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Abstract. We explore a practical approach to learn a plausible causal
Bayesian network from a combination of non-experimental data and
qualitative assumptions that are deemed likely by health experts. The
method is based on the incorporation of prior expert knowledge in the
form of partial pairwise ordering constraints between variables into a
recent constraint-based Bayesian network structure learning algorithm.
The learning process ends up with a partially oriented graph. The re-
maining undirected edges are then oriented according to the expert un-
derstanding. We show that the causal graph not only provides a statisti-
cal profile of the population under study but also offers a simple guide-
line principle to identify accessible sets of confounding variables for each
causal relation under interest. To illustrate the potential of the proposed
approach, we estimate the strength of the causal effect of psychotropic
drugs, gait speed, body mass index and bone mineral density on the risk
of hip fracture from a prospective cohort study EPIDOS sample, which
included more than 7500 elderly osteoporotic women followed-up dur-
ing 4 years. Our findings suggest that an intervention programme aimed
at preventing physical deterioration and maintaining bone mass density
should tend to reduce the risk of hip fracture among elderly.

1 Introduction

Osteoporotic fractures, including hip fractures, are a global health concern as-
sociated with significant morbidity and mortality as well as a major economic
burden [1, 10]. This disease is caused by a modification of the bone’s structure
which translates into an increased risk of hip fractures [12]. Hip fractures com-
monly result in permanent disability, institutionalization or death, and are one
of the most damaging fractures among elderly people [10]. Thus, identifying the
causal risk factors for the development of timely interventions, such as phar-
macotherapy, to limit bone structure degradation in the elderly osteoporotic
population is an important challenge.
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In this paper, we investigate the feasibility and usefulness of causal bayesian
networks (BNs) in this setting. BNs learning algorithms search for statistical
(not necessarily causal though) relationships between the disease and all poten-
tial risk factors simultaneously. This approach shows an increasing popularity
in the medical domain [19, 18, 4, 8, 7], partly due to the advantages of a graph-
ical representation that facilitates the communication between domain experts
and knowledgeable engineers. BNs exhibit the variable statistical relationships
qualitatively by means of a directed acyclic graph (DAG) and thus are relatively
easy to interpret by non-statisticians. The ubiquity of DAG models in statisti-
cal applications stems primarily from their causal interpretation. However, BNs
are only models of statistical association and it is a common misinterpretation
to assume that arcs in a BN model denote causality, they denote only statis-
tical dependency. In fact, two BNs that are observationally equivalent cannot
be distinguished without resorting to manipulative experimentation or temporal
information. Expert knowledge and biological understanding is clearly essen-
tial, since it is more than a statistical data analysis exercise to provide a causal
representation of the data generating process.

The emphasis in this study is placed on integrating medical domain knowl-
edge and statistical data analysis to produce a plausible causal DAG in which
the edges are interpreted as causalities by the domain expert. The method is
based on the incorporation of prior expert knowledge in the form of pairwise
constraints into a BN structure learning algorithm called H2PC that appeared
recently in the machine learning literature [15]. The method ends up with a
partially oriented graph. The remaining undirected edges are then confronted
to the knowledge of the domain expert and directed according to his causal in-
terpretation. We then use the causal graph to infer the presence of confounding
factors and we estimate the causal odds ratios to discern the causal information
content of each risk factor based on the do-calculus developed by Pearl [21] from
observational data alone. Finally, our findings are compared with the ones ob-
tained by traditional logistic regression, published recently in the epidemiologic
literature.

