u, v, w} up to scale level

j = v0 − V . One can also notice that many wavelet coef-

ficients can be “reused” in the sense that they contribute to

more than one contour segment. In the example in Fig.3,

we see {ψm′,n′} for j = 0,−1,−2 with m0 = 11
3 and

n0 = 14
8 , which encode the section of p(t) that pertains to

the query q(t) in Fig.2.

Using the wavelet coefficients in (14) and (20), we can

compute the distance between the key- and time-normalized

query q′N (t) and target segment p′N (t) using (11). The dis-

tance will be an approximation, since we cannot take the

coefficients over the entire set W but over a finite number

of scale levels that provides sufficient accuracy (e.g., j = 0
to j = −4 for a 7s pitch contour sampled at 10ms).

To account for variations in tempo, we compare seg-

ments over a range of values of m0. Note first that if

the query and target had the same tempo, we should have

m0 = log2 T , which would produce portions of p(t) with

length T in (17), to obtain the most accurate match. Now,

if we allow the query’s tempo to be as slow as half the tar-

get’s tempo and as fast as twice the target’s tempo, we can

let m0 vary within the range

−1 + log2 T < m0 < 1 + log2 T (21)

which results in around 2D different values of m0 accord-

ing to the system design.

2.2.4 Two-Stage Search of Arbitrary Target Locations

Query coefficients

Binary search

over K-D tree

Candidate list

Linear rescoring

using full set of coefficients

Final ranked list

j=0

j = -2 j = -1j = -3

Target

DB

Figure 4. Schematic overview of two-stage search. In this

example, 7 wavelet coefficients are indexed by a K-D Tree,

and 15 coefficients are used for the linear rescoring.

The variable n0 in (19) controls the location of the tar-

get segment compared with the query. The resolution of

the wavelet locations can be controlled to find a good com-

promise between speed and accuracy. For efficient com-

parison of a query with a large number of targets, the pos-

sible dyadic-equivalent coefficients embedded in every tar-

get (i.e., the coefficients in (20)) can be indexed as co-

ordinates in a binary K-D Tree [3] with a fixed number

of dimensions. Each leaf in the tree coarsely represents

a melodic fragment in the target database. At the first

stage of the search, the query coefficients are appropri-

ately scaled to form a search sphere that is used to find tree

leaves that are spatially close to the query, resulting in a list

of candidate melody fragments. At the second stage, a lin-

ear search is conducted over the candidates using a larger

number of coefficients to more accurately compute (11),

which is then used to rank the results as shown in Fig.4.

In practice, no more than 31 wavelet coefficients (j =
0 to j = −4 in W) are usually sufficient to represent a

melody segment with length 7s sampled every 10ms. In

such a case, the first 7 coefficients (j = 0 to j = −2
in W) can be indexed in the K-D tree, while the full 31

coefficients are used in the linear rescoring stage.

In terms of computational complexity, if dynamic pro-

gramming(DP) were used to search for a query of length

Lq[frames] in a target of length Lt[frames], scores would

have to be calculated for LqLt coordinates (assuming no

684

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

pruning). If a linear search were used with the proposed

method, we would need to compute only kLt(k << Lq)
vector distances, where k is essentially a constant since the

number of wavelet coefficients (as in Fig.3) increases lin-

early with Lt. The addition of a K-D tree further reduces

this number drastically, making the computational gains of

the proposed method even more apparent.

3. EXPERIMENT

3.1 Pitch Contour Extraction

Time (s)

F
re

q
u

en
cy

 (
H

z)

24 25 26 27 28

100

200

400

800

1600

3200

(a) Log-frequency spectrum

24 25 26 27 28

100

150

200

300

400

600

800

Time (s)

F
re

q
u
en

cy
 (

H
z)

Suddenly I’m ... man I ... to be th.. −dow ... ov− er me

(b) Dominant f0 contour

Figure 5. (a) Log magnitude of log-frequency spectrum

(dark is high) from 82.4 Hz to 3.84 kHz of a segment of

Yesterday by The Beatles. Frequency components of both

voice and instrumental accompaniment are clearly visi-

ble. (b) Pitch contour of segment with hand-marked note

boundaries (broken vertical lines) and corresponding lyrics

in select locations (full lyrics are “Suddenly, I’m not half

the man I used to be, there’s a shadow hanging over me”)

A simple method based on known techniques was used

to obtain dominant f0 contours from music recordings. The

Constant-Q Transform [8] of each music signal was taken

to obtain spectral components on a log-frequency scale.

