
  
 

DETECTION OF COMMON MISTAKES IN NOVICE VIOLIN 
PLAYING 

ABSTRACT 

Analyzing and modeling playing mistakes are essential 
parts of computer-aided education tools in learning musi-
cal instruments. In this paper, we present a system for 
identifying four types of mistakes commonly made by 
novice violin players. We construct a new dataset com-
prising of 981 legato notes played by 10 players across 
different skill levels, and have violin experts annotate all 
possible mistakes associated with each note by listening 
to the recordings. Five feature representations are gener-
ated from the same feature set with different scales, in-
cluding two note-level representations and three segment-
level representations of the onset, sustain and offset, and 
are tested for automatically identifying playing mistakes. 
Performance is evaluated under the framework of using 
the Fisher score for feature selection and the support vec-
tor machine for classification. Results show that the F-
measures using different feature representations can vary 
up to 20% for two types of playing mistakes. It demon-
strates the different sensitivities of each feature represen-
tation to different mistakes. Moreover, our results suggest 
that the standard audio features such as MFCCs are not 
good enough and more advanced feature design may be 
needed. 

1. INTRODUCTION 

With advances in music technology, the development of 
computer-aided music learning and automatic scoring 
systems has attracted wide attention. Such systems pro-
vide self-learning experiences to users through computer-
aided platforms. Despite numerous efforts have been 
made, however, the performance of current systems still 
leaves plenty of space for improvement. A review of the 
music learning system and the main challenge can be 
found in [1]. 

  For a novice player, three common basic aspects, into-
nation, rhythm and timbre, are often used to evaluate 
his/her performance [2]. Intonation refers to the pitch of 
the tone, rhythm specifies the duration of the tone, and 
timbre characterizes the overall quality of the tone. Con-

ventionally, a novice player uses a tuner for correcting 
the intonation and a metronome for following the rhythm 
during the practice. In traditional music education,  there 
is no hardware device capable of automatically evaluating 
the timbre quality. 

  Up to date, most of the computer-aided music learning 
systems also focus on intonation and rhythm only [1]. 
These studies mainly coped with learning intonation and 
rhythm in music in the context of automatic music tran-
scription (AMT). For example, the pitch played by the 
violin learner was automatically detected and visually 
presented to evaluate the pitch intonation [3]. A fusion of 
audio and video cues improved the onset detection of 
non-percussive instruments, such as violin, and thereby 
enhanced the performance of AMT [4]. Automatic sing-
ing quality assessment is achieved by measuring the dis-
similarity between singing voices of beginners and of 
trained singers [5]. Besides intonation and rhythm, timbre 
plays an essential role in identifying the skill (or profi-
ciency) level of a player but has not attracted much atten-
tion in computer-aided music learning platforms. Some 
timbre-related research studies considered instrumental 
expression to recognize the techniques in playing musical 
notes by violin [6] and by electric bass guitar [7], respec-
tively. Other studies aimed to evaluate the played notes, 
for example, using spectral parameters from long tones to 
evaluate the technical level of saxophone players [8]. Re-
cently, a hierarchical approach combining deterministic 
signal processing and deep learning was employed to 
identify different common mistakes made by novice flute 
players [9]. Machine learning techniques were also 
adopted to distinguish good trumpet tones from bad ones 
[10]. The first attempt to detect bad violin playing in [11] 
is the most relevant work to the proposed study. One of 
the two tasks conducted in [11] classifies violin tones into 
binary clusters, i.e., good or bad, using k-nearest neigh-
borhood algorithm. The other task examined the promi-
nent feature sets for detecting individual playing mistakes. 
Similarly, in this paper, we explore the capability of tim-
bre in detecting playing mistakes produced by novice vi-
olin players during practice. However, since the dataset 
and the algorithm codes in [11] are not publicly available, 
it is difficult to compare our approach with the approach 
in [11].  
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  The first contribution of this paper is to build and re-
lease a new dataset1 for such a research problem. To be as 
realistic as possible, we recorded four successive legato 
notes, which require smooth, round and continuous flow 
of tones [12], as a unit and then trimmed it into individual 
notes rather than simply recording single note at a time as 
in [11]. The resulting dataset comprises of 981 individual 
legato notes played by several players across different 
skill levels. The playing mistakes associated with each 
note were annotated by violin experts using the following 
four pre-defined classes: scratching bow, crooked bow, 
bouncing bow, and inappropriate arm height. More de-
tails of the annotations and dataset are elaborated in Sec-
tions 2 and 3, respectively.  