2 Background

2.1 Bayesian networks

Formally, a BN is a tuple < G, P >, where G =< U,E > is a directed acyclic
graph (DAG) with nodes representing the variables in the domain U, and edges
representing direct probabilistic dependencies between them. P denotes the joint
probability distribution on U. The BN structure encodes a set of conditional
independence assumptions: that each node Xi is conditionally independent of all
of its non-descendants in G given its parents. These independence assumptions,
in turn, imply many other conditional independence statements, which can be
extracted from the network using a simple graphical criterion called d-separation
[20]. We say that < G, P > satisfies the faithfulness condition if the d-separations
in G identify all and only the conditional independencies in P . Two graphs are
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said equivalent iff they encode the same set of conditional independencies via the
d-separation criterion. These DAGs are said observationally equivalent - that is,
every probability distribution that is compatible with one of the DAGs is also
compatible with the other. Two DAGs are equivalent iff they have the same
underlying undirected graph and the same set of v-structures (i.e., uncoupled
head-to-head meetings X → Y ← Z) [20]. Furthermore using the concept of a
Markov boundary, we can identify the minimum set of variables that shield off
the target variable (hip fracture in our case) from the influence of the remaining
variables. Furthermore, pf P is faithful to a DAG (as we will assume in the
sequel), then the Markov boundary of a variable X: it consists of the parents,
the children and the spouses of X in G.

2.2 Learning the structure

The problem of finding the DAG that encodes the conditional independencies
present in the data attracted a great deal of interest over the last years [24, 25,
2, 15, 23, 27]. Ideally the DAG should coincide with the dependence structure of
the global distribution, or it should at least identify a distribution as close as
possible to the correct one in the probability space. This step, called structure
learning, is similar in approaches and terminology to model selection procedures
for classical statistical models. Basically, constraint-based (CB) learning methods
systematically check the data for conditional independence relationships and
use them as constraints to construct a partially oriented graph representative
of a BN equivalence class, whilst search-and-score (SS) methods make use of a
goodness-of-fit score function for evaluating graphical structures with regard to
the data set. Hybrid methods attempt to get the best of both worlds: they learn
a skeleton with a CB approach and constrain on the DAGs considered during
the SS phase. There are many excellent treatments of BNs which survey the
learning methods (see [17] for instance). In this study, we use a novel hybrid
algorithm for BN structure learning, called Hybrid HPC (H2PC) [15]. H2PC
was shown experimentally to outperform several state-of-the-art algorithms on
several benchmarks with various data sizes, in terms of goodness of fit to new
data and in terms of the quality of the network structure itself, which is close
to the true dependence structure of the data. We point the reader to [24, 15] for
further details.

Of course, H2PC, like any other algorithm, is sensitive to the particular
data set at hand [14]. So, we cannot simply accept our chosen structure as a
true representation of the underlying distribution. Averaging over the sampled
structures that are generated by a sampling process produces models that are
more robust, have greater confidence and place less reliance on a single data
set. Several approaches exist: generating samples of the BN structure from its
marginal posterior distribution using Monte Carlo Markov Chain (MCMC) [16],
or using bootstrapping methods for computing a statistical confidence features
within a BN [26]. In this study, we make use of the bootstrapping method to
generate a more robust network structure. Confidence in a particular edge is
measured as a percentage of the number of times this edge actually appears in
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the set of reconstructed graphs. If an edge has a confidence above the threshold,
it is included in the consensus network. Thus, only the dependencies that have
enough support will be captured and represented in the final consensus DAG.

2.3 Case study

In this study, we used the EPIDOS cohort described in [11] which consists of
7598 women aged 75 years or older. The mean age was 80.5 years (std=3.8).
These women were recruited between January, 1992, and January, 1996 in five
French cities: Amiens, Lyon, Montpellier, Paris, and Toulouse and followed up by
mailed questionnaires every 4 months during 4 years. Women who were not able
to walk independently and those who had a hip fracture or bilateral hip replace-
ment were excluded. Femoral-neck BMD by dual-photon X-ray absorptiometry
and potential fall-related risk factors were assessed, which included self-reported
physical capacity, neuromuscular function, mobility, visual function, history of
previous falls and use of medication. During an average of 3.8 years of follow-up,
293 women suffered a hip fracture. After this 4 year period, only the vital status
was regularly assessed until 2010 by checking the French national registry of
death (INSEE).