Fig.5(a) shows the spectrogram for a segment of Yesterday

by The Beatles. Next, we assigned scores for each (t, f)
on the time-frequency plane by computing weighted sums

of the spectral components at harmonics of f [9]. After

limiting the range of the dominant pitch via some heuris-

tics, we applied dynamic programming on the t− f plane

of scores to obtain a continuous pitch contour [10] that

maximizes the sum of pitch scores along its path. Fig.5(b)

shows the pitch contour obtained for the Yesterday exam-

ple. While the overall structure of the contour reflects the

vocal melody of this part of the song, we can notice that in

the non-vocal sections between “Suddenly” and “I’m” and

between “to be” and “there’s”, the dynamic programming

picked up the pitch of the strings in the background. In-

flections in vocal pitch inevitably produced during singing,

and other minor deviations from what is probably the “true”

music score are also reflected in the continuous contour.

However, we made no attempt to identify and compensate

for any such deviations or discriminate between vocal and

non-vocal sections, and directly used the whole pitch con-

tour from every target in the database in our experiments.

3.2 QBH Test

0 10 20 30 40
65

70

75

80

85

90

(a) MIREX 2006 test set

0 10 20 30 40
70

75

80

85

90

95

(b) “Real-world” test set

Figure 6. Search performance for (a) MIREX 2006 test set

and (b) “real-world” test set. The vertical axis represents

the inclusion rate(%), and the horizontal axis is the number

of search results.

Two experiments were conducted: the first on mono-

phonic music to validate our method with existing QBH

tasks, and the second on polyphonic music to make a pre-

liminary assessment of its use in real-world scenarios. For

both experiments, the dominant f0 contour was automati-

cally extracted from query and target data using the afore-

mentioned method. Contours were sampled every 10ms.

For the first experiment, we used the MIREX 2006 QB-

SH test set (see description in [2]). All target data in this set

are monophonic MIDI data, so we first converted them to

WAV format. Each song in the database was 29.9s long on

average (17 hours total for the database of 2,048 songs).

Fig.6(a) shows the inclusion rate for varying number of

search results, i.e., the rate at which the correct melody

was ranked within the top n of all returned results. For

n = 20, the inclusion rate was 84.9%, which is signif-

icantly lower than the state-of-the-art [2], 96.4%. Note,

however, that the latter system constrained the queries to

occur at only the beginning of music phrases. Since al-

most all queries in the MIREX 2006 test set start at the

beginning of their targets, such a data set would greatly

favor systems with such constraints. Our proposed sys-

tem, on the other hand, made no assumptions on starting

locations and exhaustively searched over all possible loca-

tions, limited only by the wavelet parameters. Also, tempo

variation is taken into account from the very beginning of

the search, not just at the latter fine search stage. Hence,

685

Poster Session 4

the search space was larger, which resulted in more room

for confusion. At the same time, the search time for each

query was usually less than one second on a 3.2GHz pro-

cessor depending on system parameters.

For the second experiment, we used a “real-world” data-

base consisting of 613 acoustic recordings of songs with

instrumental accompaniment, totaling around 37 hours of

audio (average 3.6 minutes per song). 155 of the songs

were from the RWC Music Database [11], and the rest

were commercially-distributed pop songs. A preliminary

set of queries were obtained from six non-professional sing-

ers – three male, and three female. Each person was asked

to sing several easy and well-known songs including “Ha-

ppy Birthday,” “The Alphabet Song,” and “Are You Sleep-

ing, Brother John?” from which query segments at random

locations were extracted. Each query was 5∼12 seconds

long, and there were a total 50 queries. We informally

verified that the songs in the target database correspond-

ing to these queries had reasonably clear dominant f0’s,

but there were still noticeable errors in the f0 extraction

due to instrumental accompaniment, like in the example in

Fig. 5(b). Fig. 6(b) shows the inclusion rate for a varying

number of search results. The inclusion rate was 86% for

n = 5 and 88% for n = 20, which seems similar to that of

another state-of-the-art system [12] that also allows queries

to begin at random locations but uses a MIDI database. We

are cautious in directly comparing the performance of the

two systems, however, because they differ in experimental

setup. Nevertheless, our results are promising because we

used a database of polyphonic recordings instead of MIDI

data. Larger data sets and larger numbers of queries will

have to be used in the future to more rigorously assess real-

world performance.

