
Models and Algorithms for Image-Based Analysis
of Microstructures

Dipl.-Inform. Oliver Wirjadi

Vom Fachbereich Informatik der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades Doktor der Naturwissenschaften

(Dr. rer. nat.) genehmigte Dissertation.

Dekan: Prof. Dr. Karsten Berns

Vorsitzender der Promotionskommission: Prof. Dr.-Ing. Jens Schmitt
Berichterstatter: Prof. Dr. Thomas Breuel

Prof. Dr.-Ing. Andreas König

Tag der wissenschaftlichen Aussprache: 13.02.2009

(D 386)

Abstract

Modern digital imaging technologies, such as digital microscopy or micro-computed tomography,
deliver such large amounts of 2D and 3D-image data that manual processing becomes infeasible.
This leads to a need for robust, flexible and automatic image analysis tools in areas such as histol-
ogy or materials science, where microstructures are being investigated (e.g. cells, fiber systems).
General-purpose image processing methods can be used to analyze such microstructures. These
methods usually rely on segmentation, i.e., a separation of areas of interest in digital images. As
image segmentation algorithms rarely adapt well to changes in the imaging system or to different
analysis problems, there is a demand for solutions that can easily be modified to analyze different
microstructures, and that are more accurate than existing ones. To address these challenges, this
thesis contributes a novel statistical model for objects in images and novel algorithms for the
image-based analysis of microstructures.

The first contribution is a novel statistical model for the locations of objects (e.g. tumor cells) in
images. This model is fully trainable and can therefore be easily adapted to many different image
analysis tasks, which is demonstrated by examples from histology and materials science. Using
algorithms for fitting this statistical model to images results in a method for locating multiple
objects in images that is more accurate and more robust to noise and background clutter than
standard methods. On simulated data at high noise levels (peak signal-to-noise ratio below 10
dB), this method achieves detection rates up to 10% above those of a watershed-based alternative
algorithm.

While objects like tumor cells can be described well by their coordinates in the plane, the
analysis of fiber systems in composite materials, for instance, requires a fully three dimensional
treatment. Therefore, the second contribution of this thesis is a novel algorithm to determine
the local fiber orientation in micro-tomographic reconstructions of fiber-reinforced polymers and
other fibrous materials. Using simulated data, it will be demonstrated that the local orientations
obtained from this novel method are more robust to noise and fiber overlap than those computed
using an established alternative gradient-based algorithm, both in 2D and 3D. The property of
robustness to noise of the proposed algorithm can be explained by the fact that a low-pass filter is
used to detect local orientations. But even in the absence of noise, depending on fiber curvature
and density, the average local 3D-orientation estimate can be about 9◦ more accurate compared
to that alternative gradient-based method.

Implementations of that novel orientation estimation method require repeated image filtering
using anisotropic Gaussian convolution filters. These filter operations, which other authors have
used for adaptive image smoothing, are computationally expensive when using standard imple-
mentations. Therefore, the third contribution of this thesis is a novel optimal non-orthogonal
separation of the anisotropic Gaussian convolution kernel. This result generalizes a previous one
reported elsewhere, and allows for efficient implementations of the corresponding convolution oper-
ation in any dimension. In 2D and 3D, these implementations achieve an average performance gain
by factors of 3.8 and 3.5, respectively, compared to a fast Fourier transform-based implementation.

The contributions made by this thesis represent improvements over state-of-the-art methods,
especially in the 2D-analysis of cells in histological resections, and in the 2D and 3D-analysis of
fibrous materials.

Contents

1 Introduction 1

2 Object Localization 5
2.1 Introduction . 5
2.2 The proposed model . 8
2.3 Classifiers used as image models . 11
2.4 Point processes as object models . 16
2.5 Model-based multiple object localization . 24
2.6 Results . 28
2.7 Applications . 36
2.8 Discussion . 43

3 Fiber Orientation 45
3.1 Introduction . 45
3.2 Gaussian orientation space . 48
3.3 Sampling on the hemisphere . 50
3.4 Computation and interpretation of the orientation tensor . 52
3.5 Fiber models for evaluating the proposed method . 54
3.6 Results . 59
3.7 Applications . 64
3.8 Discussion . 68

4 Separation of Anisotropic Gaussian Filters 71
4.1 Introduction . 71
4.2 Separating the Gaussian convolution integral . 74
4.3 An optimal symmetric factorization of Σ . 76
4.4 Separable anisotropic Gaussian filters in image processing . 78
4.5 Discrete implementations of the separated filter . 82
4.6 Results . 86
4.7 Applications . 91
4.8 Discussion . 94

5 Discussion 97

A Training of Convolutional Neural Networks 99
A.1 Backpropagation training . 99
A.2 Implementation . 101

B Source Code of Control Methods 103
B.1 Isodata Thresholding . 103
B.2 Watershed Segmentation . 104

iii

iv CONTENTS

C Points on the Upper Hemisphere 107
C.1 Modifications for the hemisphere . 108
C.2 Results . 109

D Factorization and Parameterization of Σ 113
D.1 Explicit symmetric factorization of Cholesky type in R3 . 113
D.2 Parameterization of V DV t in R3 using polar coordinates . 114

E Curriculum Vitae 117

List of Abbreviations

AUC Area under the curve . 33
CRF Conditional random field . 6
DT-MRI Diffusion tensor magnetic resonance imaging 72
FFT Fast Fourier transformation . 73
FIR Finite impulse response . 84
GRP Glass fiber-reinforced polymer . 67
H&E Hematoxylin and eosin . 38
HMM Hidden Markov model . 6
IIR Infinite impulse response . 85
kNN k-nearest neighbor classifier . 39
µCT Micro-computed tomography . 1
LI Labeling index . 40
MAP Maximum a-posteriori . 9
MCMC Markov chain Monte Carlo . 20
MLP Multi-layer perceptron . 11
MRI Magnetic resonance imaging . 71
MRF Markov random field . 5
MSE Mean square error . 29
NN Nearest neighbor . 86
PSNR Peak signal-to-noise ratio . 28
ROC Receiver operating characteristic . 30
RJMCMC Reversible jump Markov chain Monte Carlo . 25
RSA Random sequential adsorption . 57
SAM Scanning acoustic microscopy . 65
SVM Support vector machine . 14

v

vi CONTENTS

Chapter 1

Introduction

With the availability of digital imaging technologies and the large amounts of data they produce
comes the need for automated image analysis methods. Two examples are the assessment of micro-
scopic images in histology [174], and the design and development of new materials in engineering,
where the availability of micro-computed tomography (µCT) enables the 3D-characterization of
the microstructure of materials [12]. A pathologist, for instance, will only be able to label exam-
ples of a few species of cells observed in microscopic images. Therefore, these analysis tasks share
the property that only a limited amount of user interaction is possible. Furthermore, they require
algorithms for the automatic analysis of large amounts of data.

Standard image processing algorithms suitable for analyzing microstructures are available in
various software package, e.g. ImageJ [138]. These usually contain implementations of a variety
of preprocessing, segmentation and analysis methods, which need to be recombined for every
analysis task anew, requiring both time and expert knowledge. Work on automating this process
exists, e.g. for the classification of textures[132], and a software that integrates such procedures
is under development [130]. Furthermore, a number of specialized algorithms for the analysis of
microstructures have been proposed, e.g. for automatic grading of tumors [1, 16, 30, 73, 84, 98, 114,
141] in histology or for the characterization of fiber-reinforced materials [78, 81, 102, 119, 139, 167]
in materials engineering. Most of these rely on segmentation of the microstructures [1, 16, 30, 73,
84, 98, 114, 126, 172], which can be difficult, especially when operating at the resolution limits of
an imaging system.

Therefore, there is a need for the development of novel methods which improve over existing
ones in these aspects. That is, methods need to be found that are trainable, i.e., which are capable
to automatically adjust to new image data, and which avoid image segmentation. While adhering
to these constraints, the three topics covered in this thesis contribute to different aspects of the
image analysis of microstructures, especially in histology and materials science.

Statistical multiple object localization In order to count or to describe the spatial arrange-
ment of tumor cells, metal particles or granulates in images, it is not necessary to perform a
segmentation of these objects; rather, it would be sufficient to know their coordinates. This is
the problem addressed by the first contribution of this thesis. A trainable statistical model of the

1

2

locations of such collections of objects in images is developed. This model can be used to describe
the spatial arrangement of these particles. To apply this model to the localization of objects in
images, suitable algorithms will be introduced and evaluated. The localization results obtained
by this method are useful quantities e.g. in the analysis of meningioma tumor cells that will be
presented in Ch. 2, where the labeling index can be computed from them. The labeling index,
which indicates the fraction of cells in mitotic phase, is required for tumor grading according to
the standards set by the World Health Organization [113].

The term “object localization” does not have a precisely defined meaning within the computer
vision literature; most commonly, it has been used in conjunction with “object detection”, i.e.,
deciding whether or not an object was present in an image [95], but other meanings exist, e.g. esti-
mating the pose of known object shapes in images [166]. In the context of object detection, object
localization implies that not only a decision on object presence in an image is made, but that in
case of a positive detection, also the most likely position of the searched object is computed, see
e.g. [95]. In this thesis, rather than detecting the presence or absence of single objects in images,
the problem of determining the positions of many similar objects in one image will be considered,
e.g., fibers in planar cuts through fiber-reinforced materials or cells in histological resections. To
make this differentiation from other meanings of localization obvious, the term “multiple object
localization” shall be used wherever this is of importance.

The approach taken in this thesis uses methods from machine learning [21, 40] and interaction
point process theory [106, 121] to construct a fully trainable statistical model. This construction
makes the proposed method adaptable, which will be shown by applications to image data of
different microstructures. Previous methods addressing this problem were frequently based on
image segmentation algorithms [1, 16, 126, 172], which usually do not adapt well to changing
imaging conditions such as lighting or noise.

Like Markov random fields [59], interaction point processes are suitable for modeling the de-
pendencies within collections of spatial random events. But they do not impose a fixed graph
structure. In this sense, point process models are well suited for handling randomly positioned
objects in images [36]. This thesis demonstrates how to combine these models with trainable
classifiers like multi-layer perceptrons [20] and support vector machines [24], making point process
models applicable to a wide range of computer vision problems for the first time. The original
idea to apply point process methods in computer vision is due to Baddeley and van Lieshout [8].
Their and all following publications in that area relied on parametric models for the images’ gray
value statistics being available [3, 4, 39, 72, 91, 128, 154]. In this sense, the novel method that
will be developed in Ch. 2 extends the work of Baddeley and van Lieshout by reformulating it to
make it fully trainable, thereby making the method applicable to a larger variety of image data.

Applying this statistical model to the task of computing the locations of multiple objects in
images enables automation of applications in materials science and neuropathology. In contrast
to most segmentation-based image analysis systems, such trainable algorithms have the built-in
capability to adapt to different domains. Furthermore, it will be shown to be more accurate than
an established image processing tool [138] on simulated and real world data.

CHAPTER 1. INTRODUCTION 3

Fiber orientations from orientation space The second of the three topics covered in this
thesis is an automatic method for computing the fiber orientation distribution from microscopic or
µCT-images of fibrous materials such as fiber-reinforced polymers or paper. This distribution, or
moments thereof, are required for computing mechanical properties of such materials, see e.g. [25,
66, 83]. The algorithm that will be introduced in Ch. 3 uses anisotropic filters to construct
the so-called orientation space representation directly from 2D and 3D-grayscale images. In an
analogy to scale space, orientation space expands images into higher dimensional representations
by applying banks of anisotropic filters. They contain information about the local orientations of
structures in images, and have found some applications in image segmentation [62]. The method
will be shown to be more accurate than an existing gradient-based method for computing fiber
orientations [17, 51, 112, 90, 134, 144], and to be more robust to factors such as noise and fiber
overlap.

Most existing systems for assessing the fiber distribution in such materials can be character-
ized as either stereological [32, 78, 81, 80, 102, 139] or segmentation-based [6, 38, 176] methods.
Stereological approaches draw conclusions on the 3D-microstructure from measurements in 2D-
sections [7]. Preparation of such sections often destroys the specimen, or, if tomographic data is
available, these methods ignore the three dimensional information contained in the data. Fiber
orientations obtained by image segmentation, which uses the three dimensional image structure,
is often difficult due to the quality of the available image data. E.g., a current µCT scanner can
acquire images with pixel side lengths of about 1 µm, while typical glass fiber diameters in rein-
forced polymers are in the range of 10 to 20 µm. Carbon fibers are even thinner. When analyzing
microstructures at these scales, an unambiguous separation of the structures of interest will not
be possible, regardless of which segmentation method is used.

This difficult and error-prone segmentation step can be avoided by using filters to compute
local orientation, an idea that goes back to the work of Granlund and Knutsson [64, 89]. The
method proposed in this thesis is similar to theirs, but uses different filter kernels and sampling
methods. This allows for the use of a novel efficient implementation, also introduced with this
thesis, and more finely resolved orientation measurements. In this method, response to anisotropic
filters is used as a measure for the local orientation structure in images. By computing orientation
descriptors used in spherical statistics [48] and rheology [163], the results of the proposed method
can be used both as a descriptive tool for analyzing the orientation distribution in a specimen and
as input for subsequent simulation studies on fibrous materials.

Separation of anisotropic Gaussian filters To reduce the computational burden for com-
puting the local orientations in that new method for assessing 2D and 3D-fiber orientation distri-
butions, the third contribution of this thesis is a novel and fast algorithm for anisotropic Gaussian
image filtering. By using an optimal factorization of the Gaussian filter kernel, this filter operation
can be implemented very efficiently, outperforming state-of-the-art implementations. The basic
principle behind the approach taken in this thesis is that of separable filters, where a sequence of
lower dimensional filter operations is used to compute the filter. Not only is this filter operation
required for performing the fiber orientation analysis outlined above, but it can also be used for
adaptive image smoothing [33, 87, 101, 149, 175].

4

Fast linear filter implementations by separated filter kernels have long been known and are
widely used. The existence of the separation introduced in Ch. 4 has not been known until the
appearance of Geusebroek, Smeulders and van de Weijer’s papers in 2002 and 2003 [60, 61]. There,
a non-orthogonal separation of the 2D-anisotropic Gaussian kernel has been derived. By setting
criteria for when such a non-orthogonal separation is useful, and by solving the d-dimensional
separation problem, an optimal separation is derived. Therefore, the material in Ch. 4 both
explains and generalizes the results of Geusebroek and coworkers.

By making use of this non-orthogonal separation of the Gaussian kernel, the three dimensional
anisotropic Gaussian convolution is implemented by three one-dimensional convolutions. Each of
these can be performed using recursive infinite impulse response filters [177], leading to an imple-
mentation which is faster than both truncated convolution and filtering in the Fourier domain. Its
runtime is independent of kernel size and linear in the number of pixels.

The methods developed in this thesis enable accurate multiple object localization that can adapt
to a variety of image data, fiber orientation estimation of fibrous materials with very dense fiber
systems and in noisy 2D and 3D-images, and fast anisotropic Gaussian image filtering. In the
following, each of these three novel contributions will be detailed in a dedicated chapter, including
all derivations and evaluations. While each of these chapters presents a self-contained topic,
the fiber orientation estimation approach in Ch. 3 will profit from the fast implementations of
anisotropic Gaussian filters discussed in Ch. 4.