  The second contribution of this paper is to evaluate a 
number of features capturing the acoustic characteristics 
of different segments of a musical note for the task of au-
tomatic playing mistake classification. A set of spectral 
features is extracted from either the whole note or the 
segment of onset, sustain and offset, partitioned using the 
output of an optical sensor installed on the violin. The 
approach leads to five different feature representations: 
Note, Onset, Sustain, Offset and Cascade. They refer to 
features extracted from the whole note, from the corre-
sponding segments only and the concatenation of seg-
ment-level features, respectively. More details about the 
partitioning method and feature extraction can be found 
in Sections 3 and 4, respectively.  

  In our approach, the Fisher score is used for feature se-
lection and the support vector machine (SVM) is used for 
classification. Feature selection is done as a preprocess-
ing step of classification. The performance of classifica-
tion is assessed in terms of the F-measure. Experimental 
details are presented in Section 5. Exploration of insights 
to link specific feature representations to playing mis-
takes is presented in Section 6, before we conclude the 
paper in Section 7. 

2.  VIOLIN PLAYING MISTAKES 

We defined four common playing mistakes made by vi-
olin novices. These mistakes are mainly related to the 
bow arm and the bow hand which dominantly control vi-
olin timbre for novice players and cause most of the trou-
ble for violinists [2]. 

2.1 Scratching Bow (SB) 
The pressure of the bow applied on the string can either 
come from the weight of the bow, arm and hand, from 
controlled muscular action, or from a combination of the-
se factors [2]. Excessive bowing pressure without enough 
bowing speed to complement with can hinder the vibra-
tions of the string and produce coarse sound with inferior 
quality. Without the support of bowing speed, extreme 

                                                             
1 The audio clips and annotations of playing mistakes can 
be found in http://perception.cm.nctu.edu.tw/sound-demo/. 

pressure of the bow on the string results in sound with 
scratching effect. 

2.2 Crooked Bow (CB) 
Drawing a straight bow from the frog to the tip is the 
foundation of the bowing technique [2]. If the bow is 
crooked, not parallel to the bridge, the sound quality will 
vary due to change of the contact position of the bow on 
the string. Severe inclination even causes sudden dis-
placement of the bow from the bridge and produces 
sound with skating effect.  

2.3 Bouncing Bow (BB) 
Lack of muscular control of either the bow arm or the 
bow grip reduces strength to the bow. It might prevent the 
bow from properly laying on the string, thereby the bow 
bounces naturally due to its elasticity. 

2.4 Inappropriate Arm Height (IAH) 
Appropriate tilt of the arm relative to the bow is required 
in order to play on each string without touching the other 
strings. With inconsistent height or tilt of the arm when 
drawing the bow across the string, pitch produced by ad-
jacent string might be heard. 

3. DATASET 

All notes in the dataset were played by ten players across 
different skill levels using the same violin in a semi-
anechoic chamber. Four players are relatively more ex-
perienced in violin or similar string instruments such as 
cello, while the other six players have learned to play vi-
olin for less than one month. Each player was asked to 
play four successive notes as a clip at the speed of 60 
beat-per-minute (BPM). Each clip was directed to start 
with down-bow and end with up-bow. In total, 26 clips 
containing 104 legato notes were played by each player. 
This style of successive playing is more similar to actual 
practicing than the style of playing an individual note at 
once. In our recordings, analysis of transition between 
notes is also feasible though we leave it as future work. 
We limit the study to consider legato notes only because 
legato is the essence of all cantabile playing [12] and one 
can hardly master other advanced techniques before 
playing it well. 

