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Abstract. The breakthrough of microarray technology is a vital research in-
strument to measure the quantitative and highly parallel of gene expression.  In 
microarray studies, it is common that the data set typically consists of tens of 
thousands of genes (variables) from just dozens of samples due to various con-
straints including the high cost of producing microarray chips.  As a result, the 
combined sample covariance matrix in Hotelling’s T2 statistic is not invertible.  
Therefore the distribution of the resulting statistic is either unknown or insuffi-
cient. In this study, shrinkage covariance matrix is proposed to improve 
Hotelling’s T2 statistic for identification of differentially expressed gene sets.  
The use of shrinkage covariance matrix overcomes the non-singularity problem 
in the estimation of sample covariance matrix when the number of variables is 
larger than the number of samples.  The performance of the proposed method 
was measured using simulation study.  The result implies that this approach 
outperforms existing techniques in many conditions tested.   
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1 Introduction 

Microarray technology is one of the significant achievements in biotechnology histo-
ry, developed during the second half of the 1990s. [1]   Many researchers admit the 
breakthrough of this technology as a vital research instrument.  The microarray tech-
nology can precisely perform simultaneous analysis of thousands of genes in a mas-
sively parallel manner to researchers in one experiment, hence it provides valuable 
knowledge on gene interaction and function [2, 3, 4, 5].  The challenge of understand-
ing the microarray gene expression leads to the development of new methods in the 
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field of statistics for the analysis of gene expression data such as identification of 
differential gene expression between distinct experimental conditions [6, 7].  The 
purpose of differential gene expression studies is discovering those genes that produce 
different expression levels (the rate at which a gene produces the corresponding pro-
tein) between samples [4].   

  In this research, the Hotelling’s T
2 statistic is combined with the shrinkage ap-

proach as an estimation alternative to estimate the covariance matrix to perform gene 
set analysis.  Gene set analysis [6, 7, 8, 9] directly finds the group of significant func-
tionally related genes in the list of genes defined from GO or some pathway data-
bases. Moreover, prior analysis and results in this area could be matched up and stud-
ied as a result of the achievement in gene set analysis method. The main point of gene 
set analysis is to show that even small expression changes in individual gene of a 
functionally related genes group can show a significant pattern [8, 9].  

  For this reason, a method is defined in this study to detect the differential gene sets 
that produces different expression levels between samples.  The method is introduced 
in Section 3 after a description on the properties of Hotelling’s T2

 statistic in Section 
2.  The performance of the proposed method is evaluated in Section 4 through simula-
tion compared with existing methods.  

2 Hotelling’s T
2 
Statistic 

The Hotelling's T2 is a natural generalization of t-statistic.  The information for gene 
interactions is utilized to allow for finding genes whose differential expressions which 
are not detectable by univariate methods [10, 11] and widely used in the identification 
of differential gene expression [11, 12, 13].  Let n represent the number of 
slides/samples, and p is the total number of genes in a gene set.  Let kiX  be the ex-
pression level for gene i (where i=1, . . . , p) of sample k (where k=1, . . . , n ) from 
the treatment group and 

kjX be the expression level for gene j (where j=1, . . . , p) of 
sample k (where k=1, . . . , n)  from the control group. The expression level vectors 
for samples k from the treatment and control groups can be expressed as iX = ( 1kX , . 

. . , kiX )T and jX = (
1kX , . . . , 

kjX )T, respectively.  The unknown population covari-

ance matrix,  , is typically estimated by the sample covariance matrix, Sij , for many 
situations. The sample covariance matrix, Sij is defined as:  
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where kiX  and kjX  is the k-th observation of the variable iX  and jX  respectively.  

The mean, iX  is defined as: 
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Suppose we have n1 and n2 observations from two groups, such that nnn  21 . Then, 
consider testing the null hypothesis that the two groups have equal multivariate means 
versus the appropriate alternative hypothesis,  210 :  H

 
against 211 :  H  .  The 

test statistic based on Hotelling’s T2 is defined as: 

    jiji XXSXX
n

nn
T 
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 For two subsamples, the pooled sample covariance matrix, S, is calculated as: 
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      The sub-sample covariance matrix, )1(S  and )2(S  are defined as in equation (1).  
The maximum likelihood estimator is employed to obtain the sample covariance ma-
trix.  This estimator is unbiased when the number of samples is larger than the num-
ber of variables.  As a result, the sample covariance matrix in Hotelling's T2 poses the 
curse of high dimensionality data.  It is common for multivariate test statistics to in-
volve inversion of covariance matrix, including the Hotelling’s T2 statistic.  When p is 
near to n, it is not invertible for p to exceed n. Thus, it will normally cause problem in 
hypothesis making as the test statistic become unstable.  