Chapter 2

Statistical Model for Multiple

Object Localization

2.1 Introduction

Localization of multiple objects in images enables the computation of characteristics such as spa-
tial distributions or object frequencies, which is relevant e.g. in the computer-aided grading of
histological resections (Fig. 2.1(a) and 2.1(b)) or image analysis-based studies of material prop-
erties (Fig. 2.1(c) and 2.1(d)). Such medical and materials engineering problems have frequently
been solved using fine-tuned image segmentation methods, e.g. thresholding [1, 16] or the water-
shed algorithm [126, 172]. In contrast, trainable systems, once designed, have the potential to be
trained to perform well to a variety of data. An example is the neural network system for cell
counting in histological preparations proposed in [151]. The method introduced in this chapter is
such a trainable system, designed for computing the locations of objects in images. As user input,
it requires one or more training images and a set of known object locations in these images. A
full, pixel-accurate segmentation of the objects of interest does not need to be available.

The developed system constitutes a statistical model of non-overlapping circular objects in the
plane that can be trained from given images and object locations, and algorithms for localizing
objects under the trained model in previously unseen images. A quantitative evaluation of this
method on simulated and real data will provide a clear picture of when the use of interaction point
process models is advantageous over conventional image processing methods. It will be checked
whether the proposed trainable model is indeed transferable across various problem instances, and
how well it performs compared to customized standard processing methods.

Statistical modeling of the spatial arrangement of objects has actively been used e.g. for object
tracking in video, but these have mostly been ad-hoc models. Examples are area overlap between
objects [79, 180] or non-integrable potential functions [179] to avoid detection of overlapping
objects in subsequent video frames.

A more rigorous and well-established method for modeling spatial random processes are Markov
random fields (MRF), where random variables are arranged on some lattice and restrictions are

5

6 2.1. INTRODUCTION

(a) Meningioma tumor cells stained with H&E
dye (image source: Uni Saarland).

(b) Meningioma tumor cells treated with Ki-
67 antigen (image source: Uni Saarland).

(c) Slice through a glass fiber-reinforced poly-
mer (image source: IVW Kaiserslautern).

(d) Slice through a probe of sinter particles
(image source: BAM Berlin).

Figure 2.1: Examples of the localization problem type treated in this chapter: Computing the
coordinates of collections of similar objects in 2D-images. For detailed descriptions of
each dataset refer to Sec. 2.7.

placed on the conditional probability density functions at one lattice point given its neighbors
[59]. The MRF model has proven to be especially well suited for image denoising [19]. These
models can be extended by separating the set of random variables into “observable” and “hidden”
ones, which is then called a hidden Markov model (HMM). With this extension, these models are
suitable for various image processing tasks, see e.g. [53]. Recently, the conditional random field
(CRF) model has drawn a lot of attention [92, 165]. These are more general than HMMs in the
sense that they allow to model arbitrary dependencies between observed variables [92]. All three,
MRF, HMM and CRF, share the property that they are defined fixed graphs. Therefore, their
use for modeling freely moving objects is limited.

The method developed in this chapter is based on spatial point processes, which model random
point patterns. A special case of these processes are pairwise interaction point processes [106, 121],
in which the joint probability density function includes contributions from each point and from
interactions between any two points in the process. The use of interaction point processes in image
analysis has been advocated by Descombes and Zerubia [36]. They argue that point processes have
an advantage over MRFs because they can model relations between objects, rather than pixels or
lattice sites.

CHAPTER 2. OBJECT LOCALIZATION 7

Figure 2.2: Overview of the components and problem setup for localizing circular objects in im-
ages. The model is a posterior density of object locations combining a spatial statistics
prior term with statistical classifiers such as multi-layer perceptrons or support vector
machines. Given new user images, Metropolis-Hastings sampling or greedy search can
find the locations of objects under the previously trained model.

An early application of these spatial point processes in computer vision can be found in a
paper by Baddeley and van Lieshout from 1992 [8]. They proposed to estimate object locations
X = {x1,x2, . . . ,xn} in an image f by sampling from their posterior distribution given by

p(X|f) ∝ p(f |X)p(X). (2.1)

Here, p(f |X) is a parametric likelihood term that followed from an assumed image noise model,
and p(X) is an interaction point process density for the spatial arrangement of the n objects in X.
A number of publications using spatial point processes for vision, including the present chapter,
follow this general model. Drot et al. segment images by fitting non-overlapping triangles and
describe the relation between these triangles by a hardcore model, which is one type of spatial
point process [39]. For networks of lines, the “Candy” point process model was developed and
applied to fit lines to image edges [91, 154]. A further point process model consisting of rectangles
and line segments was applied to segment elevation maps [128]. More closely related to the
problem setting in the present chapter are applications of marked point processes to counting cells
in confocal microscopy images, which have been published in a series of papers by M. Hurn et
al. [3, 4, 72].

All of these applications of interaction point processes either involved novel prior terms p(X)
that were adjusted to the specific task [39, 91, 128, 154], or used likelihood functions p(f |X)
that modeled the given imaging system [3, 4, 72]. But all of these methods can be reduced
to the basic model in Eq. (2.1) [3, 4, 39, 72, 91, 128, 154]. The current chapter extends this
model by introducing statistical classifiers as a method for making these models fully trainable,
i.e., abolishing the need for a known likelihood term p(f |X) and demonstrates how to apply this
technique to the multiple object localization problem.

To solve the multiple object localization problem, the setup for this chapter will be the follow-
ing: Given images containing objects such as those in Fig. 2.1 and a list of known object locations

8 2.2. THE PROPOSED MODEL

created by an expert, train a system for locating similar objects in other images. A trained system
can then be applied to localize objects in images. The proposed system is schematically shown
in Fig. 2.2. Learning methods operate in separate “training” and “user” phases. When training
the proposed model, an expert of the field provides image data along with annotations. For most
part, these annotations will be the coordinates of objects, represented by the center points. Ad-
ditionally, information such as object size could also be supplied. Once all parameters are set up,
the system is ready to compute coordinates from new, previously unseen images.

The core of the method combines knowledge of the shape, size, frequency and spatial constel-
lation of objects (“object model”) and of the appearance and noise characteristics of the image
(“image model”). Methods from point process theory, introduced below, will be used to model
object locations. The specific form of random process used here describes events with random
locations which have a minimal distance parameter. A previously known model for the image
contents will turn out not to be sufficient for images containing any amount of noise. To solve this
shortcoming, classification algorithms will fill the gap. This combination of a trained model and
spatial statistics will turn out to be robust to the type of defects under which simpler approaches
fail.

The description of the complete system is spread over four sections in this chapter. Sec. 2.2 first
introduces the proposed model, a posterior probability of object locations X given an observed
image f , and shows how and why it differs from the one in (2.1). Then, concrete techniques from
the machine learning and point process literature will be introduced to fill each of the three model
components in Fig. 2.2. In Sec. 2.3, statistical classifiers as image models will be discussed, followed
by a description of suitable interaction point processes for the object model in Sec. 2.4. Finally,
Sec. 2.5 proposes two specific algorithms for fitting the model to images to obtain estimates of
object locations. The remainder of the chapter is then dedicated to evaluation, applications and
discussion.

2.2 The proposed model

This section introduces a posterior density model for object locations in images. Let X be a
random process with realizations X = {x1,x2, . . . ,xn}, xi ∈ [0, 1]d. These are the locations of n
objects in an image f . The number of objects n, which is not known a-priori, is the realization of
a random variable N . E.g., X could describe the n coordinates of all particles in Fig. 2.1(d). The
joint density pX ,N (X,N) is not known, but inference can be used to estimate the object locations
X from a given image f . This is the task of this chapter. To keep notation uncluttered, probability
density functions will not carry an index variable. The corresponding random variables will be
clear from the arguments, e.g., p(X) is understood as the short from for pX (X). Given an image
f , the posterior of X and n is rewritten as

p(X,n|f) ∝ p(f |X,n)p(X,n) ≈ p(X|n)p(n)
n∏
i=1

p(f(xi)|xi). (2.2)

Note the crucial step here, which is the reduction to the pointwise location likelihood p(f(xi)|xi).
This approximation deliberately ignores all image background (locations that are not contained

CHAPTER 2. OBJECT LOCALIZATION 9

0 5000 10000 20000 30000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

x

f(
x
)

Signal class 1

Signal class 0

Distorted signal (subsampled)

(a) A two-level piecewise constant
function in independent additive
Gaussian noise (PSNR 10.04 dB).

8 9 10 11 12 13

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PSNR [dB]

G
a
u
s
s
ia

n
 L

ik
e
lih

o
o
d
 p

(f
(x

)|
x
,µµ

1
,σσ

1
)

Class 1 points

Class 0 points

(b) The Gaussian likelihood at
various noise levels, ordered by the
two signal levels (“class 0” and
“class 1”).

8 9 10 11 12 13

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PSNR [dB]

M
L
P

 L
ik

e
lih

o
o
d
 p

(y
(x

)=
1
|x

)

Class 1 points

Class 0 points

(c) The likelihood term computed
using MLPs, trained indepen-
dently for each noise level.

Figure 2.3: Evaluation of the alternative models for computing the likelihood term on an exem-
plary 1D-signal. While the likelihood values of the Gaussian model vary strongly and
start overlapping between the two classes below a PSNR of 12 dB, the likelihood term
p(y(x) = 1|x) computed using a MLP is robust to noise. This 1D-experiment demon-
strates the potential improvements on noisy data when switching from a fixed to a
trainable model for p(f |x) in Eq. (2.2).

in X), which has two main advantages: It leads to efficient algorithms as it is not necessary to
integrate over the whole image f , and it enables the use of patch-based models by integrating the
neighborhoods of the locations xi ∈ X, cf. Sec. 2.3 for details. The minimum error rate estimator
under a zero-one loss function is the maximum a-posteriori (MAP) estimator [40],

(X∗, n∗) = argmax p(X,n|f). (2.3)

The remainder of this chapter proposes, discusses and evaluates different models for the indi-
vidual terms in (2.2) and algorithms for implementing the maximization in (2.3).

To understand why it may be advantageous to integrate trainable models p(f(xi)|xi) into the
system, which is one of the main points of this chapter, consider the original image model used
by Baddeley and van Lieshout [8] and also in later applications of point processes in computer
vision, e.g. [3]. For this initial image model, assume that objects appear with a constant gray value
µ1 in images and that the data contains independent additive Gaussian noise with variance σ2

n.
Furthermore, the image background must have some mean gray value different from µ1. Under
these preconditions, (2.2) can be expressed as

p(X,n|f) ≈ p(X|n)p(n)
n∏
i=1

p(f(xi)|xi) = p(X|n)p(n)
n∏
i=1

1√
2πσn

exp
(
− 1

2σn
(f(xi)− µ1)2

)
.

(2.4)

In contrast to this formulation, which for reasons discussed earlier factorizes p(f |X,n) only at
object locations, Baddeley and van Lieshout assumed solid circular objects with known radius

10 2.2. THE PROPOSED MODEL

and applied this model by factorizing over all pixels in image f [8]. That is computationally
expensive. The approach taken in the present chapter factorizes only over the object locations X,
leading to a computationally less expensive optimization problem.

To demonstrate the performance of the Gaussian likelihood function in (2.4), consider the
example of a 1D signal in Fig. 2.3(a): A piecewise constant function in additive, independent
normally distributed noise. Decreasing the variance of the additive noise leads to peak signal-to-
noise ratios (PSNR) between 7 and 14 dB. The PSNR as a measure of signal or image quality
will be defined in Sec. 2.6.1. The values of the Gaussian likelihood term in (2.4) at different
noise levels are shown in Fig. 2.3(b). For increasing levels of noise (low PSNR), the class 1-
likelihood of points truly belonging to the class 0-level of the signal increases. This is caused
by the Gaussian’s parameter σn, which increases with noise level. This would inevitably lead to
erroneous localizations in the overall system. On the other hand, if a trainable classifier such as a
multi-layer perceptron (MLP) could be used, which can adapt to noise levels, errors caused by this
likelihood term could be avoided (Fig. 2.3(c)). Such alternative image models will be reviewed in
Sec. 2.3.

Other variants of pixel-wise likelihood terms, which have also been used in conjunction with
spatial statistics, are Poisson noise models [72] and models of point spread functions in confocal
microscopy [4]. As these parametric models are not capable of adapting to high noise levels or
other, not necessarily random image defects, they are all similar to the Gaussian likelihood in this
sense. Therefore, the next step is to find more flexible, non-parametric models for the likelihood
term p(f(xi)|xi) in (2.2).

2.2.1 Incorporating statistical classifiers as image models

Methods that have proven to be powerful tools in computing probabilities in a form similar to
what is required here for an image model are classifiers that compute class-posterior probabilities.
In classification, the task is to predict a class label y, usually an integer valued quantity, from an
observation vector x [40]. Instead of merely predicting a class label y, many classifiers compute
class-posterior probabilities of the form p(y(x) = k|x). Examples for such classifiers are naive
Bayes classifiers, multi-layer perceptrons and classification trees [21], as well as (postprocessed)
support vector machines (Sec. 2.3.2). Class-posterior probabilities can be reduced back to a class
decisions e.g. by picking the class k that maximizes the posterior, i.e., k∗ = argmax p(y(x) = k|x).

In order to use such statistical classification models in (2.2), the localization problem must be
reduced to a classification problem in a suitable form. In its simplest setting, object localization is
a two-class problem with k = 0 encoding background and k = 1 encoding object locations. When
more than two object types exist, k = 0 will still denote background locations, but the set of
object locations X will then contain all locations x for which y(x) 6= 0. Then, the set X of object
locations can also be written as

X = {x1,x2, . . . ,xn} = {x|y(x) 6= 0}. (2.5)

This being an equivalent definition, it follows that y is a sufficient statistic for f , i.e., any infor-
mation on the points X contained in the image f is also contained in the (unknown) function y.

CHAPTER 2. OBJECT LOCALIZATION 11

With this observation, (2.2) can be rewritten to

p(X,n|f) = p(X,n|y) ∝ p(X,n)p(y|X,n) ≈ p(X|n)p(n)
n∏
i=1

p(y(xi) 6= 0|xi). (2.6)

In this equivalent form, the image likelihood term from (2.2) is replaced by p(y(x)|x). From the
perspective of the overall system, not much has changed. The only difference lies in the way
in which the image likelihood term is computed. Even though the form of the function y used
above is unknown, machine learning methods are capable of constructing the density p(y(x)|x)
from labeled data in their training process. Two such classifiers, a special form of the multi-layer
perceptron and support vector machines, will be introduced next.

2.3 Classifiers used as image models

As argued in the previous section, any classifier that is capable of computing class-posterior prob-
abilities would be a suitable method for the image model in (2.2). This section reviews two
such classifiers with a focus on their applicability within the model introduced with this chapter.
The two methods are convolutional neural networks, as this form of the multi-layer perceptron
is particularly well suited for classification in images [100], and support vector machines with a
postprocessing step to compute class-posteriors, as this classifier’s training algorithm, in contrast
to most other classifiers, is globally optimal [24].

