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ABSTRACT

The widespread use of beat- and tempo-tracking methods
in music information retrieval tasks has been marginalized
due to undesirable sporadic results from these algorithms.
While sensorimotor and listening studies have demon-
strated the subjectivity and variability inherent to human
performance of this task, MIR applications such as rec-
ommendation require more reliable output than available
from present tempo estimation models. In this paper, we
present a initial investigation of tempo assessment based
on the simple classification of whether the music is fast or
slow. Through three experiments, we provide performance
results of our method across two datasets, and demonstrate
its usefulness in the pursuit of a reliable global tempo
estimation.

1. INTRODUCTION

Within the last ten years, beat tracking and tempo induction
methods have been significantly improved. Several state-
of-the-art methods [1–3] are now capable of identifying
and providing reliable beat calculations through difficult
passages marked by features such as expressive timing
or competing rhythms. However, the usefulness of such
methods for information retrieval tasks has been limited
due to the unpredictable behavior of these algorithms.
While many studies demonstrate musical beat localization
for humans to be variable and highly subjective [4–8],
MIR applications such as recommendation and harmonic
description require more reliable tempo estimates. The
most frequent error in this context is the so-called octave
error, or the halving or doubling of the perceived tempo
caused by attributing the driving beat level to a metrical
level other than the most predominant pulse.

Identification of the most appropriate tempo octave has
been shown to be a difficult problem, as demonstrated
in the discrepancy between beat tracking evaluations in
which a single tempo octave and multiple tempo octaves
are accepted [2, 3, 9, 16]. As metronomic values are not
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absolute, they are not well-suited for defining the perceived
relative speed of a piece of music. Unfortunately, if a user
of a recommendation system were to request slow music
labeled 60 BPM, and received music more commonly
associated with 120 BPM, they would not be satisfied!
This paper presents a novel approach to this problem,
by identifying fast or slow music without the use of
a beat tracker, and demonstrates the usefulness of this
categorization in selecting the appropriate tempo octave of
a given piece of music.

1.1 Background

The selection of tempo octave is most commonly achieved
as an embedded step within the framework of the beat-
or tempo-tracking task. The general procedure used in
most audio tempo-tracking algorithms is comprised of
three steps. First, the audio signal undergoes a process
of reduction, which simplifies the signal by accentuating
prominent signal information such as transients. Second,
periodicity analysis is performed on the simplified signal,
to extract possible beat periods (i.e., the duration between
beat events). Third, the algorithm identifies which period is
most likely, and assigns this value as the tactus, or the most
influential beat, which typically controls the local timing of
a musical piece.

The majority of recent efforts in beat tracking have
centered on this third step, mostly through attempts to
incorporate musical knowledge. Musical knowledge is,
in this sense, information of any complexity that is pro-
vided to the model that allows it to focus on a particular
subset of candidates within the wide variety of possible
solutions. This knowledge may take on several forms,
from a simple limiting of values to desired candidates,
to conditional dependencies between metrical levels and
prior decisions. The need for such knowledge comes from
the ambiguity faced in analyzing the output of periodicity
functions of real signals, which may include intra-measure
timing variations (e.g., the swing factor in jazz music),
syncopation, and/or global tempo shifts. Inspection of the
output of periodicity functions during most musical signals
will demonstrate several peaks including both octave-
related (e.g., half- or double-time periods) resonances as
well as other peaks due to rhythmic complexity and noise;
these peaks often overshadow the otherwise steady period.

231

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Therefore, a selection of the tactus based on output energy
of a periodicity function alone at each frame will result in
a highly unsteady tempo output for many music sources.

To address the tempo octave problem, Goto and Mu-
raoka [10] limit the possible period values to those periods
whose tempi are within only one octave.