  Segmentation between notes and within each note was 
achieved using a photo resistor and four rings of surface-
mounted light-emitting diodes (SMD LEDs) installed 
respectively underneath the violin bridge and on the bow 
stick. Two of the four rings were installed at the posi-
tions close to the frog and the tip on the bow stick, while 
the other two were placed at both ends of the middle of 
the bow. Segmenting a violin note can benefit the analy-
sis, as the time domain signal varies in characteristic 
over a bow draw. The purpose of installing the optical 
sensor was to segment the time domain signal in a more 
direct way rather than the approach in [13]. When a lega-
to note was played, the optical sensor was capable of 
marking the time instants, at which those ring-located 
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positions of the bow stick passed through the violin 
bridge, without influencing playing. As our main pur-
pose was to simply divide the bow draw into three seg-
ments, we can tolerate the small accuracy errors of the 
sensors on the longitudinal bow position [13]. 

  Based on the marked time instants, we divided each clip 
into four individual notes and segmented each note into 
three different segments, i.e., onset, sustain and offset, as 
playing mistakes can occur at any instant of the drawing. 
The two ends of each clip, the start of the first note and 
the end of the fourth note, were manually determined by 
an energy threshold. The edges between successive notes 
and within each individual note were automatically de-
fined by the marked time instants. At the end, we col-
lected 981 notes in total and the corresponding segments 
after discarding notes containing accidently made dis-
tinct noise during the recording.  

  We employed the hardware-assisted approach instead 
of automatic approaches proposed in the literature [14, 
15] because automatic approaches usually segment an 
individual musical note according to the temporal evolu-
tion of amplitude envelope and spectral centroid [14, 15]. 
Since we are dealing with notes produced by the violin 
novices, the algorithms developed for well-played musi-
cal notes are not applicable in our case. For instance, 
simply dividing the note into three equal-duration seg-
ments would not produce same results as our hardware-
assisted approach since novice players cannot draw the 
bow with a constant speed. Therefore, without the assis-
tance of the optical sensors, automatic segmentation of 
violin notes performed by novice players should be a dif-
ficult task, which is beyond the scope of this paper and 
deserves further research in the future. 

  The notes were then annotated by violin experts using 
the four pre-defined mistakes. Note that a single note 
could possess multiple playing mistakes. Fig. 1 shows 
the duration distributions of notes and the corresponding 
segments. One can observe that although players were 
asked to play each note at the speed of 60 BPM, begin-
ners, especially those who lack of musical background, 
weren’t necessarily able to perform accurately. Table 1 
summarizes the numbers of instances of the playing mis-
takes in the first row. Dividing the first row by the total 
number of the collected notes gives the percentages in 
the second row.  

4. METHOD 

4.1 Preprocessing 

 All of the notes in the dataset were resampled to 44.1 
kHz and saved in the mono-channel WAV format. Before 
feature extraction, each time domain signal was first 
normalized to zero mean and unit variance and then di-
vided into three segments as described in Section 3 for 
further analysis. 

 

Figure 1. Duration distributions of 981 notes (the first 
column), the corresponding onset, sustain and offset 
segments (the second to the last column). 

Table 2. The number of instances of each mistake and 
the corresponding percentage. 

 

4.2   Feature Extraction 

A set of 30 frame-level spectral features, including high 
frequency content (HFC) [16], 13 Mel-frequency cepstral 
coefficients (MFCCs), spectral centroid, spectral crest, 
spectral flatness, spectral flux, spectral roll-off, de-
scriptors of spectral distribution (i.e., spectral variance, 
skewness and kurtosis), tristimulus [17], odd-to-even 
harmonic energy ratio (OER) [18], the estimated pitch, 
zero crossing rate and the instant power, were extracted 
from either the waveform or the spectrum using the ES-
SENTIA open-source library (version 2.0.1) [19]. The 
feature extraction was performed in each Hanning-
windowed frame with the frame duration of 46 ms and 
the frame shift of 50%. These features are capable of 
characterizing timbre and regularly employed in audio 
signal processing applications [20]. The six temporal 
functionals, including mean, variance, skewness, kurtosis, 
mean and variance of the derivative, of all the frame-level 
features were derived to generate clip- or segment-level 
features. The outcome of the feature extraction stage is a 
feature vector of 180 dimensions. 