In order to train image models p(y(x)|x), the classifiers must be given access to the image
f . This is done in the following way. At a coordinate x, a square image patch of M ×M pixels
is extracted. M is chosen to be some pixels larger than the expected size of objects of interest
in f . These M2 pixel values are the actual input for the classifiers. Therefore, in the following,
writing coordinate vector x as input to a classifier should be understood as a shorthand notation
for a M ×M pixel image patch at coordinate x. While the input to convolutional neural networks
remains two dimensional, these values need to be concatenated into a vector in RM2

in case of the
support vector machine method.

2.3.1 Multi-layer perceptrons

A multi-layer perceptron (MLP) consist of units that are connected by weighted arcs [20]. Each
unit computes a linear combination of the values at its input connections, using the weights
associated with each arc, followed by a non-linear transfer function. The thus computed value is
then passed on to other units which are again connected by an outgoing arc. By combining large
numbers of such units and arranging them in layers, where the units in layers do not have any
cross-connections, powerful discriminative classifiers can be constructed. Their parameters, the
weights, can be fit to model some training data using a variety of algorithms.

For the purposes of this chapter, the important property of MLPs is that they minimize an error
function with respect to some training data. Let x be the input to a MLP. The network will model
a function y(x), prescribed by a set of training samples {(xi, yi)}i=1...n, drawn independently from
their unknown joint density p(x, y). Using suitable error measures and problem encodings, the

12 2.3. CLASSIFIERS USED AS IMAGE MODELS

output y of a MLP has an interpretation as class-posterior probability. To see why this is true,
assume that the training process converged to the global optimum under a sum-of-squares error
function. This error is minimized by the conditional expectation E[y|x] [20]. Thus, given an input
x, the output value of an optimally trained MLP has the value

y(x) = E[y|x] =
∫
yp(y|x)dy. (2.7)

Using a 0/1 coding, i.e. y ∈ {0, 1}, the conditional expectation simplifies to

= 0 · p(y = 0|x) + 1 · p(y = 1|x) = p(y = 1|x). (2.8)

For a K-class problem, every class k = 0, . . . ,K − 1 is assigned to one distinct output unit yk, so
that, by the same argument as above, yk(x) = p(y = k|x). Note that similar arguments can be
made for other machine learning methods as well. Therefore, other approaches such as logistic
regression or some types of decision trees could also be used. For the support vector machine
(SVM), which will also be used in this chapter, it is more difficult to obtain estimates of the
class-posterior probabilities, see Sec. 2.3.2.

Convolutional neural networks

One problem with the standard MLP layout is that the number of parameters (weights) increases
with the number of connections. Further, the topology of fully connected MLPs does not model
the dependencies between neighboring pixels which are inherent to images. As outlined above, the
input to classifiers in this section are 2D-image patches containing M ×M pixel values, and this
image structure should be used if possible. One way to handle image structures in classifiers is to
derive a number of features from images, which are then given to the classifier as input. These
features often include scale and edge information, which in turn model the local dependencies.
Selection of appropriate features is a difficult problem. To circumvent such issues, shared weights
are appropriate. Sharing weights in neural networks means that there exist groups of connections
with the same weight in the network. The most prominent and maybe most successful MLP-variant
using the concept of weight sharing is the convolutional neural network, proposed by LeCun et
al. [100], which have proven to be efficient classifiers [150].

To see how weight sharing and convolution are connected, consider a discrete input image
f(x, y) at some coordinate (x0, y0) at which a convolutional neural network is to be applied. The
input contains a neighborhood around pixel (x0, y0), e.g., a 5×5 square region centered in (x0, y0).
This results in a matrix [f(x0 + i, y0 + j)]i,j=−2,...,2 of input values. Each element of this matrix
is connected to a hidden layer unit z of the network by an arc with associated weight wij ,

z(x0, y0) =
2∑

i=−2

2∑
j=−2

wijf(x0 + i, y0 + j). (2.9)

CHAPTER 2. OBJECT LOCALIZATION 13

Weight sharing implies that other units in the same layer as z(x0, y0) are connected to other
image pixels, say (x0 +1, y0), but use equivalent weights wij . When shifting these weights over the
whole area of image f , the matrix Z of second layer unit activations is equivalent to a 2D-finite
convolution of f with the matrix of weights W = [wij]i,j=−2,...,2,

Z =

 2∑
i=−2

2∑
j=−2

wijf(x0 + i, y0 + j)

x0,y0

= W ∗ f. (2.10)

The weights wij are part of the regular neural network training procedure. Each layer contains
not one, but a configurable number of convolutional feature matrices Z. In this chapter, 5×5 fields
of weights as in the example above, are used in two consecutive layers of convolutional features.
Following [150], these convolutional layers are each followed by 2× 2 subsampling and are finally
combined to form the overall output via one fully connected standard MLP layer.

In this network layout, the first two layers can be interpreted as a set of trainable image
features followed by a fully connected hidden layer. Thus, the need for hand selected input
features is avoided, resulting in a classifier system that can directly be applied to image data.
As a consequence of the subsampling layers, these MLPs are robust to shifts in the input data.
See [100] for details on the general properties of convolutional neural networks, and [150] for the
specific architecture that will be used here. Especially, the training strategy from [150] is pursued,
in which the amount of training data is artificially increased by adding geometrically transformed
variants of the original data to the training set (randomly rotated and sheared patches), leading
to better generalization performance of the classifier.

At this point, return to the exemplary evaluation of the likelihood term in (2.2) on the 1D signal
shown in Fig. 2.3(a). Where the likelihood function derived from an additive Gaussian noise model
leads to unstable likelihood values, the convolutional neural network model just introduced yields
stable and well separated values for the likelihood term, cf. Fig. 2.3(c).

Training using stochastic gradient descent

Online or stochastic gradient descent training, where a MLP’s parameters are updated for each
sample, is known to outperform gradient descent batch training, especially for large training sets
[22]. For applying the convolutional neural network model to the multiple object localization task,
it will be applied to image patches sampled at and around object locations, and patches sampled
from the image background. Together with the geometric transformations described above, this
leads to training sets containing several ten thousands of examples (e.g., for the application to
a glass fiber reinforced polymer that will be described in Sec. 2.7, approximately 75000 training
examples have been generated). Therefore, online training will be used in this chapter. The most
widely used training method for MLPs is backpropagation training with fixed learning rate ε and

14 2.3. CLASSIFIERS USED AS IMAGE MODELS

weight update rule

wt+1 = wt − ε∂E
∂w

, (2.11)

where E is the error function. Especially for convolutional neural networks, LeCun et al. use a
stochastic diagonal Levenberg-Marquardt update rule [100]. Instead of using a fixed learning rate
ε as in (2.11), they effectively compute an individual step size for each weight. The corresponding
update rule

wt+1 = wt −
∂E
∂w

|∂2E
∂2w |+ µ

(2.12)

results from the Newton method, but uses only the diagonal elements of the Hessian matrix [15]. µ
is a positive constant to deal with regions of low curvature. In contrast to other Newton methods,
this update rule can be applied in online mode. The forward and backward propagation formulas
using either fixed (2.11) or adaptive (2.12) step size are not fundamentally different in convolutional
neural networks than in standard MLPs. Due to weight sharing, merely the indices change, and
the update rules need to average over all connections sharing one weight. For backpropagation
training, these technical details are given in App. A.

In experiments, adaptive weight updating did not lead to significant convergence rate improve-
ments during training, and determination of suitable stopping rules turned out to be more difficult
than for standard backpropagation training. Therefore, for the experiments that will be described
later in this chapter, a fixed step size weight update with early stopping was used.

2.3.2 Support Vector Machines

The support vector machine (SVM) is one the most widely used algorithms for classification and
regression. There exists a wide body of literature. Unlike the multi-layer perceptrons introduced
above, SVMs do not result in class-posterior probabilities. Nevertheless, there exist ways to
implement modifications of SVMs such that it results in an estimate of the posterior probability
of class label given sample. To introduce the general principles of SVMs and especially to show
how to estimate posterior probabilities, a brief review of SVMs is given next. For a comprehensive
introduction to SVMs, refer to the tutorial by C. Burges [24].

Most classifiers, like the multi-layer perceptron model described above, solve the classification
problem by optimizing their parameters such as to perform best on a given set of training data.
This general strategy is referred to as empirical risk minimization. The support vector machine, on
the other hand, is an example of a large-margin classifier, which pursues a different optimization
strategy. SVMs find a d-dimensional plane H which separates two classes (with labels -1 and 1)
such that the distance of the samples xi ∈ Rd to H is maximized. This distance to H is called the
margin.

Decision functions that are non-linear functions of the data are found by applying a function
Φ : Rd → H, where H is an Euclidean space with a dimension that is usually much larger than d.
Φ is chosen such that there exists a kernel function K with K(xi,xj) = Φ(xi)tΦ(xj), i.e., inner
products in the high dimensional space H can be computed via K. One function K with this

CHAPTER 2. OBJECT LOCALIZATION 15

property is the radial basis function (RBF) kernel,

K(xi,xj) = exp
(
−‖xi − xj‖2/2σ

)
. (2.13)

This property leads to the “kernel trick”: Functions that depend on the data only via inner
products of d-dimensional vectors are transformed to the high dimensional space H by substituting
kernels such as (2.13) for the inner products. One function that fits into this scheme is the objective
function of SVMs. Let yi ∈ {−1, 1} be the known class label of a sample vector xi in the training
set. For a C-SVM, where C ∈ R is a parameter controlling the number of outliers, the hyperplane
H through the origin with normal vector w (a shift from the origin is omitted here for simplicity
of presentation) that maximizes the margin is found by solving the following quadratic program
[24].

max
α

∑
i

αi −
1
2

∑
i

∑
j

αiαjyiyjK(xi,xj)

subject to 0 ≤ αi ≤ C∑
i

αiyi = 0 (2.14)

Here αi > 0 are Lagrangian multipliers enforcing the condition that the sample xi lies on the
positive side of H if and only if yi = 1 (except for some outliers limited by parameter C). New
observations are classified by checking on which side of H they lie.

Using SVMs to compute class-posterior probabilities

The C-SVM described above assigns labels −1 or +1 to samples according to their position relative
to a hyperplane H. This decision rule is given by the sign of the function g(x) =

∑
i yiαiK(xi,x).

What is required to use SVMs in the statistical localization model (2.2) are class-posterior prob-
abilities p(y|x).

Among the different algorithms for approximating class-posterior probabilities using SVMs,
one widely used method (also implemented in the LibSVM software package [26]), is originally
due to J.C. Platt [133]. It fits a sigmoid function with parameters A and B,

p(y|x) ≈ 1
1 + exp(Ag(x) +B)

, (2.15)

to the decision boundary. To get an unbiased estimate, labels obtained by cross-validation need to
be used [133]. For the experiments reported later in this chapter, the algorithm reported in [110]
was implemented based on the SVM-light software package [77], using 5-fold cross validation. It
is an improved Newton algorithm for fitting (2.15) to SVM decision boundaries.

16 2.4. POINT PROCESSES AS OBJECT MODELS

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

(a) Poisson process

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

(b) Softcore process (κ = σ = 0.1)

Figure 2.4: Sample realizations of spatial point processes in the unit square with an associated
circle of radius 0.05. While circular objects attached to a Poisson process overlap, pair-
wise interaction point processes, such as the softcore model, are suitable for modeling
objects in images.

2.4 Point processes as object models

After having introduced two classifiers as possible image models, a form of object model that is
suitable for describing circular objects in the plane will be introduced. As was argued earlier
in this chapter, point process models are applicable for modeling randomly positioned objects in
images. To provide the required background, this section provides a brief introduction to point
process theory and their simulation. There exist excellent overviews of the field, such as the books
by Møller and Waagepetersen [121] or van Lieshout [106].

Point processes describe random events which have a spatial distribution. If the events of a
point process can be observed in a space S, then it is said to be defined on that space. Point
processes can be defined on quite general spaces (separable complete spaces [106], which basically
implies that points can be counted anywhere within that space). For all material in this chapter,
it will be the real plane with Euclidean metric, i.e., S ⊂ R2. The simplest case, which will be used
here, is the unit square, S = [0, 1]2.

Formally, a point process is a mapping X from probability space to the space of all countable
point configurations in the plane. X will be assumed to be locally finite, i.e., the number of points
in any bounded subset of S is finite, and simple, i.e., points will occur only once. Returning to
the examples from Fig. 2.1, the centers of the objects (cells, fibers, metal particles) are assumed
to be realizations from point processes in the plane. This section introduces one form of spatial
point process which is a suitable model for such coordinates.

The completely random point process is the Poisson process, which is the random distribution
of non interacting points: Let W ⊂ [0, 1]2 be an observation window with area µ(W), and N(W)
denotes the number of points in W . Then X is a Poisson process with intensity β if

1. the number of points in any observation window is a Poisson random variable, N(W) ∼

CHAPTER 2. OBJECT LOCALIZATION 17

Poiss(βµ(W)), and

2. the number of points in disjoint sets are independent random variables.

A point process is called homogeneous if its distribution is invariant under translations. All
processes investigated in this chapter are homogeneous. Fig. 2.4(a) shows an example of a realiza-
tion from a Poisson process with an intensity of β = 35 in the unit square [0, 1]2. Assume circular
objects with radius 0.05 as in the plot. Then, a Poisson process is not a satisfactory model because
it leads to significant overlap of objects.

Pairwise interaction processes, on the other hand, can model point patterns with regularities.
These are special cases of the more general class of Markov point processes. Informally, these lift
the independence assumption of Poisson processes, and allow points to interact. For a formal defi-
nition, see [106]. These interactions could be attractions between points, which lead to clustering,
or inhibition between points, avoiding them to get too close. A pairwise interaction process takes
into account interactions between at most two points, and has a conditional density of the form

p(X|n) = Zθ
∏
i

β
∏
i 6=j

hθ(xi,xj) = Zθ exp

−∑
i

log(β)−
∑
j 6=i

ϕ(xi,xj ; θ)

 . (2.16)

Here, Zθ is the normalizing constant, β remains the intensity parameter of a Poisson process, xi ∈
[0, 1]2 are coordinates, θ is the parameter vector of the interaction potential h(·) and hθ(xi,xj) =
exp{−ϕ(xi,xj ; θ)} by definition. Specification of different pairwise interaction models always
reduces to choosing a form of ϕ(·). The potential needs to be chosen such that the Zθ will be
finite. A sufficient condition is that ϕ(x,y; θ) is a positive, monotonically decreasing function of
the distance ‖x− y‖ between two points x,y ∈ [0, 1]2 [121].

Computation of Zθ would require integrating over all possible point configurations. For param-
eter estimation and simulation of p(X|n), unnormalized densities are sufficient, see below, making
it unnecessary to ever evaluate Zθ.

The density of a pairwise interaction point process in (2.16) is defined relative to a Poisson
process with intensity β [121]. It follows that n, the number of points on which that density is
conditioned, is itself a Poisson random variable with parameter β. Therefore, the prior p(n) in
(2.2) is given by

p(n) =
βn

n!
exp (−β) . (2.17)

This is the prior that is used to model the number of objects in an image throughout this chapter.
The parameter β is the same one as in (2.16).