Based on literature, especially to the FRAX tool [5] and on expert knowledge,
we used a subset of 15 variables (out of 70) to describe the study population (see
Table 1): age, body mass index at inclusion, current or past use of corticoids
during 3 months or more, t-score at femoral neck, number of falls during the
6 months before inclusion, weekly intake of alcohol, tobacco smoking status,
history of hip fracture since 55 of age, parental history of hip fracture, gait speed,
Five Times Sit to Stand Test results which is a proxy of the motor performances
of the patients, number of recorded chronic diseases (among diabetes, depression,
glaucoma, cataract, angora, Parkinson disease and hypertension), current or past
use of vitamin D in the past year, current psychotropic drug use and the outcome
variable, i.e. hip fracture. Hip fracture over the 4 years was investigated every
4 month by mailed questionnaire and ascertained by X-rays radiography by
an expert rheumatologist. Data were discretized when needed according to the
expert knowledge [11].

3 Experiments

3.1 Causal graph discovery with expert priors

An often discussed topic when working with BNs is how the expert knowledge can
be incorporated in the model before or during the learning process. Edge orienta-
tion could partially (under certain assumptions) be achieved from observational
data alone but such judgments are more reliable when they are anchored onto
fundamental blocks of the domain expert knowledge [21]. In our view, an expert
cannot safely construct a fully specified DAG even if he feels confident about
variables relationships. Expert elicitation is expensive, time-consuming and re-
lies on experts having full knowledge. On the other hand, automated learning
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Name Description Values

Fracture Hip-fracture during the 4-years follow-up binary

Age Age at study inclusion < 80, 80 ≤ 85, 85 ≤
90, > 90

Chron disease Number of chronic diseases binary: < 2, ≥ 2

Psycho Use of sedatives or anxiolytics at inclusion binary

Vit D Use of vitamin D at inclusion or history of
vitamin D one year before inclusion

binary

Gluco Use of glucocorticoids at inclusion or his-
tory of glucocorticoids one year before in-
clusion

binary

Alcohol Daily intake of alcohol in g binary: 1 ≤ 20, > 20

Tobacco Tobacco smoking none, former, actual

Gait speed Gait speed at inclusion in m/s < 0.60, 0.6 ≤ 0.85,
0.85 ≤ 1,> 1

Test 5 Five chair test (time to sit down and stand
up five times) in s

1 ≤ 9, 9 ≤ 16, 16 ≤
23,> 23, incapable

BMI Body mass index at inclusion low, normal, obesity

BMD T-score of BMD of the neck at inclusion binary: normal or ≤
1, ≤ 2.5

Falls Number of falls during 6 months before in-
clusion

binary: ≤ 2, > 2

Earl Frac History of fracture from age of 55 to inclu-
sion

binary

Par Frac History of hip-fracture in the parents binary
Table 1. Variables included in the study.

from observational data is restricted to identification of statistical dependency.
We therefore asked our expert for constraints to limit the possible edge orienta-
tions in the graph structure as proposed in [4]. The expert was provided with a
cross table shown in Table 2. The result is a set of priors for pairwise relations.
These assumptions are partly based on the notion that causality only occurs
in the forward time direction (e.g. Earl Frac < Fracture) and also on the fact
that intuition deems many cause-effect relationships impossible (e.g. Tobacco <
Age is deemed impossible). The use of partial ordering that constrains arcs in a
causal BN is standard in BN learning (e.g., Tetrad IV and K2) and was adopted
in other medical studies [4]. So X < Y becomes the structural constraint that X
cannot be a descendant of Y . Note however that this soft constraint in no way
implies a direct of indirect causal path betweenX and Y though. The constraints
given to the learning algorithm are listed in Table 2. Satisfying these constraints
does not establish, of course, the validity of the causal model postulated. Our
hope is that the resulting DAG will best fit the independence statements present
in the data and the constraints expressed by the expert.