  The feature extraction process was done on different 
segments of notes resulting in five feature representations: 
Note, Onset, Sustain, Offset and Cascade. The Note rep-
resentation was extracted from each intact note while the 
Onset, Sustain and Offset representations were extracted 
from corresponding segments of each note. These four 
representations consist of feature vectors of 180 dimen-
sions. The Cascade representation was produced by con-
catenating the Onset, Sustain and Offset representations 

 SB CB BB IAH 
Numbers 265 133 154 53 

Percentage 27.0% 13.6% 15.7% 5.4% 
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to give a 540-dimentional feature vector for each note. 
All feature representations were derived from 981 record-
ed notes and used for the task of playing mistake classifi-
cation. 

4.3   Feature Selection and Classification 

The Fisher score was considered for selecting prominent 
features in a pre-processing step prior to classification to 
reduce amounts of computation [21]. It is defined as [22]  

! ! ≡ (!!
(+)−!!)

2
+(!!

(−)−!!)!
2

1
!(+)−1 (!!,!

(+)−!!
(+))

2!+
!=1 + 1

!(−)−1 (!!,!
(−)−!!

(−))
2!+

!=1
 , 

where !(!) and !(!) are the numbers of positive and neg-
ative instances, respectively; !!, !!(!), !!(!) are the aver-
ages of  the !th feature over the whole, positive, and 
negative instances, respectively; !!,!

(!) is the !th feature of 

the !th positive instance, and !!,!
(!) is the !th feature of the 

!th negative instance. 

  We followed the framework in [22] which selects fea-
tures with high Fisher scores and uses the support vector 
machine (SVM), implemented by LIBSVM [23], for 
classification. The performance was evaluated in terms of 
the averaged F-measure, which is the harmonic mean of 
precision and recall, for each mistake using each feature 
representation with 100 repetitions of stratified five-fold 
cross-validation (CV). 

5. EXPERIMENTS 

The goal of the experiments is to investigate the capabil-
ity of used features to detect playing mistakes and bridge 
the relation between playing mistakes and feature repre-
sentations from different segments of notes.  

  Detection experiments were carried out through all fea-
ture representations after completing feature extraction. 
Following the procedures in [22], we first adopted a nest-
ed stratified five-fold CV to find the best percentage 
threshold to retain features based on Fisher scores, and 
then used the selected features for grid searching the op-
timized hyper-parameters C and γ, from the choices of 
{10-6, 10-5, 10-4, 10-3} and {1, 10, 100, 1000} respectively, 
of the radial-basis function (RBF) kernel based SVM. Fi-
nally, the selected threshold and the hyper-parameters 
were fed into another stratified five-fold CV. The overall 
performance was evaluated by averaging the F-measures 
of 100 repetitions of the final CV. Note that the above 
experiments were conducted for each feature representa-
tion and for each mistake. In other words, we trained M 
binary SVMs on each feature representation, where M is 
the number of types of playing mistakes. 

  To further have subset analysis, the experiments were 
conducted using three sets of data: All, Down-bow, and 
Up-bow, which respectively refer to the full data set of 

981 notes, the set of 480 notes played with down-bow 
and the set of 481 notes played with up-bow. Moreover, 
we performed the same experiment on the 570 notes rec-
orded by the six beginners who have played violin less 
than one month. Experiment results on these subset data 
and related discussions will be given in the next section.  