2.4.1 Objects of equal size – softcore interaction point processes

Depending on the form of the potential function h in the pairwise interaction density (2.16), the
object model introduced above can deal with different object shapes. This section introduces a
potential for equally large circular objects with little overlap. Under this assumption, the softcore

18 2.4. POINT PROCESSES AS OBJECT MODELS

|xi −− xj|

h
(|

x
i
−−

x
j|;

κκ
,σσ

)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 σσ 2σσ

κκ = 0.1

κκ = 0.3

κκ = 0.5

Figure 2.5: The softcore potential for fixed σ and different values of κ, demonstrating the effects
of the parameters of a softcore model. The parameter σ governs how close to each
other points from a softcore point process may get, and when κ → 0, no overlap is
allowed between two circular objects with radius σ/2 each. For some fixed value of
κ, this potential can therefore be used to model circular objects with known radii by
choosing appropriate values for σ.

point process with interaction potential

h(xi,xj ; κ, σ) = exp

(
−
(

σ

‖xi − xj‖

)2/κ
)

(2.18)

is a more suitable model for the object locations X than the Poisson process (Fig. 2.4(b)). It is an
inhibitory point process with infinite interaction. From the application point of view, this potential
function has a convenient parameterization: κ determines the function’s steepness, and as κ→ 0,
the softcore potential approaches the form of a hardcore potential, i.e., a step function. This
would correspond to an exact object size specification. With the potential’s smooth shape, this
restriction is less rigorous and allows for some size variations. The other parameter, σ, determines
how close points may get, cf. Fig. 2.5. The sample realization in Fig. 2.4(b) in the unit square was
generated using Markov chain Monte Carlo sampling, see Sec. 2.4.2, with parameters κ = 0.1 and
σ = 0.1.

Parameter estimation

The first step in training a softcore model for object locations is to infer the model parameter
σ from training data. The potential’s steepness parameter κ, which is a modeling parameter
for the amount of allowed overlap between neighboring objects, will not be inferred from data.
It is set to κ = 0.4 for the remainder of this chapter. In experiments, it did not have a large
impact on the localization results. For the parameter estimation methods discussed next, assume
that a set X of object locations in an image is given. Likelihood-based parameter estimators for
pairwise interaction point processes are described in [9] and [37]. The general problem of these
likelihood methods is that computation of the normalizing constant is intractable. It requires

CHAPTER 2. OBJECT LOCALIZATION 19

Intensity ββ

P
s
e

u
d

o
−

lik
e

lih
o

o
d

 e
s
ti
m

a
te

s
 o

f
σσ

l

l

l

0.00024 0.00073 0.0012 0.0017

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Figure 2.6: Evaluation of the pseudo-likelihood estimation method regarding parameter σ of the
softcore model at different densities β, the potential’s remaining parameter κ was fixed
to 0.4. The boxplots are centered around the true value, indicated by the dashed line in
this figure, which shows that the pseudo-likelihood method is suitable for estimating
the parameter σ of a softcore interaction point process at different densities. An
increasing number of hardcore points in a 320× 320 pixel box were simulated with a
hardcore distance of 16. Each of the boxplots shows the distribution of the distance
estimated in 50 realizations. The shown intensities β correspond to fields from n = 25
to 200 points.

integration over all possible point configurations and depends on the parameters. Therefore, a
number of approximate methods have been proposed and the result of a simulation study by
Diggle et al. was that the pseudo-likelihood method is the most generally applicable one [37].
For an account of numerical approximation schemes for maximum likelihood estimation, and a
treatment of Bayesian parameter estimation for Markov point processes, see [121, Ch. 6].

Pseudo-likelihood estimators were proposed by Besag [18], who introduced them as consistent
parameter estimators in Markov random fields. The principle mechanism in any pseudo-likelihood
estimator is the following. Instead of estimating parameter vector θ from the full likelihood
p(X|θ), maximize a function of the conditionals p(xi|{xj}i 6=j , θ) over θ. This simplification has
the important consequence that the normalizing constant cancels out. For a pairwise interaction
process with density given in (2.16), the conditional density of a point at u /∈ X,

λθ(u; X) := p(u|X,n, θ) =
p(X ∪ {u}|n, θ)

p(X|n, θ)
= β

n∏
i=1

h(u,xi; θ), (2.19)

is known as the Papangelou conditional density. This term will reappear shortly in the contexts
of Markov chain Monte Carlo simulation in Sec. 2.4.2 and of algorithms for approximating (2.3)
in Sec. 2.5. Using λθ, the pseudo-likelihood function PL for interaction point processes is defined
as follows [37, 121].

PL(θ; X) := exp
(
−
∫
λθ(x, X)dx

) n∏
i=1

λθ(xi|X \ {xi}). (2.20)

20 2.4. POINT PROCESSES AS OBJECT MODELS

PL is a concave function of θ and θPL = argmaxθ PL(θ) is a consistent estimator, cf. [76].
Note that evaluation of (2.20) still requires numerical integration. For the results that will be
presented later in this chapter, a quadrature integration scheme at 400 regularly distributed grid
points along with the samples from the observed set X was used. Details are described in [9] and
the required numerical integration and optimization procedures are implemented in the GNU R
[136] library spatstat [10].

To demonstrate the applicability of this estimation method in practice, consider Fig. 2.6. The
estimation performance for the distance parameter σ is adequate considering the wide range from
quite sparse to dense point field realizations.

2.4.2 Markov chain Monte Carlo simulation

This section demonstrates how to generate realizations from interaction processes. Simulation is
not the topic of this chapter, but the method introduced here is the basis for an algorithm that fits
point fields to images, and which will be described in Sec. 2.5.1. An established tool for generating
random samples from complex distributions such as those encountered in this chapter is Markov
chain Monte Carlo (MCMC) simulation. The idea is to repeatedly and randomly modify the state
of a system, in this case the positions of points in the plane, and to most likely accept those
changes that lead to likely states according to the desired distribution. Consider for example the
softcore model introduced above. MCMC algorithms are capable of constructing random samples
such as those in Fig. 2.4(b) for a given set of model parameters (β, σ, κ).

For a detailed introduction to MCMC and the Metropolis-Hastings algorithm, see [31], different
variants thereof for the case of interaction point processes are described e.g. in [106, Ch. 3] or
[121, Ch. 7]. Let p(X) be the the probability density function of a point field X from (2.16). The
corresponding unnormalized density will be denoted by h, defined by

p(X) = Zθh(X), (2.21)

which is used during the sampling process. MCMC simulations generate random sequences
X1, X2, . . . of point fields using a transition function p(Xt, Xt+1). The transition function is
a density giving the probability of moving from a given state at time t to a new state (a new point
configuration) at time t + 1. If this sequence could be constructed such that for any t > t0, the
distribution of the point fields Xt was the given p(X), then any Xt beyond time t0 could be used
as an independent sample from p(X). This can be achieved if the transition function obeys∫

h(Xt)p(Xt, Xt+1)dXt =
∫
h(Xt+1)p(Xt+1, Xt)dXt+1, (2.22)

a property which is called the detailed balance. In other words, it must be equally likely to move
between two states in either direction (reversibility). The proof can be found e.g. in [31]. This
leaves open the question of how to find a transition function that fulfills the detailed balance
condition. One widely applicable answer is the Metropolis-Hastings algorithm. There, the transi-
tion function p(Xt, Xt+1) from above is modified to perform the transition only with probability

CHAPTER 2. OBJECT LOCALIZATION 21

α(Xt, Xt+1),

p(Xt, Xt+1) := q(Xt, Xt+1)α(Xt, Xt+1), (2.23)

where q is the probability of generating the new state Xt+1. The choice of parameters α is
what makes the Metropolis-Hastings algorithm work. To derive α, let ut and ut+1 be random
vectors and g(Xt, ut) be a differentiable, deterministic and injective function that computes a new
proposal state, i.e., g(Xt, ut) = (Xt+1, ut+1). Similarly, let g−1(Xt+1, ut+1) = (Xt, ut) denote the
corresponding transition in reverse direction. Next, substitute g and (2.23) into (2.22).

∫
h(Xt)q(Xt, Xt+1)α(Xt, Xt+1)dXt

=
∫
h(Xt+1)q(Xt+1, Xt)α(Xt+1, Xt)dXt+1 (2.24)

⇔
∫ ∫

h(Xt)q
(
Xt, g1(Xt, ut)

)
α
(
Xt, g1(Xt, ut)

)
dXtdut

=
∫ ∫

h(Xt+1)q
(
Xt+1, g−1

1 (Xt+1, ut+1)
)
α
(
Xt+1, g−1

1 (Xt+1, ut+1)
)

dXt+1dut+1

(2.25)

Here, g1 and g−1
1 denote the state components of g and g−1, respectively. A change of variables

on the right hand side leads to

=
∫ ∫

h
(
g(Xt, ut)

)
q
(
g(Xt, ut), Xt

)
α
(
g(Xt, ut), Xt

)
|J |dXtdut, (2.26)

where J = ∂g(Xt,ut)
∂Xt∂ut is the Jacobian that enters due to the rules of multidimensional integration.

By setting α(Xt+1, Xt) = 1, i.e., choosing the largest possible acceptance probability, the Hastings
ratio r is found as the value of α(Xt+1, Xt) that forces the detailed balance condition in (2.22) to
hold.

α(Xt, Xt+1) =
h(Xt+1)q(Xt+1, Xt)
h(Xt)q(Xt, Xt+1)

·
∣∣∣∣∂g(Xt, ut)
∂Xt∂ut

∣∣∣∣ (2.27)

In this expression, α may exceed one. The probability for performing the transition from state Xt

to Xt+1 is therefore set to r(Xt, Xt+1) = min
{

1, α(Xt, Xt+1)
}

.

To translate these equations into an algorithm for simulating a point field under a softcore
interaction model, consider some initial point field X0 with n points. The idea is to modify the
points in X0 by moving one point xi ∈ X0 by a random vector δ, where the index i is chosen
randomly. This change is then either accepted or rejected according to the mechanism that was
just described, and the procedure continues from this, possibly new, point field.

Note that point processes X are commonly represented by sets, as simple point processes
may not contain any duplicate points. For the purposes of the Metropolis-Hastings algorithm
introduced next, however, it is necessary to access and modify an individual point xi at position

22 2.4. POINT PROCESSES AS OBJECT MODELS

i in a sequence. Therefore, the algorithm operates on an ordered sequence X̃ = (x1,x2, . . . ,xn)
of the points in the point field X.

The random transition component at time t is ut = (i, δ). Except for an addition in dimension
i, g is the identity in all remaining n−1 dimensions and the Jacobian therefore reduces to |J | = 1.
Furthermore, for a symmetric distribution of δ (p(δ) = p(−δ)), the q-terms in (2.27) will cancel
out. This leads to the following Metropolis-Hastings algorithm.

1. Initialize X0 to some first configuration of n points.

2. At time t, draw a random element xi from X̃t.

3. Randomly select a vector δ ∈ R2 from a uniform distribution in a circle of radius δmax.

4. Compute the Hastings ratio r = min
(

1, h(X
t\x∪(x+δ)
h(Xt)

)
.

5. Draw a uniformly distributed random number u between zero and one.

6. If u < r, set Xt+1 = Xt \ {xi} ∪ ({xi + δ}), otherwise, set Xt+1 = Xt.

7. Continue at step 2.

Because of the detailed balance being fulfilled by construction, this algorithm will converge
to the invariant distribution p(X), i.e., beyond some point t0, each generated sample Xt is an
independent sample from p(X). Note, however, that this algorithm samples from the conditional
p(X|n). What is required to sample from the joint density p(X,n) is reversible jump Markov
chain Monte Carlo (RJMCMC) [65], a device allowing one to define densities on spaces of fixed
but unknown dimension. More practically, one needs to add proposal densities which add or delete
points in order to search the state space for different n. Details on RJMCMC will be given in
Sec. 2.5.1.

2.4.3 Objects of varying sizes – marked softcore interaction point pro-

cesses

The softcore potential described above models objects of fixed size with its distance parameter
σ. While this model is appropriate for treating a wide range of object types, cf. Sec. 2.7, it
lacks the capability to express properties of individual objects. Such properties could be the size,
shape, or orientation of an object. Depending on the application, these additional parameters
may be useful either in determining the object locations, or because they themselves represent a
quantity of interest. With marked point processes [106, 121], the point process literature provides
an appropriate tool for modeling such object properties.

Marked point processes are point processes with “marks” attached to each individual point.
The marks are random vectors, themselves, and their distribution can be either dependent on or
independent of the point process. Formally, the point processes introduced above are generalized
to marked point processes X = {(xi,mi)}i=1,...,n, i.e., sets of tuples which each contain a point
x ∈ [0, 1]2 and a vector-valued mark m ∈ Rdm (dm denotes the dimensionality of the marks).

CHAPTER 2. OBJECT LOCALIZATION 23

Building on the material earlier in this chapter, the special case of marked pairwise interaction
processes [121] with conditional density

p(X|n) = Zθ
∏
i

βp(mi)
∏
i6=j

hθ((xi,mi), (xj ,mj)) (2.28)

is of particular interest. Note that this density belongs to the special case where the distribution
p((x,m)) = βp(m) factorizes, i.e., the marks are independent of the point process. Here, β is once
again the intensity parameter of the underlying Poisson process.

The marks m are not limited to any specific form, and in fact the restriction made here for the
marks to be real-valued vectors is a restriction made by choice. By attaching a mark m to each
point x, the posterior model from Eq. (2.2) needs to be modified. Later, marked point processes
will be applied to the localization of circular objects of varying sizes. There, the mark will describe
object size and the image likelihood term depends on the marks. Therefore, rewrite (2.2) as

p(X,n|f) ∝ p(f |X,n)p(X,n) = p(X|n)p(n)
n∏
i=1

p(f |xi,mi), (2.29)

with p(X|n) given by (2.28). In the same spirit as in Sec. 2.2.1, define a function y : [0, 1]2×M→
{0, 1} on the joint coordinate and mark space. y assumes the value 1 whenever an object with
mark m ∈ M is located at x in some given image f . Then, y is again a sufficient statistic for X,
leading to the revised model

= p(X|n)p(n)
n∏
i=1

p(y(xi,mi) 6= 0|xi,mi). (2.30)

Compared to the unmarked point process introduced earlier, to apply this marked point process
model requires modifications of the models and algorithms described above.

First, the likelihood term p(y(x,m) 6= 0|x,m) depends not only on the object location x, but
also on its mark m. For this purpose, the classifiers introduced in Sec. 2.3 are again suitable. As
above, M ×M pixel image patches at coordinate x are extracted from image f . Additionally, the
mark m is added to the classifier’s input. For SVMs, this is achieved by adding dm entries to the
M2 input vector. Due to the special architecture of convolutional neural networks, that is not
possible, there. Instead, the input m bypasses the convolutional layers and is connected directly
to the hidden layer, cf. Sec. 2.3.1.

Second, MCMC sampling of marked point processes needs to sample not only the coordinates
x, but also the marks m. To this end, random shifts of δm of m are generated in step 3 of the
algorithm listed in Sec. 2.4.2. As the restriction of m being vector-valued was made, these shifts
δm are vectors from the same space as m, Rdm . As the distribution of the marks is contained
in the marked point process density (2.28), and consequently also in the unnormalized density
h defined in Sec. 2.4.2, the Metropolis-Hastings rule will guarantee that this slightly modified
MCMC sampler will sample from the marked point process density (2.28).