As an alternative to placing strict boundaries on tempo
values, both Ellis [1] and Klapuri et al. [2] weigh the
output of their periodicity functions with log-Gaussian
distributions originally proposed by Parncutt [6]. The mo-
tivation behind this approach is to model tactus preferences
exhibited during listening tests [5, 6], and it is intended to
provide emphasis to tempi positioned around the mean of
the distribution.

Davies and Plumbley [3] use a variable-state method
that alternates weighting functions based on the observed
variation of the autocorrelation output. The purpose of this
method is to model the uncertainty of the listening process
upon initial contact with the stimulus, and then to constrain
the possible values based on prior observations.

Klapuri et al. [2] use a hidden Markov model to extract
the temporal evolution of a hidden metrical sequence
exhibited in the output of a comb filterbank. The joint-
state estimates of the present tactus, tatum, and meter
periods are achieved through a first-order Markov process,
in which the present filterbank output and transition proba-
bilities between periods are used to generate a probabilistic
determination of the present state. Selection of bar-length
periodicities and tatum help to reduce incorrect tactus
attribution. The strength of this model lies in its ability to
reinforce a metrical framework within sections displaying
less prevalent metrical observations.

In a method conceptually similar to our own, Xiao et al.
[11] use a Gaussian mixture model to capture the timbral
characteristics of a given tempo through the association of
Mel-frequency cepstral coefficients (MFCCs) to discrete
BPM values. While this method was demonstrated to
reduce the occurrence of octave errors for the beat tracker
presented in [1], its reliance on a discrete BPM values as
class labels requires a large amount of ground truth that is
difficult to produce due to human subjectivity during data
collection.

1.2 Motivation

With the exception of [11], the above methods rely on
some form of limiting or weighting curve applied to the
output of the periodicity function (e.g., autocorrelation and
comb filterbank) to reduce the effects of alternate tempo
octaves, but these curves are based on BPM responses
which are highly variable due to the subjectivity of the task.

What can actually be inferred about a piece of music
from a BPM value? Given that humans choose different
levels at which to tap when synchronizing with music,
is it plausible that a BPM measure would provide us
with information about the speed of a piece? Certainly
within a single tempo octave the BPM scale can be very
informative, but the plurality of acceptable BPM values
across tempo octaves makes an inter-octave comparison of

musical rates less reliable.
In addition, other than [11], all above methods rely

exclusively on periodicity functions and relatively few
features for determination of BPM and thus tempo octave.
Our method relies instead on the assumption that the
difference between fast and slow music manifests itself
across multiple features.

1.3 Organization of this paper

Section 2 briefly outlines our technique for the determina-
tion of a piece of music as fast or slow. Section 3 presents
both experimentation and results for our method, as well as
the application of our method to tempo-tracking. Section
4 presents discussion, and Section 5 provides conclusions
and future work.

2. METHOD

To address the problem of tempo octave estimation, we
present a classification-based approach that does not rely
on discrete BPM values. Alternatively, the proposed
method performs a binary classification using broad cat-
egories of human response to the pace of music: fast and
slow. There are several benefits to the proposed classifi-
cation scheme. Unlike solving for a discrete BPM value,
music classification as fast or slow is a binary classification
problem that offers higher accuracy than present multi-
class solutions (e.g., discrete BPM values). Evaluation
methodology and interpretation is greatly simplified with-
out acceptance of multiple metrical levels. In addition,
ground truth—in this case class labels created through
listener response to music—is more readily available for
this particular problem.

The proposed technique has two immediate applica-
tions: first, as a feature within another retrieval task, and
second, as a component within a tempo-tracker that guides
the algorithm to the more appropriate of two tempo ranges.
While the taxonomy of fast or slow is not precisely analo-
gous to a specific BPM range, we propose that the tempo
range can roughly be divided in half to accommodate two
tempo octaves. With a training set approximately covering
several musical styles in both fast and slow categories, a
mapping may be achieved between these two taxonomies.
Our assumption is that labelling a song as slow is indicative
of the existence of prevalent acoustic characteristics that
have led to a selection of the lower tempo octave, while a
classification of fast is indicative of features that prompted
a rate of synchronization within the faster tempo octave.