The resulting consensus DAG shown in Figure 1. It is the average over 200
graphs learned from bootstrapped data. All edges that appeared in more than
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Cause Age Bmi Bmd Gsp 5TS Efr Pfr Crd Vtd Glu Psy Alc Tob Fal Fra

Age < < < < < < < < < < < < < <

BMI < < < <

BMD < < <

Gait speed < < <

Test 5 < < <

Earl Frac <

Par Frac < < < < < < < < < < < < < <

Chron disease < < < < <

Vit D <

Gluco < <

Psycho < <

Alcohol < < < < < < <

Tobacco < < < < < < <

Falls < < <

Fracture
Table 2. Pairwise ordering constraints obtained by the expert elicition process. For X
in Row, and Y in Column, X < Y indicates that X cannot be a descendant of Y .

25% of the graphs were included in the final causal graph. As may be seen, the
DAG provides a coherent picture of the population under study. It reflects the
investigator’s subjective and qualitative knowledge of causal influences in the do-
main. The substantive assumptions embodied in this causal DAG are negative
causal assertions which are conveyed through the links missing from the graph.
For example, the missing arrow between Chronicle disease and Fracture signifies
the investigator’s understanding that Chronicle disease does not affect the risk
of hip fracture directly; its entire influence on hip fracture is mediated by BMI,
Test 5 and Psycho. Alcohol intake and tobacco smoking are associated but none
of them is associated with hip fracture. Likewise, parental history of hip fracture
is a singleton node in the graph. These three variables were thus discarded from
our analysis. We may also deduce, using the d-separation criterion, that BMD
and Chron Desease are independant given Age and BMI; that BMI and Gait
Speed are independent given Chron Desease. The graph reveals that gait speed
is consequence of age, consumption of psychotropics and Test 5 and that the
number of falls 6 months before inclusion is a direct consequence of gait speed.
Age and BMI were found to influence directly the BMD and Psychotropic drug
use were found to influence directly the gait speed and the Test 5 test results,
which in turn influenced history of previous falls (Falls). It is noticeable that
neither history of hip fracture nor previous fall (Falls) were directly associated
with hip fracture in this model, despite the fact that the hypothesis of Falls
being a cause of fracture but not the opposite was allowed in the expert con-
straints. We also observe Vit D is descendant of BMD, BMI and Earl Frac. This
is somewhat surprising and calls for an explanation. The reason is that vitamin
D was prescribed before inclusion in the study in view of the BMD and BMI
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levels of the women, as well as her fracture history. This is clearly a limitation
intrinsic to our static analysis (incoproration of time is left to future work).

Finally, the only two variables that were directly linked to fracture were
gait speed and bone mineral density. Like embedded feature selection methods,
BN learning techniques have an important computational advantage as they
combine model construction with feature selection. Rephrased in the language
of probability, {Gait Speed, BMD} is the Markov boundary of Hip Fracture.
In other words, these two variables shield off hip fracture from the influence of
the remaining ones. The area under the ROC curve (AUC) of our causal BN,
estimated by 10-fold cross-validation the, was 0.71 [0.68− 0.73], not statistically
different from that obtained with the logistic regression. The is interesting insofar
as {BMD, Gait Speed} are the only two predictive variables effectively used for
predicting the occurrence of hip fracture by our model.

Fig. 1. The consensus causal DAG obtained by bootstrapped H2PC using the pairwise
constraints along with the edge confidence values.
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Causal BN Logistic regression

Variable COR (95%CI) OR (95%CI) p-value

BMD (T-score)

≥ −2.5std Reference Reference
≤ −2.5std 4.15 (3.65-4.72) 3.54 (2.29-5.46) < 0.05

Gait speed (m.s−1)

< 0.6 Reference Reference
0.6 ≤ 0.85 0.55 (0.48-0.63) 0.65 (0.48-0.87) < 0.05
0.85 ≤ 1 0.29 (0.25-0.33) 0.36 (0.25-0.52) < 0.05

≥ 1 0.17 (0.14-0.19) 0.21 (0.13-0.33) < 0.05

Psychotropics

No Reference Reference
Yes 1.56 (1.38-1.77) 1.32 (1.02-1.69) < 0.05

BMI

15-25 Reference Reference
< 15 1.85 (1.55-2.22) 1.67 (0.98-2.87) 0.06
> 25 0.68 (0.6-0.78) 0.64 (0.42-0.98) < 0.05

Table 3. Causal Odds ratios learned from the causal BN by adjusting for confounders
compared to statistical Odds ratios obtained from the standard logistic regression.