24 2.5. MODEL-BASED MULTIPLE OBJECT LOCALIZATION

Softcore interaction potential revisited

One example of the marked point process model that was just introduced is to remain with circular
objects, as earlier in this chapter, but to lift the restriction of all objects having equal radii. To
achieve this, the radii are attached as marks to each point. Let ri ∈ R be the radius of an object
at xi, resulting in the marked point process X = {(xi, ri)}i=1,...,n withM = R. Assuming objects
with little overlap as above, the softcore model is modified to

h((xi, ri), (xj , rj); κ) = exp

(
−
(

ri + rj
‖xi − xj‖

)2/κ
)
. (2.31)

Hence, the softcore potential fulfills the same function as in the case of circular objects with fixed
radii, but the allowed distance between points xi and xj depends on the marks. Note that the
object sizes {r1, r2, . . . , rn} need not be known, and any prior knowledge should be expressed
by their prior distribution p(ri) in (2.28). Other, more complex types of marks for describing
geometric arrangements in images have also been used [39, 107, 128].

2.5 Model-based multiple object localization

What remains to be developed are methods for applying the statistical model described up to this
point. In the following, it will be assumed that the model p(X,n|f) has been fit to some training
data, using pseudo-likelihood estimation for the object model and MLP or SVM training for the
image model. Hence, given an image f , p(X,n|f) can be evaluated for any n points in the set X.

The first of the two algorithms introduced here is an extension of the MCMC sampler from
Sec. 2.4.2. Instead of generating samples from p(X|n), it simulates from the joint posterior density
p(X,n|f). Since the number n of objects is unknown, the algorithm needs to be extended to “jump”
between states in different dimensions, i.e., it needs to add and remove object locations to and
from X. MCMC samplers of this form have been used in [8] for object detection. Furthermore, an
annealing schedule is added to the sampler in order to guide the sequence into an optimal state
[86]. M. van Lieshout proposed and analyzed such annealing algorithms for object recognition
[105]. Similar algorithms have also been used elsewhere, e.g. [39, 154].

MCMC sampling with annealing is computationally expensive. Furthermore, it is a randomized
algorithm by definition, making the exact results irreproducible.

As an alternative, a second, deterministic algorithm will be proposed, which is similar to
J. Besag’s iterated conditional modes (ICM) [19]. The ICM method was developed in an image
restoration context. It iteratively updates pixel labels in cycles by assigning pixel labels according
to the maximum conditional density in that point. The algorithm introduced below is similar to
ICM, as it iteratively adds points to the set of solutions. At each iteration, the point with the
maximal conditional probability given all previously selected points is chosen, and will therefore
be referred to as greedy algorithm. Such algorithms have also been used in [8] to fit point process
models to images. Due to n being unknown, the question of determining when to stop adding
points to X is crucial.

CHAPTER 2. OBJECT LOCALIZATION 25

2.5.1 Localization by reversible jump Markov chain Monte Carlo

Next, the algorithm from Sec. 2.4.2 is extended to a reversible jump Markov chain Monte Carlo
(RJMCMC) algorithm [65] for sampling from the posterior p(X,n|f). Instead of only randomly
moving points within the set of locations X, RJMCMC also adds and removes points, thus “jump-
ing” between different dimensions of X. Good introductions to RJMCMC can be found in [69]
and [164].

In the case of the MCMC sampler introduced above, p(X|n) was defined on Rd, with the
number n of points being known, and the points in X have been restricted to the unit square
[0, 1]2. X takes values from a space that is usually denoted by Nlf [106, 121], which is the set
all locally finite point configurations. For an exact definition of Nlf , see [106, 121]. Let W again
be the bounded observation window, i.e. W = [0, 1]2. Then, Nlf can be split into a set of locally
finite point configurations in W , Nlf =

⋃
nNlf,n, where each Nlf,n represents the set of point

configurations containing n points, i.e., Nlf,n = {X|NX(W) = n}. Therefore, p(X|n) operates
on such a space Nlf,n, and as n is known, Nlf,n has a fixed dimension. Sampling from the joint
density p(X,n) with n being unknown requires the concept of union spaces, introduced by P. Green
[65]. For the joint density p(X,n), this union space has the form

⋃
n (Nlf,n). Then, for any given

n, p(X|n) can again be evaluated. Therefore, it is possible to add points to or to delete points
from X, thus changing n, which leads to a new conditional density defined in the corresponding
subspace.

At each time step, the RJMCMC sampler picks one of three actions (move, birth or death)
with probability pmove, pbirth and pdeath. The detailed balance condition must hold for any of
the three transition types. This is achieved by performing each individual transition according to
the Hastings ratio, which requires some attention to the form of the transition functions g being
chosen. As for the MCMC sampler in Sec. 2.4.2, let the points in X be arranged in an ordered
sequence X̃ = (x1,x2, . . . ,xn).

• Move event : Let uMove = (i, δ), where δ is a random vector. Then the definition of g and
the Hastings ratio of the fixed dimension MCMC from Sec. 2.4.2 can again be used.

• Birth event : Let uBirth = (i,xn). A birth event raises the dimension n of X̃t to n + 1 of
X̃t+1. For the algorithm to work correctly, the so-called dimension matching condition [65]
must hold, which states that the sum of dimensions of the state vector X̃ and the random
transition vector u must be the same in the forward and reverse directions. Therefore, define
gBirth(X̃, uBirth) := (x1, . . . ,xi−1,xn,xi, . . . ,xn, i). The dimension matching condition is
fulfilled (the state sequence dimension grows by one while the random vector component in
the reverse direction loses the novel coordinate xn, see below). As gBirth performs merely
a permutation of its vectorial argument, the Jacobian disappears from the Hastings ratio
(|J | = 1).

• Death event : Following the same scheme as for the birth event, let uDeath = (i) and
gDeath(X̃, i) := (x1, . . . ,xi−1,xi+1, . . . ,xn, i,xi). The dimension matching condition is ful-
filled and |J | = 1, as can be seen by the same arguments as made above.

26 2.5. MODEL-BASED MULTIPLE OBJECT LOCALIZATION

Figure 2.7: A bimodal Gaussian mixture example of a temperature modified posterior, scaled to
maximum 1, which illustrates how annealing drives the sampling sequence towards
the global maximum of the distribution. Decreasing parameter H during an annealing
process leads to the probability mass being concentrated narrowly around the location
of the maximum.

Note that here g−1
Birth = gDeath and g−1

Death = gBirth, by definition. When using the Hastings ratio
(2.27) in the RJMCMC sampler, the chain will converge to the desired distribution p(X,n|f). After
some t0 initial steps, any element produced by the chain will be a sample from that distribution.
But which sample will maximize the posterior? Simulated annealing [86] is a proper tool to avoid
making that choice explicit. Van Lieshout modified the posterior distribution in (2.2) to

pH(X,n|f) ∝ {p(f |X,n)p(X|n)p(n)}1/H , (2.32)

where H > 0 is the temperature parameter [105]. The effect of decreasing H from large to
low values is visualized in Fig. 2.7. Early in the sampling process (H >> 0), many unlikely
configurations X are generated, thus exploring the state space. Towards the end (H → 0),
proposals will only be accepted if they are close to the global maximum of the distribution.

2.5.2 Localization by greedy search

An alternative localization algorithm is introduced next which, in contrast to RJMCMC, is entirely
deterministic. In image restoration, the task is to recover image data f̂ from a noisy observation f .
Assuming that the image pixels form a Markov Random Field (MRF) [59], an iterative algorithm
for recovering the original pixel values, iterated conditional modes (ICM), was proposed by J. Besag
[19]. At each iteration of ICM, each pixel is assigned the value maximizing its posterior probability
given the values of all neighboring pixels. This procedure is repeated until convergence.

For the problem of computing object locations under the model p(X,n|f), an analogous algo-
rithm chooses, at iteration t, object locations from the conditional p(x|Xt, nt, f). For the purpose
of this section, let F (i, j) = f(i∆x, j∆y) be a quantized image with 0 ≤ i∆x, j∆y ≤ 1 and i, j ∈ Z.
∆x and ∆y are the quantization steps in the horizontal and vertical directions, respectively.

CHAPTER 2. OBJECT LOCALIZATION 27

n = 95

n = 97

n = 99

n = 101

n = 103

n = 105

80 90 100 110 120

−
5

0
5

1
0

Greedy iteration

N
e

g
a

ti
v
e

 l
o

g
 o

f
P

a
p

a
n

g
e

lo
u

 d
e

n
s
it
y

Figure 2.8: Negative logarithm of the Papangelou conditional density over iterations of the greedy
algorithm, averaged over 25 trials. The prior for n was set to a mean intensity of
β = 100 objects for all six experiments, while the simulated number of objects varied
between 95 and 105. These functions have a change in the sign of slope when reaching
the true object count, which is a suitable feature to determine termination of the
greedy object localization algorithm.

Suppose that at iteration t, the set Xt contains nt points. The algorithm proceeds iteratively,
selecting the point (i, j)t+1 = argmax p((i, j)|Xt, nt, f). Selection of a new point is a linear time
operation in the number of pixels, i.e., each iteration is in O(∆−1

x ·∆−1
y). Therefore, it is a greedy

algorithm that selects points according to the Papangelou conditional density, cf. Sec. 2.4.1, given
by

p(x|Xt, nt, f) =
p(Xt ∪ {x}|nt + 1, f)

p(Xt|nt, f)
. (2.33)

Because of n being unknown, the stopping rule is an important point when applying this greedy
algorithm. Consider Fig. 2.8, which shows the negative logarithm of (2.33) for six different values
of n. For each value of n, the corresponding curves show a sign change in the first derivative in
the corresponding iteration.

For the results reported below, the termination condition was a decrease of the Papangelou
conditional density in five consecutive iterations. Using such a stopping rule, this greedy multi-
ple object localization algorithm automatically chooses a number n of objects according to the
posterior probability p(X,n|f).

This concludes the description of the proposed model of multiple objects in the plane, which com-
bines point process models with machine learning and localization algorithms. This combination
results in a trainable system for multiple object localization. Next, this system will be evaluated.

28 2.6. RESULTS

(a) PSNR 10.63 dB (b) PSNR 9.14 dB

Figure 2.9: The images used for experimental evaluation are 320×320 pixels large, containing n
solid discs with radius 8 pixels each, where n is a Poisson random number with mean
β = 100. Independent normally distributed noise was added to each pixel, followed by
a 3×3 low-pass filter given by Eq. (2.34). Depending on the amount of additive noise,
this process results in images at different noise levels, which is measured in terms of
the PSNR.

2.6 Results

Experiments on simulated data are performed to quantitatively evaluate and compare the proposed
models for the image likelihood and methods for optimization against each other, and also against
selected alternative control methods. The insights gained from these experiments will be used to
settle on one combination of the above described algorithms, resulting in a system that is then
ready to be applied to real data, later in this chapter.

2.6.1 Design of experiment

The experimental evaluation conducted in this section will be performed on simulated data. White,
non-overlapping discs on black background are used to model a multiple object localization prob-
lem. White Gaussian noise is added to each pixel, followed by a low-pass filter given by

0.05 0.1 0.05
0.1 0.4 0.1
0.05 0.1 0.05

 (2.34)

.

This procedure produces images with correlated noise such as those in Fig. 2.9. Changes to the
variance of the additive noise component result in images at different noise levels. For quantifying
image quality, the peak signal-to-noise ratio (PSNR) is an established measure, especially in the
context of image compression, see e.g. [158, Ch. 1]. Let fmax denote the maximal signal value, i.e.,

CHAPTER 2. OBJECT LOCALIZATION 29

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

εε

εε

εε

Detected object location

Type II error (false negative)

True positive

Type I error (false positive)

Figure 2.10: For evaluating localization performance, estimated object locations are counted as
true or false detections, depending on whether or not they are within a distance ε of
a true object location. Only one estimated location can be assigned to an object at
a time.

the highest pixel value in a noiseless image. The PSNR,

PSNR = 10 log10

f2
max

MSE
, (2.35)

relates fmax to the pixel-wise mean square error (MSE) between noiseless and distorted image.
fmax = 200 for the experiments on simulated data reported in this section. This particular choice
of fmax, and a corresponding value fmin = 50, allowed to store the sum of the original pixel values
and the random noise component in 8 bit data format without truncation, in most cases.

All experiments reported in this section were performed on 320×320 pixel images containing
non-overlapping solid white discs with radius 8 pixels, generated using random sequential adsorp-
tion (RSA) [161]. In RSA simulation, random object sites are sequentially added to X under the
condition that the new points do not intersect any of the existing points’ discs in X. This process
repeats until reaching the required number of objects, n, or until no more points can be added. n
is a Poisson random variable with mean β = 100.

2.6.2 Error measures

Result of the simulation process outlined above is an image f and a set X∗ of object locations.
Similarly, the statistical multiple object localization method proposed in this chapter yields a set
X of estimated object sites. Fig. 2.10 illustrates the types of errors that may occur.

These errors can be identified by solving the minimum cost assignment problem on the dis-
tance matrix between the points in X∗ and X. The Hungarian algorithm solves this problem
in polynomial time, resulting in a unique assignment between true and estimated points [88]. If
|X∗| 6= |X|, either some estimated or true object locations remain unassigned, resulting in false
positive or false negative errors, respectively. Furthermore, by introducing a distance threshold
ε, only those estimated locations that hit one of the simulated objects will be accepted. As the

30 2.6. RESULTS

radius of the simulated objects is 8 pixels, ε = 7 is used throughout this section. For the results
on real-world application data that will be reported in Sec. 2.7, this threshold ε will be chosen
according to the object size in each dataset. An open-source implementation of the Hungarian
algorithm by B.M. Clapper1 was used for computations.

The receiver operating characteristic (ROC) is an established graphical method for comparing
the performance of different classifiers [70, Ch. 9]. It analyzes the trade-off between true and
false positives as a function of the system’s sensitivity. Usually, the class-posterior probability
is thresholded at different levels. The higher this threshold, the less false positive errors are
registered, since only very few observations will be accepted as positive classifications.

To transfer this concept to multiple object localization, an analogous parameter governing the
trade-off between true and false positives is required. By modifying the prior p(n) from a small
to a large number of expected objects in image f , the size of the resulting set X will increase.
As both the Metropolis-Hastings and the greedy algorithms choose points with high-probability
first, a behaviour similar to that of thresholding a class-posterior probability in classification tasks
is expected. However, note that especially for the RJMCMC sampler the functional dependence
between prior p(n) and the resulting number of points |X| will not necessarily be monotonic.

Therefore, the ROCs shown below were forced to be monotonically increasing by discarding
points for which the true positive rate was decreasing with an increasing false positive rate.

Within these limitations, the ROC is a suitable tool for comparing different localization al-
gorithms. The area under the ROC curve (AUC) is a common scalar figure for comparing the
performance, assuming a value of 1 for a perfect classifier. The AUC will be used below to achieve
a ranking of different methods.