2.1 Data collection

To generate our datasets, we created a data harvester 1 built
on the Last.fm and YouTube APIs. Our initial intention
was to extract features and train our classifiers based on
audio for songs that were relevant to the fast and slow tags
on Last.fm. Because audio content is for the most part not
available on Last.fm, we opted instead to generate a list of
artist and track names associated with either fast or slow

1 available at: http://www.music.mcgill.ca/∼hockman/other/mashup

232

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



tags, and use each artist-track combination in this list as
search terms for videos on YouTube.

An initial list of artist and track names was created by
mining Last.fm for the most popular tracks related to the
query tags. Additional tracks were then appended to this
list through a search for similar tracks that also displayed
these tags. If the video matching the query was available,
an audio track was automatically extracted from the video.
Each file was then manually verified to be a version of the
artist-track combination. The specific size and makeup of
the dataset varied with the experiment being performed (as
explained in Section 3).

2.2 Feature extraction

The success of our classification relies chiefly on our
feature set, which has been generated using jAudio [12], a
Java-based feature extraction tool from the jMIR software
package [13]. 2

Each of the tempo estimation methods discussed in
Section 1.1 generates an onset detection function (also
known as a driving signal) by analyzing either a single
feature or relatively few features, and tracks these over the
course of overlapping windows; the aim being to highlight
significant local signal characteristics, such as fast attack
transients, while attenuating steady-state components.

Alternatively, our approach uses a significantly larger
feature set, and characterizes features across entire tracks.
We suspect that the perception of acoustic cues differs for
songs heard as fast and slow, and that these cues are related
to pitch, loudness, and timbre. We therefore extract a
large number of features in hopes of exploiting regularities
within these three musical attributes. Each audio track
is first converted into a normalized 8 kHz single-channel
.wav file. For each audio file, we assess over 80 overall fea-
tures, including spectral centroid, rolloff, flux, variability,
peak-based spectral smoothness, zero crossings, MFCCs,
LPC, and Method of Moments, along with the aggregates
[14] of several of these features, e.g., derivative, running
mean, and standard deviation.

2.3 Classification

Classification is performed using jMIR’s Autonomous
Classification Engine (ACE) software [15]. Provided
feature vectors as created in Section 2.2 and a
classifications file containing a list of labels directly from
user data corresponding to each audio track as in Section
2.1, ACE performs classification with a variety of machine
learning classification algorithms. Our experiments
focused on the following six classifiers available in ACE:

• Unweighted k-Nearest Neighbor, with k=1 (k-NN)
• Support Vector Machines (SVM)
• Naive Bayes
• C4.5 Decision Trees (C4.5)
• AdaBoost seeded with C4.5 (AdaBoost)
• Bagging seeded with C4.5 (Bagging)

2 available at: http://jmir.sourceforge.net

3. EXPERIMENTS

The goal for our experiments was to measure how well
the above machine learning algorithms can identify fast
and slow songs. To evaluate our method, we compared
the output of several classifiers tested on two separate
datasets. In all, we conducted three experiments: the first
two deal specifically with identifying the best classification
algorithm for determining fast or slow tempo, and the third
compares our method against an existing tempo-tracking
algorithm modified to output fast or slow values.

3.1 Experiment 1: Fast vs. slow

For the first of these experiments, we tested the feasibility
of our approach using a dataset comprised of audio that
users of Last.fm have tagged as fast or slow. The dataset
was constructed as explained in Section 2.1, using search
terms restricted to fast and slow. The total size of this
dataset was 397 full-length audio tracks, comprised of 109
fast songs and 288 slow songs. Features were extracted
as described in Section 2.2. Success rates are based
on averages of five runs of three-fold cross-validation
performed on the dataset with each classifier. Overall
averages are displayed in Table 1.