3.2 Exposure effect estimation and confounder selection

In this study, we consider the causal odds ratios (abbreviated COR(X,Y )).
When X and Y are not confounded, the causal effect COR(X,Y ) is of course
the standard odd ratio OR(X,Y ). However, we may observe from our causal
DAG that other factors associated with both Psycho and Hip Fracture may
confound the targeted causal effect. We have to unblock the extraneous flow of
influence between Psycho and Hip Fracture, which appear under the rubric of
spurious correlation. It is called spurious because it is not part of what we seek to
estimate - the causal effect of Psycho and Hip Fracture in the target population.
Patients who receive different treatments (e.g. sedative or anxiolytics) tend to
differ in health characteristics (i.e. Chron Desease), so biasing naive estimates
of treatment effects. The common method of reducing confounding bias in the
analysis of causal effects is to adjust for a set of confounders. Choosing which
variables to use for adjustment in studies with many measured covariates is an
important step for ensuring the validity of effect estimates. Given the causal
DAG, a sufficient set for estimating the causal effect of X on Y is any set of
non-descendants of X that d-separate X from Y after removing all arrows em-
anating from X (see [21] pp. 80). This criterion, called ”back-door”, provides a
mathematical definition of ”confounding” and helps researchers identify accessi-
ble sets of variables worthy of measurement. If the a set of variables Z satisfies
the back-door criterion relative to (X,Y ), than the causal effect of X on Y ,
denoted as P (y|do(x)), is given by the formula
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P (y|do(x)) =
∑
z

P (y|x, z)P (z)

So, we used our causal graph to identify confounders when calculating certain
exposures on the outcome hip-fracture. In table 4, different valid sets of con-
founders are listed for each cause-effect relation under interest. The selection of
counfounders is predicated, of course, on Fig. 1 being the correct data-generating
model. We used the set with the smaller sampling variability or the outcome-
related set as advocated by Judea Pearl [22] because modeling the outcome
mechanism is a much safer strategy for estimating causal effects in observational
studies. For instance, adjusting for variables Gait speed is therefore more ap-
propriate than {Chron Disease, Age} for evaluating the effect of BMD and BMI
on hip fracture. Likewise, Gait Speed satisfies the back door criterion relative
to the causal effects of BMD and BMI on hip fracture. So causal BNs offer a
simple guideline principle to identify accessible sets of confounding variables for
each causal relation.

The causal Odds ratios learned from the causal BN by adjusting for con-
founders are reported in Table 3. As may be observed, current use of sedative
or anxiolytics was associated with an increase of hip fractures risk (COR = 1.56
[1.38-1.77]) after adjusting for Chron Disease. Having a BMI higher than 25 ap-
pears to have a protective effect (COR = 0.68 [0.60-0.78]), contrasting with the
trend observed for women having a BMI below 15 (COR = 1.85 [1.55-2.22]).
Concerning gait speed, we observed that the higher the measured gait speed,
the less the patient was prone to sustain a fracture, suggesting an important
effect of gait over the fracture risk. As expected, a low bone mass density was
positively associated with sustaining a hip fracture in the next four years (COR
= 4.15 [3.65-4.72]).

Not discussed here, we also used a logistic regression model with a conser-
vative backward selection approach (retained threshold of p < 0.25 for prior in-
clusion, and p > 0.10 for exclusion of variables in the model, which are common
thresholds in epidemiology). The logistic regression analysis found a statistically
significant association of fracture with several variables, including sedative or
anxiolytics use, Age, BMD, BMI, gait speed, personal history of fracture and
history of more than 2 falls in the previous semester. The statistical Odds ra-
tios obtained from the standard logistic regression were adjusted upon these
variables. In other words, we did not use the causal graph for identifying the
variables that must be controlled to obtain unconfounded effect estimates. We
simply used the prevailing practice in epidemiology. The resulting Odds ratios
are also shown in Table 3 for comparison. As may be observed, the ORs obtained
by logistic regression are in good agreement with those obtained using the causal
DAG. The CORs values are somewhat larger for low BMD values and large BMI.