2.6.3 Control methods

Three standard image analysis algorithms will be used as references for judging the quality of the
results of the proposed method. Especially in the medical image processing literature, thresholding
[1, 152, 73, 124], morphological segmentation (watershed transform and others) [16, 30, 56, 84, 98,
115, 123], and MLPs [151, 159] are frequently used for object localization and counting. None of
these methods has an explicit model of object geometries or the spatial arrangement of objects in
images. Therefore, these will be used as control methods against the proposed statistical object
localization method, both as control experiments against the state of the art and in order to
demonstrate the benefits of using spatial models.

• Isodata thresholding – Isodata thresholding is an iterative algorithm for binarizing images.
After some smoothing, it is applied to obtain a binary image, connected components are
identified and the corresponding coordinates computed. This procedure is implemented
using the ImageJ software package [138], with the exact source code listed in App. B.

• Watershed segmentation – Watershed segmentation is a morphological image transformation
that segments an image into disjoint regions. Starting from a binarized image, a distance map
from all foreground pixels to the background region is computed. This distance map is used

1http://www.clapper.org/software/python/munkres/

http://www.clapper.org/software/python/munkres/

CHAPTER 2. OBJECT LOCALIZATION 31

by the watershed transformation to estimate the extent of individual objects. Watershed
segmentation has the capability to separate overlapping objects. This control method is also
implemented using the ImageJ software package [138], with the exact source code listed in
App. B.

• Nonmaximum suppression – The output of the convolutional neural network or support
vector machine classifiers are approximations of the image likelihood p(f |x) at each pixel x.
Without applying a spatial constraint in form of a prior, the object locations can be found
by identifying the local maxima in this likelihood function. Nonmaximum suppression finds
these local maxima by suppressing all pixels that are not at least as likely as all pixels in
their surround.

For the isodata and watershed controls, ImageJ (version 1.41c) was chosen for its wide-spread
use in medical image analysis.

2.6.4 Localizing objects with equal sizes

This section presents quantitative localization results for circular objects with equal sizes. The
presentation of the empirical results will be split in two parts. First, the combinations to compute
the image likelihood term (Gaussian noise model, MLP, SVM) and to select object locations
according to the spatial model (RJMCMC sampler with annealing, greedy) are tested among
each other. Second, the variant of statistical multiple object localization chosen based on these
results is compared to the three control methods introduced above. All evaluations use the ROC
measurements introduced in Sec. 2.6.2.

Experimental details

320 × 320 pixel training and testing images containing a mean number β = 100 of objects were
generated as described in Sec. 2.6.1. Square image patches containing the raw gray values were
extracted from the images. These 28 × 28 pixel large image patches provide the input to the
likelihood estimation methods. No feature extraction was performed. For the SVM model, this
results in 784-dimensional input vectors. The training data consisted of positive examples at
the true object locations and their immediate neighbours. Negative background examples were
collected by randomly sampling patches from all remaining background pixels (no closer than
three pixels to any object location). As described in Sec. 2.3.1, all patches are randomly distorted
(rotation and shear) to improve generalization performance.

The MLP model used here was a convolutional neural network, cf. Sec. 2.3.1, with a total of 50
convolutional features followed by a fully connected layer of 20 units. Backpropagation training
with fixed rate and early stopping was used (35 iterations). For the SVM model, the SVM-light
software [77] with the extensions outlined in Sec. 2.3.2 was used with a polynomial kernel (degree
2).

The annealing schedule of the RJMCMC sampler was tuned such as to yield similar runtimes
as the deterministic greedy algorithm. The temperature parameter H in (2.32) decreased from

32 2.6. RESULTS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

MLP / greedy

SVM / greedy

Gaussian / greedy

MLP / RJMCMC

SVM / RJMCMC

Gaussian / RJMCMC

(a) PSNR 9.90 dB, ε = 7

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives
T

ru
e

 p
o

s
it
iv

e
s

MLP / greedy

SVM / greedy

Gaussian / greedy

MLP / RJMCMC

SVM / RJMCMC

Gaussian / RJMCMC

(b) PSNR 9.48 dB, ε = 7

Figure 2.11: Performance comparison of different implementations of the statistical multiple object
localization method, at two noise levels. True and false positive rates were evaluated
on 100 test images, ROCs were obtained by varying the intensity parameter β from
0 to 200. Overall, the greedy algorithm for selecting the points X outperforms the
RJMCMC sampler, with a slight advantage for the likelihood function computed
using the SVM.

4.0 to 0.3. The runtime of either algorithm remained below 30 seconds per image on a 2.4 GHz
CPU.

Different implementations of the proposed method

Fig. 2.11 shows the performances of different implementations of the proposed method, leading to
three observations, which hold across all noise levels, two of which are shown here.

1. Trained image models are superior to the fixed likelihood model based on an additive noise
assumption, especially when the noise level increases.

2. Among the two tested trainable image models, SVMs outperform MLPs.

3. The deterministic greedy algorithm outperforms the stochastic RJMCMC sampler, but the
difference in performance also depends on the chosen representation of the image model.

These results justify the combination of machine learning and spatial interaction point process
models proposed in this chapter. By using trainable models such as support vector machines or
multilayer perceptrons for the image model in (2.2), spatial statistics models become applicable
to more complex computer vision tasks.

One peculiar feature about both plots in Fig. 2.11 is that while the greedy algorithm generally
outperforms the RJMCMC sampling method, the margin of improvement is larger for the MLP-
computed likelihood than for the SVM-computed and Gaussian ones. To explain this difference,
consider Fig. 2.12, which depicts a test image at a noise level of 9.48 dB along with the three

CHAPTER 2. OBJECT LOCALIZATION 33

(a) Test image (SNR 9.48 dB) (b) Gaussian likelihood

(c) MLP likelihood (d) SVM likelihood

Figure 2.12: The likelihood maps computed using the three alternative methods described in this
chapter have different characteristics. Note that the SVM method results in narrow
peaks at object locations. In practice, this narrows down the state space explored
during RJMCMC sampling, thus explaining the image model-dependent differences
between the greedy and RJMCMC algorithms in Fig. 2.11.

differently computed likelihood maps. The SVM method results in narrower peaks at the true
object locations.

The greedy algorithm performs line-scans to add one point x to the set X at a time, considering
every pixel in every iteration. In every step, it optimizes the trade-off between the likelihood of
an object location and the spatial arrangement of the current points in the set by an exhaustive
search (Sec. 2.5.2). Thus, only points with locally maximal likelihood are selected.

RJMCMC sampling, on the other hand, maintains a set of points X, and randomly adds,
deletes, or moves points (Sec. 2.5.1). The annealing mechanism is responsible for easing the
sequence of generated states into solutions that are more probable according to the given model.
When using the SVM-computed likelihood model in Fig. 2.12(d), the effective search space is
smaller compared to the MLP-computed one. Thus, more sampling steps are required to reach a
good point configuration when using MLPs as image models. This explains why the performance
difference between greedy search and RJMCMC sampling is smaller for the SVM-based model.

Considering the area under the curve (AUC) as a performance measure leads to an ordering of
the methods, which is consistent across both tested noise levels, cf. Tab. 2.1. Clearly, the SVM-

34 2.6. RESULTS

9.90 dB 9.48 dB
Method AUC Rank AUC Rank
SVM / greedy 0.960 ± 0.00405 1 0.958 ± 0.00229 1
MLP / greedy 0.946 ± 0.00236 2 0.927 ± 0.00446 2
SVM / RJMCMC 0.947 ± 0.00236 0.902 ± 0.00299 3
Gaussian / greedy 0.873 ± 0.00377 4 0.748 ± 0.00644 4
Gaussian / RJMCMC 0.846 ± 0.00368 5 0.739 ± 0.00382 5
MLP / RJMCMC 0.763 ± 0.0102 6 0.651 ± 0.0139 6

Table 2.1: Ranking the different implementations of statistical multiple object localization in terms
of the AUC shows that SVM-computed likelihood with greedy point selection performs
best. The difference in AUC between “MLP / greedy” and “SVM / RJMCMC” at the
9.90 dB noise level is not statistically significant. Therefore, these two methods are tied
in rank at that noise level.

computed likelihood function uniformly outperforms the MLP one in these two experiments.
As the performance gain is small (0.014 and 0.031 in terms of the AUC measure in Tab. 2.1),

all remaining experiments will be performed using the MLP as image model, nevertheless. The
reason for the MLP being the method of choice is the following: For the results in Fig. 2.11, the
SVM could discriminate between the object and non-object classes based on vectors of gray values
alone. Real-world images such as those that will be considered in Sec. 2.7 contain more complex
object shapes. For optimal performance, SVMs require the selection of features that encode these
object properties well [35]. Convolutional neural networks, on the other hand, can be applied
directly, making them more versatile than SVMs.

Comparing to standard algorithms

Next, statistical object localization is evaluated against the three standard image processing meth-
ods listed above. For the nonmaximum suppression method, ROCs can be computed by thresh-
olding the likelihood map and accepting only those local maxima that exceed this threshold. The
isodata and watershed methods, on the other hand, result in a set of coordinates. There, true
and false positives are evaluated in the same manner as for all other methods, and represented by
points in the ROC plots.

Fig. 2.13 shows that applying spatial statistics to the MLP output significantly improves local-
ization accuracy. While the isodata thresholding method fails, watershed segmentation of circular
particles can reach up to the performance of the proposed methods (Fig. 2.13(a)), but its accuracy
decreases at higher noise levels (Fig. 2.13(b)).

The good performance of the watershed method can be explained as follows. By applying the
watershed transformation on a distance map, it implicitly applies a spatial constraint: Particles
may not be too close to one another. In that sense, it is more related to the proposed method than
the isodata and nonmaximum suppression methods. As the spatial constraints are only implicitly
enforced in the watershed method, and as it can not adjust automatically to higher noise levels as
the proposed method during the training phase, its performance decreases from some point on.

This last statement is illustrated more explicitly in Fig. 2.14, where the ROCs of the proposed
and the controls are shown over a range of noise levels, rather than at only two selected ones.

CHAPTER 2. OBJECT LOCALIZATION 35

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

MLP / greedy

MLP / nonmax

isodata

watershed

(a) PSNR 9.90 dB, ε = 7

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

MLP / greedy

MLP / nonmax

isodata

watershed

(b) PSNR 9.48 dB, ε = 7

Figure 2.13: Performance comparison of statistical multiple object localization against three con-
trol methods. The true and false positives were computed as the mean over 100 test
images, ROCs were obtained by varying the intensity parameter β from 0 to 200.
The watershed and isodata methods do not have a corresponding parameter that
could be varied, and therefore their localization performances are shown as points in
this plot. The spatial model leads to superior localization performance. Watershed
segmentation can reach up to the performance of the proposed approach.

It shows that applying spatial statistics to the outputs of an MLP uniformly outperforms other
localization approaches at all tested noise levels.

2.6.5 Localizing objects with varying sizes – preliminary results

This sections presents some early results on localizing objects with varying sizes, based on the
marked pairwise interaction softcore process described in Sec. 2.4.3. Images of solid white circu-
lar objects with a uniform distribution of the object radii, p(r), were generated (Fig. 2.15). A
convolutional neural network was trained on one of these images with the additional object size
parameter passed directly to the hidden layer, as described in Sec. 2.4.3. The size parameter r
was rounded to integer values, encoded as a binary array, and normalized to the interval [−1, 1],
independently in each dimension. Thus, an object radius of 3.2, for instance, would be encoded as
a vector (−1,−1, 1,−1,−1, . . . ,−1)t, where the length of this vector is chosen as the maximal ex-
pected object radius. As the distance parameter σ follows from the point marks, pseudo-likelihood
estimation of the softcore parameters is not required in this case. The point process intensity β

was set to the point density in the training image.
To fit this model to an image f , a modified variant of the RJMCMC sampler was used,

cf. Sec. 2.4.3. That is, in a “move” event, the mark ri of the selected point i is randomly shifted
and the initial mark of a new point is drawn randomly from a uniform distribution.

The result of one run of this extended sampler is shown in Fig. 2.15. Setting the error threshold
to ε = 12 results in 10.1% false positive and 71.0% true positive rate in that image. Comparing
the cumulative distribution functions of the true and estimated object radii in Fig. 2.15(b) shows

36 2.7. APPLICATIONS

P
S

N
R

 [
d
B

]

9.5

10.0

10.5

False positives

0.0

0.2

0.4

0.6

0.8
1.0

T
ru

e
 p

o
s
itiv

e
s

0.0

0.2

0.4

0.6

0.8

1.0

Greedy

Nonmax

Isodata

Watershed

Figure 2.14: Statistical multiple object localization performs superior to simple nonmaximum sup-
pression of the likelihood function computed using a MLP and to segmentation-based
localization, not only at the two noise levels depicted in Fig. 2.13, but uniformly across
a wide range of noise levels.

that the sampler underestimates the object sizes, which can also be seen in the corresponding
marker image. The correlation coefficient of the estimated radii and their matched true objects
(again using ε = 12) is 0.838.

Clearly, these results remain below the localization accuracies of uniformly sized circular objects
reported earlier in this chapter. The reason for this performance drop lies in the larger state
space that needs to be searched during sampling. Adding the marks increases the searched space
from 2 spatial dimensions to 3 dimensions. By the curse of dimensionality [21], this leads to an
exponential increase in volume of the searched interval. Consequently, the random initializations
and shift operations performed during RJMCMC sampling have a drastically lower probability of
reaching a high density state.

2.7 Applications

To demonstrate the practical applicability of the proposed localization method not only on simu-
lated, but also on real-world data, this section shows applications of the fixed object size model in
histology and materials research. All images used in this section were hand-labeled. To make best
use of the labeled data, cross-validation is applied to estimate performances: The proposed method
is trained on m− 1 images and the generalization error on the remaining image is computed. The
final error measure is the mean of m cross-validation measurements. Three application examples
have been selected, one from the medical field and two from materials science.

The first concerns the localization and classification of meningioma tumor cells in histological
resections. Meningiomas are tumor cells of the meninges (linings of the brain). They are usually
benign, but histological grading is required to predict the risk of recurrence after surgery. Sec. 2.7.1
applies statistical multiple object localization to microscopical images of such tumor cells and
introduces a method for classification of the detected nuclei.

CHAPTER 2. OBJECT LOCALIZATION 37

(a) Localization of circular objects of varying
sizes.

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

radius

P
(r

a
d

iu
s
)

estimated

true

(b) Cumulative distributions of true and esti-
mated object sizes.

Figure 2.15: Example of fitting objects of varying sizes to an image using RJMCMC with anneal-
ing. The sampler underestimates the true object size, but captures the low count of
objects with radii 5 to 7 well.

Next, the proposed method is applied to slices from micro computed tomography (µCT) data of
a fiber-reinforced polymer. Fiber-reinforced polymers consist of a matrix of plastics (e.g. epoxy)
and inserted fibers (e.g. glass or carbon), which provide the structural strength of these light-
weight materials. The distribution of these fibers throughout a specimen is of interest in materials
engineering, either for improving production processes, or for failure analysis after a probe has
undergone mechanical stress. In either case, µCT-imaging is the only means for in-situ analyses,
and Sec. 2.7.2 demonstrates how to locate fibers in such data.