Classifier Avg. Success
k-NN (k=1) 97.48
SVM 99.37
Naive Bayes 98.24
C4.5 99.18
AdaBoost w/ C4.5 99.44
Bagging w/ C4.5 99.12

Table 1. 3-fold cross-validation results for Experiment 1.
Values are presented in percentages for k-NN, SVM, Naive
Bayes, C4.5, AdaBoost, and Bagging classifiers.

The best performing classifier was AdaBoost, closely
followed by SVMs, C4.5, and Bagging. From the high
success rates of these learners, we may infer the effective-
ness of training exclusively with global features, as well as
the lack of need for a periodicity function.

We can identify two weaknesses in our approach for
this experiment, both related to genre. First, we did not
attempt to control the influence of genre across tempo
classes; it is plausible that relatively few genres comprise
a large portion of the dataset, ultimately simplifying the
classification task to one of basic genre classification (e.g.,
ambient vs. punk). Without genre labels we cannot
reliably isolate the effect of genre from the determination
of fast or slow music within our dataset.

Second, the fast and slow tags may have been made
with respect to genre, and we cannot assume the motivation
behind the use of these tags. While one listener might use
these tags to describe the pace of a piece in relation to other
music of many genres, others might use the same tags to
describe its pace in relation to a specific genre. This could
potentially be an issue if the two tag meanings were not
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consistent. For example, a slower Drum and Bass track
could conceivably be tagged as slow within the genre, or
fast in comparison with other genres.

3.2 Experiment 2: Intra-genre fast vs. slow

Following the results of our previous experiment in Sec-
tion 3.1, we designed an experiment to ensure that the
classifiers were not simply classifying genres. For this
experiment, a new dataset was created. An ideal dataset
would have comprised of fast and slow versions of each
song, eliminating any differences cause by genre that were
not related to tempo. As we neither have such music, nor
tags to describe it as fast or slow, we instead used our data
harvester to find fast and slow music within each genre.
For search tags we first looked for tempo-genre pairs in the
form of fast x and slow x, where x is a genre taken from
a list of over 1500 genres. 3 For a tempo-genre tag pair
to be considered as search terms, each tag was required to
return a tracklist result with no less than five audio tracks
for each genre. Once the list of tracks was established, they
were downloaded as in the first experiment.

For this particular search, we found the distribution
of tracklist results between fast and slow genres highly
unbalanced. Many of the returned tempo-genre pairs (fast
x and slow x) had a large number of files in one category
and close to the minimum in the other. We therefore
selected the five most evenly distributed genres (Country,
Jazz, Rap, R&B, and Rock). Our desired dataset was
comprised of at least thirty tracks in each tempo-genre
class. As the number of tracks retrieved in each category
did not meet our expectations, we decided to increase
the size of the dataset by mining YouTube directly using
the tempo-genre terms as queries for playlists. Our final
dataset for this experiment was comprised of 831 verified
full-length audio tracks, as shown in Table 2, and the
complete list of the songs is available online. 4

Country Jazz Rap RnB Rock Totals
Fast 33 112 63 76 111 395
Slow 66 103 78 120 69 436
Totals 99 215 141 196 180 831

Table 2. Dataset 2 breakdown by genre and tempo class.

We then tested our classification method within each
of the five genres using three-fold cross-validation, as in
the previous experiment. Results in Table 3 demonstrate
the capability of each of the five classifiers in this task.
Even the worst performer, the naive Bayesian classifier,
scored above 93%. The top performers for each of the
genres were either C4.5 or AdaBoost seeded with C4.5.
The best classifier across all genres was again AdaBoost
seeded with C4.5, and the most difficult genre tested across
each classifier was Rap.