3.3 Discussion and related work

Our findings are in nice agreement with previous studies as we shall discuss
now. A recent study involving causal effect estimation of bazedoxifene acetate on
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Exposure Admissible sets of confounders

BMD {Chron Disease, Age} ; {Gait Speed}; {Age, BMI}
Gait speed {Chron Disease, Age} ; { BMD }; {Age, BMI}
Psycho {Chron Disease}
BMI {Chron Disease}

Table 4. Variables confounding the effect of BMD, gait speed, psychotropic drugs and
BMI on fracture.

fracture by use of structural equation modeling found age and body mass index to
be causally linked to BMD that, in turn, had an effect on fractures [3]. Our results
suggest that gait-speed is causally associated with fracture and mediate the
effect of other variables, including age. These results are supported by another
study performed in a sample of 469 older adults in 1996 that found that an
improvement in usual gait speed predicted a better survival over 36 months [13].
These observations confirm that an optimal prevention of hip fracture has to
be thought as a multi-component intervention, at least involving preservation of
structural properties of bone and improvement of gait in the meantime. Another
recent study involving the synthesis of the results of 160 studies available from
the literature in a single BN and the evaluation of its predictive performances
on a sample of 288 institutionalized elderly patients found that psychotropic
drugs was also a predictive factor for fall [6], which is in turn strongly and
causally associated to hip-fracture. Furthermore, the initial analysis of EPIDOS
data using Cox models and accounting for time found also a great influence
of gait speed and BMD in the occurrence of hip fracture [11] and some other
study involving more traditional analysis accounting for time showed similar
results (see [9] and references therein). Incorporation of time, competitive risk
and hierarchical structures embedded in the data in BN modeling is actually
an important field of research in bioinformatics and suggest avenues for future
research. This is left to future work.

4 Conclusion

This paper focused on identification of the relationships between the occurrence
of hip fracture and its potential risk factors using BNs, with the emphasis on
integrating medical domain knowledge and statistical data analysis and testing
their usefulness in causal representation of the hip fracture epidemiology. From a
epidemiological perspective, the present study confirms, among other interesting
findings, that use of sedatives or anxiolytics, bone mineral density, body mass
index are direct or indirect causal risk factors for hip fracture. It was reassuring
that this BN analysis uncovered previously established relationships between the
above risk factors and hip fracture. Our findings tend to confirm that intervention
programs targeting gait improvement and limiting the decrease in bone mineral
density should be relevant.
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This study had several limitations. First, the participants were volunteers
who lived independently at home, and are probably healthier than average for
their age, which can limit the generalization of our results to all older women.
Our results may not be applicable to less mobile and less healthy women, such
as nursing-home residents. However, mobile women who live independently at
home are more likely to participate in preventive programs than their less healthy
peers. The fact that women were preferentially selected to the cohort, depending
on the values of some variables in the our model, is likely to introduce spurious
associations, i.e. selection bias, not to mention the problem entailed by the un-
measured confounders that may, under certain circumstances, amplifly the bias
[22]. So, our conclusions need to be regarded with caution.

Second, our model is quite simplistic, of course, as it is based on certain
assumptions that all experts might not agree to - for instance, that there is no
direct link between past use of corticoids and fracture. The model would need to
be refined then, and we might end up with a graph containing twenty variables
or more. Nonetheless, there is no need to worry if another experts tells us we
should take this or that factor into account. On the contrary, the graph welcomes
such new ideas, because it is so easy to add new observed or unobserved factors
into the model. The rules of do-calculus permit a clinician to merely glance at
the graph and decide if he can compute the effect of one variable on another.

Overall, the advantage of the BN method is not that it will identify the ”true
causes”, but rather that it will perform initial data exploration to unearth new
knowledge in a semi-automated and rapid fashion as well as give hints about
causal mechanism implied in the studied phenomenon.
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