Detecting the locations of copper particles in µCT-images at the beginning of a sinter process
is the topic of the third application (Sec. 2.7.3). In general, sintered materials are produced
from powders (e.g. ceramics or metals) by applying heat and/or pressure until they adhere to
one another. They have a large surface area and by compressing the particles into dies, sintered
materials are readily produced in different shapes. Therefore, they find their applications e.g. in
catalysts and filters. The goal of some recent studies was to investigate the behaviour of particles
during the sinter process, a task that requires detection of locations of individual particles.

2.7.1 Localization and classification of meningioma cells

Computerized image analysis has emerged as a powerful tool for objective and reproducible quan-
tification of histological features. DNA ploidy measurement, quantification of immunohistochem-
ical markers, nuclear quantification, texture analysis of chromatin, and morphological diagnostics
based on algorithms applied to multiple descriptors of tumor cells are the main application areas
of computerized microscopy in pathology. For example, according to the grading system of the
World Health Organization (WHO) of brain tumors, quantification of histologic features (mitotic
index, cellular density, and Ki-67 labeling-index) are essential in the grading of meningioma cells

38 2.7. APPLICATIONS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

mean deconvolution w/o 04 and 06

meningioma H&E 01 − 06

mean w/o 04 and 06

(a) Meningioma H&E (ε=20)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

mean deconvolution

meningioma Ki67 01 − 06

mean

(b) Meningioma Ki-67 (ε=20)

(c) Locations in meningioma H&E 01
(color image converted to grayscale for bet-
ter visualization; image source: Uni Saar-
land)

(d) Locations in meningioma Ki-67 04
(color image converted to grayscale for bet-
ter visualization; image source: Uni Saar-
land)

Figure 2.16: Results from cross-validation experiments on the two “meningioma” application ex-
amples against an alternative method [84]. Performance of the two is similar on
resections treated with Ki-67 antigen, where cells are clearly differentiable by color.
Cells stained with standard H&E dye are detected with higher accuracy by the system
proposed in this chapter. “H&E 04” and “H&E 06” contain cells and deformations
that are not present in any of the remaining images, cf. Fig. 2.17 and are therefore
ignored in the cross-validation average.

[113]. Computerized image analysis may enable an objective, standardized, and time-saving as-
sessment of these prognostic features. However, pixel-based methods at present are still afflicted by
segmentation and classification problems. Different segmentation [84] and classification [85, 171]
methods for Ki-67 antibody-labeled meningioma cells have been proposed.

The data for this application example consists of six images of each H&E-stained and Ki-67
antigen labeled images. H&E (hematoxylin and eosin) is a standard dye in histology, which stains
tissue and cell nuclei, making them visible in light microscopy. Ki-67, on the other hand, is a

CHAPTER 2. OBJECT LOCALIZATION 39

(a) Typical image area containing
mostly meningioma cells and lym-
phocytes

(b) H&E 04: A large calcified area (c) H&E 06: Erythrocytes and dis-
torted cells

Figure 2.17: From the six images in the meningioma H&E dataset, images 04 and 06 contained
cell types and deformations that were not present in any of the other images. This
made them unsuitable for the cross-validation experiments reported in this section,
where the object localization method was trained on all but the image on which test
errors were measured.

protein that marks cells that are proliferating.

The images are 640× 480 pixels large, and contain 370 cells on average. For all twelve images,
an experienced pathologist provided cell locations and the corresponding cell types. While in the
H&E-stained images, there are mainly meningioma tumor and normal cells, in the Ki-67 images,
there exist both meningioma cells that have been labeled by the antigen (brown appearance), and
meningioma cells that have not been labeled. Additionally, there are again non-tumor cells visible.
The non-tumor cells fall into smaller categories, for a full list see the annotations in Fig. 2.18.

The task here is not only localization of cells, but also classification into one of a total of seven
groups of cells. Therefore, a two step procedure is applied. First, the localization method from
above is used to locate the cells. For this purpose, the proposed localization model is trained on all
but one image at a time, using only a grayscale representation of the original images. In the results,
the greedy algorithm from Sec. 2.5.2 detects object locations. At each of these locations, a high-
dimensional, Haar-like feature descriptor (also including color), see [171], is extracted. Then, each
detected point is assigned to one of seven cell types using k-nearest neighbor (kNN) classification
with all but the samples from the current image. The kNN classification algorithm here assigns
cell types by picking the most frequently observed class label among the k training data points
that are closest in feature space to such a detected point in terms of Euclidean distance. As
multiple object localization, not object classification, is the topic of this chapter, kNN is chosen
here for its simplicity and generally good classification performance [120]. The parameter k was
chosen experimentally, but did not have a large impact on the classification accuracy (e.g., the
classification accuracy in the H&E dataset, see below, did not vary by more than 3% for values
of k between 1 and 13). In the following k = 5 will be used, which gave a good trade-off between
accuracy and runtime.

Localization performance for the H&E and Ki-67 data is given in Fig. 2.16(a) and 2.16(b), re-

40 2.7. APPLICATIONS

0

0

0

0

0

0

0

0

0

0

1

1

0

2

0

0

0

0

2

0

9

0

0

2

25

2

0

5

0

0

21

9

147

1

101

0

0

0

0

0

0

0

0

6

14

25

89

2

1313

c
a

lc
if
ie

d

c
o

lla
g

e
n

e

e
n

d
o

th
e

lia
l

e
ry

s

n
o

rm
a

l

N
O

S

tu
m

o
r

calcified

collagene

endothelial

erys

normal

NOS

tumor

True cell type

k
−

N
N

 r
e
s
u
lt

(a) Classification performance in meningioma
H&E 01 images (overall accuracy 83.6%)

0

0

0

0

11

0

1

0

0

0

0

0

0

0

1

0

69

1

1

5

4

0

0

0

0

0

0

0

19

3

39

9

1373

39

73

1

0

1

0

10

0

0

0

0

5

1

28

1

5

e
n

d
o

th
e

lia
l

e
ry

s

la
b

.
tu

m
o

r

lim
e

n
o

n
la

b
.

tu
m

o
r

n
o

rm
a

l

N
O

S

endothelial

erys

lab. tumor

lime

nonlab. tumor

normal

NOS

True cell type

k
−

N
N

 r
e
s
u
lt

(b) Classification performance in meningioma
Ki-67 images (overall accuracy 85.1%)

Figure 2.18: Confusion matrices for a kNN classifier (k = 5) applied to local image features at
the locations detected as described above. Abbreviations used here: “NOS” – not
otherwise specified, “erys” – erythrocytes, “nonlab.” / “lab.” – (non-)labeled tumor
cells. On the H&E data, the number of false positives, i.e., normal cells that have been
classified as tumor cells, is large. A more sophisticated classifier may be needed. The
kNN classifiers performance in differentiating between labeled and non-labeled tumor
cells in the Ki-67 data, on the other hand, is much better. This can be explained by
the clear differentiability of these two cell types in color space, caused by the Ki-67
antigen and subsequent counterstaining with hematoxylin, cf. [84].

spectively. Clearly, the overall performance is better in the Ki-67 case. For the H&E series, observe
the results for images No. 04 and 06, which are outliers in these results. These images contain
different cell types that are not present in any other images, see Fig. 2.17. These image-specific
cell types could not be learned in the present cross-validation experiments, and the corresponding
two ROC curves are therefore omitted when computing the mean localization performance on the
H&E data.

Next, the kNN classifier implementation available in GNU R [136] (Version 2.4.1) was used
to assign each of the detected points to one class of cells. The results are given in the form of
confusion matrices in Fig. 2.18. The true detections were compared against the labels of their
matching correspondences in the given ground truth data. Once again, the overall performance
on the Ki-67 data is better than on the H&E data. Using the Ki-67 antigen, the immuno-positive
cells become clearly differentiable in color space, which eases the classification task.

Using this combination of multiple object localization and classification, the labeling-index
(LI), i.e., the ratio of the number of immuno-positive cells and the total number of cells, can
be computed. This ratio indicates the fraction of cells in mitotic phase (cell separation), and is
used by pathologists as a prognostic feature for disease outcome [113]. Kim et al. described a
method for measuring the LI by separating the contributions of labeled and non-labeled cells into
separate images using color deconvolution [141], and segmenting the cell types separately using
the watershed method [84]. They also provide source codes of an ImageJ plugin implementing

CHAPTER 2. OBJECT LOCALIZATION 41

Dataset Ground truth Color deconvolution [84] This chapter
Ki-67 01 12.65 19.29 4.20
Ki-67 02 6.09 6.46 4.97
Ki-67 03 2.81 3.23 2.64
Ki-67 04 3.54 2.97 0.95
Ki-67 05 6.43 7.79 4.83
Ki-67 06 4.56 5.54 4.64
Mean error -1.53 ±1.06 2.31 ±1.29

Table 2.2: Labeling index (LI), indicating the fraction of cells in mitotic phase, computed on the
six images from the meningioma Ki-67 dataset using the proposed method and a control
method. The proposed method underestimates the LI, but the current experiment is
too small to make a final judgement on the significance of these results.

their method2.

Results comparing the performance of the method in [84] in terms of localization accuracy
and labeling index are shown in Fig. 2.16 and Tab. 2.2, respectively. For the results on the H&E
data in Fig. 2.16, the color deconvolution parameters for H&E dye were used together with the
identical segmentation procedure of [84] applied to the corresponding deconvolved channel. The
localization accuracy of the method proposed here is higher than that of the color deconvolution
method, especially in the H&E data, where the contrast between cells and tissue is lower than in
the Ki-67 case.

Classification accuracies from the 6-fold cross-validation experiments are similar for the Ki-
67 data. The proposed method underestimates the labeling index, cf. Tab. 2.2, but the high
mean error rate in this experiment can be attributed mostly to one image (Ki-67 01). As object
localization, rather than tumor cell classification, is at the focus of the present chapter, the main
conclusion from Tab. 2.2 is that assessment of prognostic histological features using the proposed
method is feasible. The cell classification performance using a simple kNN classifier is comparable
to that of the dedicated segmentation-based method reported in [84] (-1.5% and 2.3% error), but
a larger image database would be required for a final judgement.

2.7.2 Glass fiber reinforced polymer

Fiber-reinforced polymers play an important role wherever low weight and high structural load
are design requirements, e.g., in automotive and aerospace engineering. While the polymer ma-
trix is incompressible, the fibers contribute their high tensile strength to the overall material
properties. Therefore, information about the spatial and orientation distributions of fibers within
fiber-reinforced polymers is relevant for assessment of the mechanical properties of a specimen.

For references and a more comprehensive treatment of fiber-reinforced polymers, cf. Ch. 3,
which introduces a method for measuring the 3D-fiber orientation distribution from µCT data. In
the present context, statistical multiple object localization is applied to locate glass fibers in CT
slices through a glass fiber-reinforced polymer (GRP). This information is essential to locate low
fiber-density areas within a specimen (a potential source of material failure when put under stress),

2http://wwwalt.med-rz.uniklinik-saarland.de/neuropathologie/morph.html

http://wwwalt.med-rz.uniklinik-saarland.de/neuropathologie/morph.html

42 2.7. APPLICATIONS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

mean watershed

fibers 050 − 350

mean

(a) Glass fiber reinforced polymer (ε = 7)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positives

T
ru

e
 p

o
s
it
iv

e
s

llllll

mean watershed

sinter 01 − 05

mean

(b) Sinter particles (ε = 30)

(c) Locations found in fiber slice 250
(image source: IVW Kaiserslautern).

(d) Locations found in sinter slice 5 (im-
age source: BAM Berlin).

Figure 2.19: Results from the cross-validation experiments on the “sinter” and “fiber” application
examples. On this high-quality image data with good contrast and without any back-
ground clutter, the performances of watershed image segmentation and the method
proposed in this chapter are almost equivalent.

and may also be used in conjunction with stereological methods to infer the 3D-fiber orientation
distribution, see [80].

A sample of a GRP was provided by IVW Kaiserslautern (Institut für Verbundwerkstoffe) and
imaged using phase-contrast µCT at ESRF Grenoble (European Synchrotron Radiation Facility)
with a spatial resolution of 3.5 µm in each direction. The object localization model was trained
using leave-one-out cross validation, where one of the total 7 images was left out and used for
computing errors at a time. The results from this experiment are shown in Fig. 2.19(a). The
mean number of objects per image was 243.

There is no clear gain of using the statistical object localization method instead of simple
watershed segmentation. The performance of the two methods is comparable. Analyzing the
errors of either method on detail reveals that both methods introduce some false positive locations

CHAPTER 2. OBJECT LOCALIZATION 43

along the in-plane fibers. This was to be expected as these cases are not modeled.

2.7.3 Sinter particles

The sintering of metal and ceramic powders is routinely used in the production of high surface
density materials such as filters and catalysts. Nevertheless, some of the processes that occur are
not fully understood, to date. While the process has long been described by 1D and 2D-particle
models [44], there is a known discrepancy between predicted and measured volume shrinkage
[125], which has been attributed to 3D-particle motions that are not observable in 2D. Recently,
a series of studies has appeared that use time series of µCT-images to observe these 3D-motions
(e.g. [125, 126, 172]), leading to first 3D-models of sintered metal powders [99].

All these studies rely on the locations of individual sinter particles being available, and standard
algorithms such as watershed segmentations have been used to compute those [172]. As this is
a multiple object localization task in the sense of the present chapter, the localization of sinter
copper particles has been selected as a further application example. The probe for this experiment
was provided by BAM (Bundesamt für Materialforschung und -prüfung) and imaged by µCT with
a spatial resolution of 14 µm in each direction.

Again, the object localization model was trained using leave-one-out cross validation, where
one of the total 5 images was left out and used for computing test errors. The results from this
experiment are listed in Fig. 2.19(b), and the locations found in one of the images are shown in
Fig. 2.19(d). The expected number of objects per image was 40.

For this imaging situation of clearly defined, large particles on a homogeneous background,
localization of the sinter particles is almost perfect, both for the watershed image segmentation
and the proposed statistical localization methods.

2.8 Discussion

In this chapter, a novel combination of machine learning and point process densities was proposed
and applied to the task of locating multiple circular objects in images. For circular objects with a
fixed size, the novel method was shown to perform at least as well as standard image processing
algorithms that are in use today. Whenever the imaging situation gets more difficult, statistical
object localization performs better than the tested standard algorithms. This was observed consis-
tently both on simulated and application data. In experiments on simulated data, the performance
gain of the proposed method over standard algorithms increased with noise level. In applications
on real world data, the localization performance of the current and the watershed methods were
similar on the “fiber” and “sinter” data sets. For the “meningioma H&E” application, where
cluttered background and textured cell surfaces complicate the task, statistical object localization
showed more accurate localization results.

The use of statistical classifiers as image models eliminates the need to derive new likelihood
functions for every application, as was demonstrated by applying the proposed model to different
image data. This is an improvement over previously published applications of point processes to
vision tasks.

44 2.8. DISCUSSION

Among the three tested control methods (isodata thresholding, watershed segmentation, non-
maximum suppression), the watershed algorithm was the most accurate one, performing similarly
as the proposed method at low noise levels in the simulation experiment, and in the “fiber” and
“sinter” experiments. The watershed algorithm implicitly uses spatial constraints. As it produces
compact regions, false positive detections can be ruled out. As the amount of distortions in an
image increases, the smoothness of the distance map (on which the watershed method constructs
its segments) lessens and therefore localization performance descreases.