3 Proposed Shrinkage Covariance Matrix: ShrinkA 

Another alternative to estimate covariance matrix is shrinkage estimation.  This tech-
nique improves an estimator by reducing the effect of sampling variation and general-
ly this involves converting an unbiased to an improved biased estimator. The shrink-
age estimation is introduced by James and Stein [14] and called as "Stein phenome-
non".  The new estimator solves high dimensional data problem by minimizing the 
total mean squared error.  This estimator outperforms the maximum likelihood esti-
mator especially when the number of variables is greater than three.  In general, a 
biased estimator is added toward unbiased estimator in the form: 

   xxf  )(1   (5) 

which the amount of shrinkage )(xf  need to be specified [15].  

3.1  ShrinkA Algorithm 

The proposed method provides an alternative to estimate covariance matrix by using 
shrinkage method based on the definition of [5] and [16].  The approach is adapted to 
Hotelling's T2 and is extended to gene set analysis in microarray study.  In this paper, 
this method would be termed as ShrinkA.  Generally, the algorithm for the proposed 
method is outlined below: 
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Step 1: Prepare the data sets with the pre-processing procedure using suitable 
normalization and transformation method (if needed).  

 
Step 2:  Compute the shrinkage target.  

 
Step 3:  Find the optimal shrinkage intensity using related definition. 

 

Step 4:  Replace the sample covariance matrix in Hotelling’s T
2 using the 

results in Step 2 and Step 3. 
 

Step 5: Calculate Hotelling’s T2 for each of all the gene sets that are meas-
ured in data sets. 

 
Step 6: Permute samples for each gene set and declare as significant gene 
sets according to permutation testing. 

 
Basically, the shrinkage covariance matrix is a linear combination of sample covari-

ance matrix with shrinkage target as a biased estimator and shrinkage intensity   as 
a weight that the shrinkage target receives [16]. The proportion of each component in 
shrinkage estimation is determined by:  
 

   ijijAshrink STS   1       (6)  

where shrinkage target, AijT  and shrinkage intensity,  is defined as: 

 
















 1,min,0max
n

A  (7) 

The shrinkage target for ShrinkA, 
ijAT [5] is as follows:     
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where iiS is sample variance of iX .  The shrinkage target and shrinkage intensity of 
ShrinkA is applied to equations (6) - (8) and this method ensures that the covariance 
matrix is always a positive definite and well-defined.  The method of [13] differs from 
ShrinkA with respect to the shrinkage target by using average sample correlation as 
non-diagonal in shrinkage covariance matrix 

Under the assumption that n is fixed while p tends to infinity, [10] proved that A  
is as follows: 

 
A

A



    (9) 

where  
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  is the sum of asymptotic variances of the entries of the sample covariance matrix 
scaled by n . 
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A  is the measurement of the misspecification of the (population) shrinkage target 
for ShrinkA.  Because we do not know the true of A , hence we need to estimate the 
values of   and A  (the details can be found in [16]) in order to produce consistent 
estimator of A : 

 
A

A





ˆ
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The estimator is proven by [16] to be reliable to estimate the real A .  Hence, the 
consistent estimator for : 
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Next, ij  are consistently estimated by ijS  respectively therefore the consistent es-

timator for A : 
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When we put everything together, Â  becomes equation (13) and finally, consistent 
estimator of  in equation (8) for ShrinkA is defined as:
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The performance of our approach is evaluated by comparing the results with those 
obtained from two other methods: by using principal component analysis which is 
proposed by Kong’s principal component analysis (KPCA) [11] to solve the high 
dimensionality problem; and (2) the Regularized Covariance Matrix Approach 
(RCMAT), introduced by Yates and Reimers [15].  The RCMAT is quite similar with 
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ShrinkA but the covariance matrix in Hotelling’s T2 is regularized by using the fol-
lowing identity matrix to replace the shrinkage target in equation (8): 

 









jiif

jiif
Tij 0

1
  (17) 

  Since the shrinkage target is penalized to zero and the diagonal to one, information 
from the covariance matrix would not be fully utilized [15].  The shrinkage intensity, 
α in equation (8) is reduced from 1 towards 0 by increments of 0.01 and the optimum 
shrinkage intensity will be achieved when the smallest positive eigenvalue is bigger 
than the reciprocal of the number of genes in the gene set.  The optimum intensity will 
ensure the covariance matrix is a positive definite and invertible.  RCMAT and KPCA 
comparable with our approach since they were also using Hotelling’s T

2
 for testing 

differentially expressed gene sets.   