6. RESULTS 

The averaged F-measure using each feature representa-
tion for identifying each playing mistake in the All dataset 
is shown in Fig. 2. One can see that Cascade performs 
slightly better than Note in terms of the F-measure across 
all the mistakes, which is verified by the two-tailed t-test 
(p<0.01). It is probably because Cascade contains more 
detailed information of each individual segment. Except 
for the BB mistake, Cascade performs better than each of 
its constituents, i.e., Onset, Sustain and Offset. Note that 
the F-measures of the playing mistakes by the random 
guess would be 35.0%, 21.3%, 23.7% and 9.7%, respec-
tively, equivalent to the prior probabilities p(m) of the 
mistake m as shown in the second row of Table 1 divided 
by p(m) + 0.5. It is because we preserved the prior distri-
bution of the dataset in all partitions during the stratified 
five-fold CV procedures for each playing mistake. For 
comparison, we show in Fig 3 the performance of using 
the original 180 features without feature selection. Simi-
lar results between Figs. 2 and 3 suggest that the selected 
features sufficiently capture information embedded in the 
original 180 features for our experiments. 
  To explore more connections between playing mistakes 
and feature representations, one can re-arrange the F-
measures of Onset, Sustain and Offset against mistakes as 
in Table 2.  Results in Table 2 show that Onset has ad-
vantage in detecting SB over the others. It means that the 
onset segment is more sensitive for detecting SB, which 
somehow implies that the 10 players tended to have ex-
cessive bow pressure at the beginning of the bow draw. In 
contrast, Sustain surpasses the others in both CB and BB 
by up to 8% and 20%, respectively, which suggests CB 
and BB have higher chance to emerge during the middle 
of a drawing bow. Lastly, Offset dominates the IAH mis-
take. Such “favor” of a specific playing mistake in a par-
ticular segment of a note reveals the tendency of players 
to make that mistake at certain moment of a bow draw. 
This kind of information is helpful to novice players dur-
ing their practice. 
  As shown in Table 2, SB and BB are prone to happen in 
the onset segment and sustain segment, respectively. Fur-
thermore, it is commented by violin experts that such 
“favor” of SB and BB would be even more obvious in 
down-bow notes based on their teaching experiences. 
Figs. 4 and 5 compare the F-measures between the Up-
bow and Down-bow subsets for the SB and BB mistakes, 
respectively. Obviously, these two figures indicate the 
down-bow notes are more associated with the mistakes 
than the up-bow notes, which is consistent with experi-
ences of the violin experts. 
  Moreover, Fig. 6 shows the results on notes only played 
by the six beginners. It shows better overall performance 
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than results in Fig. 2, which suggests notes played by the 
beginners reveal more obvious characteristics of mistakes 
than the ones played by experienced players. In other 
words, the adopted features might be incapable of captur-
ing slight mistakes made by experienced players. 
  The inferior performance in classifying the IAH mistake, 
as shown in Figs. 2 and 6, might result from the severe 
imbalance of the dataset. In addition, pitch-related fea-
tures are overwhelmed by timbre-related features in our 
adopted feature set. If more pitch features are considered, 
it is possible to further improve the performance for IAH 
detection, since it is about the mistake of playing unde-
sired pitch.  
 

 
Figure 2. Averaged F-measures of playing mistake clas-
sification on all recorded notes using different feature 
representations.  
 

 
Figure 3. Average F-measures of playing mistake classi-
fication on all recorded notes using different feature rep-
resentations from the original 180 features. 
 

 
Table 2.  Averaged F-measures (in %) of Onset, Sustain 
and Offset. The feature representation with the highest F-
measure for each mistake is highlighted.  
 

 
Figure 4. Averaged F-measures of the playing mistake 
‘scratching bow’ (SB) using different feature representa-
tions within the up-bow and down-bow subsets. 
 

 
Figure 5. Averaged F-measures of the playing mistake 
‘bouncing bow’ (BB) using different feature representa-
tions within the up-bow and down-bow subsets.  
 

 
Figure 6. Averaged F-measures of playing mistake clas-
sification on notes played by beginners using different 
feature representations. 
 

7. CONCLUSION AND FUTURE WORK 

In this study, we first recorded a new dataset of violin 
legato notes played by novice players. Then we defined 
four common playing mistakes mainly made by bow arm 

 SB CB BB IAH 
Onset 53.4 36.1 39.2 16.5 
Sustain 45.0 44.3 52.9 24.4 
Offset 47.6 38.8 37.9 33.5 
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and performed automatic playing mistake classification 
using spectral and temporal features extracted from dif-
ferent segments of the notes. 
  Our evaluation on different feature representations sug-
gests concatenation of segment-level features provides 
more information than the note-level features in identify-
ing playing mistakes. Furthermore, by exploring connec-
tions between playing mistakes and feature representa-
tions, we found SB, CB, BB, and IAH mistakes are prone 
to happen in the onset, sustain, sustain, and offset seg-
ments, respectively. These findings would serve pedagog-
ical purpose and benefit novice violin players. Our future 
work will focus on improving the overall classification 
performance by enriching the dataset and seeking more 
relevant features, using either feature design or feature 
learning techniques [24, 25]. 
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