Next, as in Section 3.1 we evaluated each classifier’s
ability to determine fast or slow across the entire dataset,

3 http://en.wikipedia.org/wiki/List of music genres
4 http://www.music.mcgill.ca/∼hockman/projects/fastSlow/dataset.zip

Genre k-NN SVM Naive C4.5 Ada Bag
Cntry 94.83 97.26 92.51 98.48 97.95 97.46
Jazz 95.81 98.49 92.78 98.01 99.30 99.07
Rap 90.28 96.98 93.10 98.24 99.29 99.11
R&B 89.04 95.16 93.98 98.47 98.21 98.08
Rock 92.92 95.71 93.32 99.17 99.28 97.93
Avg. 92.58 96.72 93.14 98.47 98.80 98.33

Table 3. 3-fold cross-validation results for intra-genre tests
in Experiment 2. Values are presented in percentages for
k-NN, SVM, Naive Bayes (Naive), C4.5, AdaBoost (Ada),
and Bagging (Bag) for each genre: Country (Cntry), Jazz,
Rap, R&B, and Rock.

without genre separation. Results for this test are presented
in Table 4. The top performing classifier was AdaBoost,
and success rates were only minimally affected by the
absence of genre specification. We can therefore conclude
that the classifiers were able to learn fast and slow char-
acteristics of music without prior knowledge of musical
genre.

Classifier Avg. Success
k-NN (k=1) 95.97
SVM 96.42
Naive Bayes 90.94
C4.5 95.10
AdaBoost w/ C4.5 96.81
Bagging w/ C4.5 96.45

Table 4. 3-fold cross-validation results (in percentages)
for six classifiers tested across entire dataset (i.e., without
genre separation) in Experiment 2.

3.3 Experiment 3: Applications in tempo-tracking

A third experiment was undertaken to compare the pre-
sented method to another method capable of fast and slow
determination. This comparison was achieved using the
results of the top performing classifier from Section 3.2
and the binarized output of a beat tracker [16] modified to
provide a single tempo for each track in the second dataset.
For each song n, the beat tracker calculates the derivative
∆ of beats θn and outputs a single BPM value Γn as:

Γn = 60/median(∆θn). (1)

An obstacle in the comparison between the two ap-
proaches is the selection of a boundary λ between fast and
slow BPM values output by the tempo tracker. A plausible
approach to scoring the output would be to identify a mean
tempo for the dataset. However, as we lack ground truth
BPM values for this dataset, we were unable to generate
an average tempo at which to divide the tempo range.
We therefore instead tested a set of integer tempo values
{50, ..., 150} for λ, defining the optimal divisor as the
tempo that provided the best results for the tempo tracker.
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Table 5 shows the results of this experiment, with the
best performing divisor between fast and slow, λ = 93
BPM.

Method Success Rate
Classification (AdaBoost) 96.81
Tempo tracking, λ = 93 BPM 61.85

Table 5. Results for Experiment 3 (in percentages).
Results for the classifier (AdaBoost) were generated
using 3-fold cross-validation. Tempo tracker output was
binarized using λ = 93 BPM as a tempo range divisor.

The discrepancy between results of the two approaches
led us to attempt to improve the tempo tracker output
using a genre-specific average tempo for each song in
the dataset, as we felt that using fixed BPM value λ
was unfairly scoring the tempo tracker. For these values,
we used average genre tempi calculated from the BPM
List 5 , a hand-annotated database of 20,000 BPM labels
for popular Western music listed by genre. Unfortunately,
decomposition by genre did not improve results.

The success rates for the tempo tracker in this experi-
ment should not be taken to be indicative of the algorithm’s
overall performance, as the intention of the tracker is not
to define musical pace as either fast or slow, but rather
to replicate the perceptual phenomenon of synchronization
with a heard piece of music.

4. DISCUSSION

Through the three experiments performed in Section 3,
classification of songs as either fast or slow has been shown
to be a robust method of determining the overall pace of
music. We have achieved above 96% accuracy for two
separate datasets and demonstrated its effectiveness in this
task over another existing methodology. The high success
rate of the presented method suggests its reliability as an
independent feature within several MIR tasks. In addition
to using classification labels as features themselves, the
method could also be used to improve lower-level metrical
analysis such as tempo-tracking algorithms by selectively
correcting misclassified tempo-tracking octave errors by
simply using the classification results.