3.2 A Simulation Study 

Multivariate normal distribution data sets were generated using mvrnorm function in 
the MASS package. We assumed the generated data as correlation matrix by using 
rcorrmatrix function in the clusterGeneration package in R Programming Language.  
In a series of extensive computer simulations, the proposed shrinkage covariance 
matrix framework was investigated in terms of power of performance.  The proposed 
method was written by using the freely available language R. This language can be 
found at http://cran.r-project.org/.  We generated similar simulated data by following 
Yates and Reimers [15] to make comparisons with both methods. 
    The separation between the two groups measures the difference in the means of the 
multivariate normal distributions where   is the vector of gene means and   is the 
covariance matrix of the gene expression on the following density function: 

  
 

    2/
2/12/,.......,1

1

2

1 






 


 xx

pp exxfx  (18) 

The gene set variances were set at one and assumed that the number of samples 
for both groups is equal.  The simulated data sets were set to explore the performance 
of proposed method for following hypothesis/conditions: 1) There is difference (sepa-
ration) exists between groups (alternative hypothesis) and; 2) Paired comparison 
(proposed method p-value/ compared method p-value).  Each condition was permu-
tated 10000 times [18] and 100 data sets were generated.  The simulated data sets 
were constructed by changing the four parameters: 1) Number of variables; 2) Num-
ber of sample sizes; 3) Axis of variation (a major axis of variation (first eigenvector, 
e1) or a minor axis of variation (p/3 eigenvector, ep/3)) and; 4) Amount of separation 
between groups (dei).   
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4 Results and Discussion 

We investigated the power of performance between methods when high dimensionali-
ty problem occurred. This problem generated the simulated data sets with number of 
variables smaller than number of samples (n<p) and number of variables larger than 
number of samples (n>p) cases.  As expected, we observed that the mean of p-value 
increased as number of variables increased with fixed number of samples, but the 
ShrinkA was easily detected (with lower mean of p-value) the true difference between 
two groups rather than RCMAT and KCPA at most of the conditions (Table1).   

  For instance, when number of variables changes from 10 to 30 (with fixed number 
of samples), the mean of p-value shifted from 0.3261 to 0.3373 for ShrinkA along a 
major axis of variation and amount of separation is 0.25.  For same conditions, mean 
of p-value shifted from 0.3457 to 0.4213 for RCMAT and from 0.4053 to 0.4430 for 
KCPA.  As the amount of separation increased to 0.5 and 1.0 along a major axis of 
variation, the mean of p-value is also found to be lower than other methods.  In addi-
tion, all results of the cumulative distribution function of each methods of nominal p-
values is illustrated in Figure 1 (10 variables) and Figure 2 (30 variables).  

The relative power between the two methods is shown in Figure 3 for 10 variables 
and Figure 4 for 30 variables.  These figures compare the order of magnitude of 
ShrinkA based the reduction degree in the ShrinkA p-values relative to the other two 
methods.  Figure 3(a) shows that relative to RCMAT, 10 per cent of the ShrinkA p-
values were at least reduced 3.16 times smaller than the corresponding RCMAT p-
value for a separation of one along minor axis and a separation of 0.25 along major 
axis.  Relative to KCPA, 20 per cent of the ShrinkA p-values being smaller 3.16 times 
than the corresponding KPCA p-value for all separations along both axes except sepa-
rations of 0.25 along minor axis and 0.5 along major axis as shown in Figure 3(b).  

Similar improvements were also observed for other combinations of separation 
and axis for 30 variables (Figure 4(a) and Figure 4(b)).  For all separations, about 20 
per cent probability of ShrinkA p-values being smaller than 3.16 times than the corre-
sponding RCMAT p-values is shown in Figure 4(a).  The 20 per cent of ShrinkA p-
values is about 10 times smaller than the corresponding KPCA p-value for all separa-
tions except separation of one and 0.25 along a major axis (Figure 4(b)). 
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Table 1. The mean of the nominal p-values of ShrinkA, RCMAT and KCPA. 
  

n, p Axis of variation, 

Amount of  

separation 

ShrinkA RCMAT KCPA 

10,20 Major, 0.25 0.3261 0.3457 0.4053 
10,20 Minor, 0.25 0.4142 0.4175 0.4764 
10,20 Major, 0.5 0.1084 0.1223 0.2395 
10,20 Minor, 0.5 0.4153 0.2877 0.3459 
10,20 Major,1.0 0.0027 0.0014 0.0192 
10,20 Minor, 1.0 0.0055 0.0399 0.0956 
30,20 Major, 0.25 0.3373 0.4213 0.4430 
30,20 Minor, 0.25 0.4493 0.4735 0.4669 
30,20 Major, 0.5 0.1324 0.2092 0.3912 
30,20 Minor, 0.5 0.3748 0.3875 0.4395 
30,20 Major, 1.0 0.0004 0.0050 0.1560 
30,20 Minor, 1.0 0.1594 0.1532 0.3336 
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