4. CONCLUSION AND FUTURE WORK

We have proposed an efficient method of indexing and mat-

ching music melodies based on their continuous pitch con-

tours while allowing partial matches at arbitrary locations

using redundant wavelet transformations. By directly com-

paring continuous pitch contours instead of their note tran-

scriptions as in most existing methods, we avoid the com-

pounding of transcription errors. On the other hand, our

method is also computationally efficient because it uses

the mean squared sum between fixed vectors instead of dy-

namic programming, while at the same time being able to

adjust for differences in tempo and key. Experiments were

conducted on both existing monophonic MIDI databases

and preliminarily on real-world recordings with instrumen-

tal accompaniment to show that the system can be prac-

tically applied, even when using a simple mean squared

distance measure between key- and time-normalized con-

tour segments. While the system still depends on reliable

dominant pitch extraction, minor pitch tracking errors did

not hurt performance because the overall pitch and rhythm

structure of contours was compared. One trade-off for the

system’s efficiency is that it does not explicitly account for

rhythmic variations within queries as do techniques based

on string-matching. Much work is being done in the MIR

community toward model-based symbolic representations

that allow a more modular framework for indexing and

search, such as via HMMs, and we plan to leverage the

insights gained in our work to this end.

5. ACKNOWLEDGMENTS

Thanks to Lei Wang for kindly sharing the data for the

MIREX 2006 QBH experiment used in [2].

6. REFERENCES

[1] D. Mazzoni and R. B. Dannenberg. Melody matching

directly from audio. In Proc. ISMIR, 2001.

[2] L. Wang, S. Huang, S. Hu, J. Liang, and B. Xu. Im-

proving searching speed and accuracy of query by

humming system based on three methods: Feature fu-

sion, candidates set reduction and multiple similar-

ity measurement rescoring. In Proc. INTERSPEECH,

pages 2024–2027, 2008.

[3] J. L. Bentley. Multidimensional binary search trees

used for associative searching. Comm. ACM, 18, 1975.

[4] L. Guo, X. He, Y. Zhang, and Y. Lu. Content-based re-

trieval of polyphonic music objects using pitch contour.

In IEEE Int. Conf. Acoust., Speech. Signal Processing,

pages 2205–2208, 2008.

[5] I. Daubechies. Ten Lectures on Wavelets. SIAM: Soci-

ety for Industrial and Applied Mathematics, 1992.

[6] Q. M. Tieng and W. W. Boles. Complex daubechies

wavelet based affine invariant representation for object

recognition. In IEEE ICIP, pages 198–202, 1994.

[7] F. Farahani, P.G. Georgiou, and S.S. Narayanan.

Speaker identification using supra-segmental pitch pat-

tern dynamics. In IEEE Int. Conf. Acoust., Speech. Sig-

nal Processing, 2004.

[8] J. C. Brown and M. S. Puckette. An efficient algo-

rithm for the calculation of a constant Q transform.

IEEE Trans. Audio, Speech, and Language Processing,

92:2698–2701, 1992.

[9] D. J. Hermes. Measurement of pitch by subharmonic

summation. J. Acoust. Soc. Am., 83(1):257–264, 1988.

[10] B. Secrest and G. Doddington. An integrated pitch

tracking algorithm for speech systems. In IEEE Int.

Conf. Acoust., Speech. Signal Processing, April 1983.

[11] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.

RWC music database: Popular, classical, and jazz mu-

sic databases. In Proc. ISMIR, pages 287–288, 2002.

[12] E. Unal, E. Chew, P.G. Georgiou, and S.S. Narayanan.

Challenging uncertainty in query by humming sys-

tems: A fingerprinting approach. IEEE Trans. ASLP,

16, 2008.

686