Our method differs considerably from existing
approaches to the problem of tempo octave selection.
First, we are currently using only two classes of possible
output, as opposed to discretized BPM values. To achieve
these class labels, we use machine learning algorithms
trained on global features, calculated by aggregating
windowed features for each training instance. In addition,
we are using a large number of such features to describe
each audio track in our dataset. A key difference that sets
our method apart from all existing methods is that no
periodicity calculation is attempted; we instead rely only
on global features and statistics.

5 http://www.bpmlist.com/

The two datasets used in the course of this study
were created through the use of Last.fm and YouTube
APIs, and were specifically created based on listener
responses to audio. The composition of generated datasets
is essential to the training of our classifiers, as the contents
will define the ability of our classifiers to differentiate
between the two classes. In review of our first experiment,
we were concerned that our classification results were
artificially high because our first dataset was constructed
by downloading tracks associated with fast and slow tags,
and that tracks associated with these tags were possibly
leading to a division based on musical genre. We therefore
constructed a second dataset for the following experiment,
which contained examples of fast and slow music within
each genre, reducing the effect of musical genre separa-
tion. Results of this experiment demonstrated that the
classification approach could not only separate fast and
slow music within each genre, but within the entire dataset
as well.

A weakness of this approach lies in the ambiguity of
responses to particular pieces of music. For example,
songs in certain genres, such as Hip Hop, intentionally
juxtapose a fast lyrical layer with slower percussion and
bass loops (e.g., Bone Thugs’n’Harmony, Twista). In
these scenarios, a number of listeners tagged some of these
songs as fast, possibly referring to the unusually fast rate
of lyrics, while other listeners tagged tracks in the same
style as slow, possibly focusing on those characteristics
that define the genre standards—namely the percussion
and bass lines.

A second issue is the variable number of annotations per
training file. On Last.fm, more popular songs are likely to
have more instances of listeners using fast or slow tags,
and thus improving tag reliability. In the present study, we
have combined user data from Last.fm with playlist results
from YouTube without regard to the number of listeners
agreeing with each tag. While this did not cause difficulty
for our experiments, perhaps an optimal method might be
to directly label more music with Last.fm tags or even to
perform structured listening tests.

5. CONCLUSIONS

We believe estimation of tempo octaves within music to
be a perceptual phenomenon that can be learned through
use of the presented classification model. In this paper
we have outlined the training of such a model using a
large number of global features related to the overall pitch,
timbre, and loudness of an audio track. Through the use
of the proposed fast or slow classification, we believe
that it is possible to improve the usefulness of tempo-
tracking models within applications requiring a reliable
single tempo value.

In our future work, we would like to perform further
evaluation of our method with several datasets of varied
content. Specifically, we would like to test our method
using an artificial dataset containing fast and slow versions
of songs with the exact same spectral content. Such a
dataset could be created through the use of any commercial
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sequencer using MIDI files to control synthesizer and
sampler output. Evaluation on significantly larger datasets
would also be of interest. A difficulty here might lie in the
collection of ground truth for training. Towards this end,
listening tests may be useful as an alternative source.

We also plan to investigate the applicability of the
proposed method in the task of beat tracking. An obstacle
in this area is that the proposed method defines entire
songs. As we cannot assume that segments of the audio
contain acoustic features that motivated the class labels
(i.e., fast or slow) of the entire file, each segment would
need to be classified independently, which would require
manually labeled segments for training. Informal tests,
however, suggest only a slight decrease in performance
with audio segments of shorter durations, e.g., 10 seconds.

Finally, we intend to explore alternative strategies for
incorporating our approach into tempo- and beat-tracking
methods towards improved performance of these algo-
rithms.
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