The proposed system can be seen as a statistical framework for object localization, in which
the image model and the fitting algorithms can be exchanged independently. The performance
evaluation in Sec. 2.6.4 lead to the choice of combining convolutional neural networks with greedy
mode finding. This choice for the convolutional neural network model was made for the versatile
applicability to image data of this specific type of MLP. In fact, a SVM with sigmoid function fitted
to the decision boundary to compute probabilities performed slightly better than the MLP model
on simulated data, but would require to extract appropriate feature vectors from images when
applied to real world data. This was not the task of this chapter, but the presented experiments
show that if appropriate features were available, SVMs could be applied within the proposed
framework.

By choosing the softcore interaction model with Euclidean metric, the current method special-
izes on the localization of approximately equally sized circular objects. A preliminary experiment
with marked point processes applied to circular objects of varying sizes showed the feasibility of
incorporating object parameters, in this case radii, into the localization process. Yet, with 71%
true positives, localization performance was far below the results on objects with equal sizes. This
was explained by the increased dimension of the search space Therefore, different localization al-
gorithms will be required for handling marked point processes, which do not suffer from problems
in high dimensional spaces.

The most promising application domain of the current system lies in the field of histology, as
was shown on two datasets of differently prepared histological resections of meningioma tumor
cells. There, the method proposed in this chapter could improve localization performance by
utilizing its capability to adapt to complex object shapes and cluttered background.

The method described in this chapter represents the first application of interaction point pro-
cess theory to computer vision that is fully trainable and therefore applicable not to isolated vision
tasks, but rather to a broader range of multiple object localization problems.

Chapter 3

Estimation of Fiber Orientations

using Linear Filters

3.1 Introduction

The previous chapter introduced a trainable method for localizing circular objects in 2D-images.
One application example was the detection of fibers in planar cuts through a tomographic recon-
struction of a glass fiber-reinforced polymer. Using this method, the spatial distribution of fibers
can be assessed. But, as has already been outlined in Sec. 2.7.2, the spatial fiber distribution is
only one factor that influences a fiber-reinforced material’s mechanical properties, see e.g. [55, 71].

The fiber orientation distribution is one such other factor influencing the properties of various
fibrous materials. In medicine, for example, the effects of collagen fiber orientation on bone
strength have been investigated [117, 118]. There, it was found experimentally that collagen
fiber orientation is the main factor influencing bovine cortical bone tensile strength and bending
properties. In civil engineering, it is known that the fibers in ultra high performance concretes
should be aligned with the direction of main tensile stress [116, Ch. 3]. In materials science,
there has also been work towards understanding the influence of fiber orientations on materials’
properties. E.g., Fu and Lauke developed models for fiber lengths and orientations to study their
effects on the tensile strength of fiber-reinforced polymers [55]. For glass fiber-reinforced materials,
the effect of local orientations on stiffness and thermal expansion was experimentally investigated
in [71]. An important factor for the fiber orientation in the production of fiber-reinforced polymers
is the molding process, which has been investigated in simulation studies such as [109].

The class of materials with a fibrous microstructure is very wide, including e.g. wood, concrete,
polymers, paper and textiles. Fiber-reinforced materials play an important role in manifold appli-
cations. In civil engineering, ultra high performance concretes, which are very dense and contain
metal, carbon, glass or natural fibers for reinforcement, are currently an active field of academic
research and commercial development [116]. Examples for applications of fiber-reinforced plastics
include construction [11], and optimization of aircraft weight by applying carbon fiber-reinforced
polymers in fuselages [153].

45

46 3.1. INTRODUCTION

(a) Top-view of a glass fiber-reinforced polymer imaged by scanning
acoustic microscopy (image source: Fraunhofer EMI, Freiburg)

(b) Tomographic reconstruction of two fused
pieces of glass fiber-reinforced polymer (image
source: IVW Kaiserslautern)

(c) Tomographic reconstruction of a carbon
paper (image source: Fraunhofer ITWM
(dept. SMS), Kaiserslautern)

Figure 3.1: Visualizations of the three data sets used as application examples in this chapter. In
all of these images, segmentation of individual fibers using conventional morphological
or region growing methods is difficult and error-prone.

Three examples of fibrous materials that will be analyzed in this chapter are two fiber-reinforced
polymers and carbon paper, which is used as a gas diffusion layer in certain fuel cells (Fig. 3.1).
Apart from dedicated machinery such as described in [167] or a system using the diffusion of light
[160], most work on determining fiber orientation distributions has focused on images. These can
be obtained e.g. by ultrasound or tomographic methods [156]. Purely visual inspection of such
images has been performed, e.g. for examining short fiber reinforced plastics [82], and interactive
systems for identifying fibers in images have been proposed [5, 157].

Automatic analysis of fiber systems in such images is a long-standing topic of active research,
e.g. [32, 78, 81, 80, 102, 139]. As 3D-data has not always been available, stereology provided
spatial information from planar sections of materials [7]. Under some appropriate assumptions on
the fiber system, stereological approaches to measuring 3D-fiber orientations infer information on
the three-dimensional arrangement of fibers by observing their shape or number in two-dimensional
sections through a specimen. These sections can be obtained by confocal microscopy [32, 102],
scanning acoustic microscopy [78], X-ray imaging [139], or by microscopy of polished and etched

CHAPTER 3. FIBER ORIENTATION 47

microsections [80, 81]. Given a segmentation of individual fibers in 3D-images obtained by µCT,
the fibers’ orientation, spatial distribution or shape are accessible. Therefore, various segmentation
methods have been applied to fibers, e.g. [6, 38, 176].

Results from stereological fiber orientation estimators are mean results. E.g. the “rose of
directions” computed in [81] represents the direction of the fibers’ tangent vector in the typical
fiber point. Consequently, these systems do not allow for detection of local orientation measures.
Segmentation-based approaches, on the other hand, can also be evaluated locally. Unfortunately,
image quality is often low when imaging fiber-reinforced materials, making image segmentation a
difficult task.

Other approaches to measuring fiber orientations utilize gradient information. The first deriva-
tive is useful for edge detection and has been used to compute 2D-fiber orientation distributions
[57]. Second order derivatives are suitable to detect ridge-like structures such as fibers [43]. This
approach to orientation detection can be applied either to an image’s auto-correlation function
[122], or directly to a grayscale image, e.g. [34, 51, 144]. The advantage of these gradient-based
over segmentation-based methods is that they can detect subtle changes in an image’s gray values,
even when some segmentation algorithms may fail on that data.

In a similar spirit, filter-based methods utilize filter responses to select local orientations.
For two-dimensional images, matched [27] or quadrature [46, 62] filters have been proposed for
orientation estimation. M. van Ginkel’s thesis [62] treats the concept of orientation spaces, which
will also be used in the present chapter. Using anisotropic filters, orientation space accumulates
evidence for the preferred local orientation in images. This concept will be rigorously defined
in Sec. 3.2. Quadrature filters have been used for this purpose for their theoretical property of
zero response when applied to a constant signal. Westin et al. applied them to locally estimate
3D-orientation of bones in images [169]. Another common type of orientation-selective filters
are Gabor wavelets, which have also been used to construct orientation space representations of
2D-images [28, 29].

All of these papers use orientations obtained from filtering as inputs for further algorithms,
usually image segmentation or noise smoothing, not as relevant quantities on their own. An
exception to this rule is the recent work by Sandau and Ohser [143], who obtain 3D-orientation
distributions of fibers by measuring the length of oriented chords that can be inscribed to a
binary structure. The present chapter uses anisotropic Gaussian filters in 2D and 3D to compute
fiber orientation distributions. This novel, easily implementable approach to fiber orientation
measurement will be shown to deliver accurate results, and its performance will be compared
to the gradient-based approach outlined above. Results from the proposed method are different
forms of orientation measures such as discrete distributions on the sphere, orientation tensors or
mean fiber directions.

The orientation tensor, a moment matrix of the fiber orientation distribution, is frequently used
when simulating mechanical properties of fiber reinforced materials [25, 66, 83, 163]. Therefore,
results from the proposed method will be suitable for subsequent simulation studies.

Before proceeding, note that throughout this chapter the following distinction between the
terms direction and orientation will be made. A vector v ∈ Rd is a direction vector in the usual
sense that it is normalized, i.e. ‖v‖ = 1. Consequently, a direction is a point on the sphere Sd−1.

48 3.2. GAUSSIAN ORIENTATION SPACE

A fiber, on the other hand, is inherently symmetric. Consider a direction vector v that describes
the alignment of that fiber in some fixed point. In this situation, no distinction between v and
−v can be made, and a fiber will therefore be said to have an orientation, rather than a direction,
indicated by a point on the half-sphere. For the practically significant cases of d = 2 and d = 3,
this will by convention be the semicircle on the positive side of the x1 axis and the hemisphere on
the positive side of the x1x2-plane, respectively.

3.2 Gaussian orientation space

This section introduces the basic mechanism used in this chapter to measure orientations, the
Gaussian orientation space. Orientation spaces [62] are similar to the well-known scale spaces
[111] in image processing: To obtain the orientation space of an image, anisotropic filters with
varying alignment are successively applied to the image and the filter responses are collected
and indexed with the corresponding orientation parameters. Throughout this chapter, it will be
assumed that the fibers in a given 2D or 3D-image f all have equal diameter 2r, which is valid for
most fiber-reinforced polymers. Hence, coordinates x and directions v are defined in R2 or R3.
The only exceptions are the two orientation distribution descriptors covered in Sec. 3.4.1, which
are restricted to R3.

The method proposed in this chapter uses anisotropic Gaussian convolution filters gv, where
the vector v (‖v‖ = 1) describes the filtering direction. The choice of Gaussian filters is motivated
by practical considerations. Firstly, anisotropic Gaussian filters possess an intuitive parameteriza-
tion, and secondly, fast implementation of these filters is possible, see Ch. 4. This is an advantage
over quadrature filters, which have been used for this purpose e.g. in [45, 64, 75, 89, 62]. Different
forms of this type of filter have been proposed, and depending on the specific filter design, pa-
rameterization and implementation can be cumbersome. Quadrature filters possess a theoretical
property that is not shared by Gaussian filters: Their response is zero for constant signals, thus
identifying empty image areas. For the present work using Gaussian orientation space, the same
is achieved using a gray value threshold, see Sec. 3.4. Even though threshold-based binarization
is usually not suitable for segmenting individual fibers in CT reconstructions of glass or carbon
fiber-reinforced polymers, it is a well suited method for roughly identifying pixels belonging to the
polymer matrix. This is sufficient as the purpose of this chapter is to compute mean characteristics
of images.

In general, an orientation space is a high dimensional representation of an image, in which a
vector of filter responses to differently oriented filter masks is attached to each pixel. Especially
for 3D-images, the amount of thus generated data is prohibitively large. Therefore, only the
predominant orientation for every location x in an image f is recorded by choosing the maximum
filter response across a set of tested directions v. This results in the reduced orientation space
representation

O(x) = (r(x),v(x)), (3.1)

CHAPTER 3. FIBER ORIENTATION 49

x
2

x
1

V
2

V
1

s 1

s
2

(a) 2D (b) 3D

Figure 3.2: Level sets of a prolate Gaussian filter have the shape of prolate spheroids. The filter’s
major axis is aligned to the eigenvector v1 corresponding to the largest eigenvalue λ1

of the filter kernel’s covariance matrix Σ. These shapes are suitable for detecting fiber
orientations.

where

r(x) = max
v

[f ∗ gv] (x) (3.2)

v(x) = argmax
v

[f ∗ gv] (x). (3.3)

Here, ∗ denotes convolution. This shows that for O to be a meaningful representation of the image
f , the result of convolution must be maximized when the filter fits the local image structure well.
For the reasons outlined above, the proposed method uses anisotropic Gaussian filters of the form

g(x) ∝ exp
(
−1

2
xtΣ−1x

)
. (3.4)

The positive definite, symmetric matrix Σ describes the shape and orientation of the filter. For
detecting fibers in images, prolate filter kernel shapes will be used, which have one elongated
axis of symmetry. Assuming bright fiber structures on dark background, (3.2) then reaches its
maximum when the elements of Σ are set such that the kernel’s filtering direction v is aligned
with the local fiber structure. To see how Σ relates to v, consider its eigen decomposition

Σ = V DV −1 = V DV t =
(

v1 · · · vd
)

s1
. . .

sd

vt1
...

vtd

 , (3.5)

with eigenvalues si in descending order, and corresponding eigenvectors vi, i = 1, . . . , d. Since Σ
is symmetric, V is orthonormal, i.e., V −1 = V t, and all vi, have unit length and are mutually

50 3.3. SAMPLING ON THE HEMISPHERE

orthogonal, see e.g. [63].

For a prolate Gaussian kernel, the vector v1 indicates the direction of its axis of least inertia
(Fig. 3.2). Consequently, by setting v1 = v, s2 = . . . = sd = r, s1 = 2r and choosing arbitrary
direction vectors v2, . . . ,vd with vtivj = 0, ∀i 6= j, the matrix Σ of a prolate Gaussian filter kernel
for detecting fibers of known radius r can be computed using (3.5). The process of determining
d− 1 directions orthogonal to v1 could be implemented by Gram-Schmidt orthogonalization [63,
Ch. 5]. The resulting kernel’s aspect ratio of 2:1 works well in practice, smaller aspect ratios should
be used only for highly curved fibers. As V is orthonormal, the direction vectors v2, . . . ,vd all lie
in a hyperplane with normal vector v1. For the practically relevant cases d = 2, 3, Sec. 4.4.2 gives
explicit formulas for Σ that avoid the need to explicitly compute v2 and v3. Other factorization
of Σ will be discussed in Ch. 4.

3.3 Sampling on the hemisphere

Computation of the reduced Gaussian orientation space, introduced above, requires discretization
of the directions v when performing the search for the maximal filter response. In practice,
one computes (3.1) for a fixed number n of directions v1,v2, . . . ,vn. Due to the symmetries of
anisotropic Gaussian filters, the filter response to a fiber oriented along v is identical for the two
directions v and −v. Therefore, filtering must only be performed in directions sampled from the
semicircle or the hemisphere in 2D or 3D-images, respectively. In order to avoid systematic errors
in this process, it is important to sample these points uniformly. By representing a direction
v ∈ R2 on the semicircle in polar coordinates α ∈ [0, π[, n equal angular steps yield adequate
sampling directions vi. However, the task of finding n suitable directions that uniformly cover the
hemisphere is difficult, and different strategies have been used in the literature.

In a preceding publication, Robb et al. parameterized v ∈ R3, ‖v‖ = 1, in terms of polar
coordinates (θ, ϕ) and derived a formula for quantizing the upper hemisphere [140]. Choosing
the number of quantization steps along the colatitude θ and the longitude ϕ results in different
n. This had the disadvantages that the shapes of the sampling intervals varied strongly between
equator and north pole, and that the point (0, 0, 1)t could never be sampled precisely.

Faas and van Vliet used an icosahedron, i.e., a polyhedron with 20 triangular faces [45]. Placing
one sampling direction on each vertex of the icosahedron, they obtain 12 filtering directions vi,
i = 1, . . . , 12. To increase the number of samples, they imposed a hexagonal grid on each of
the 20 triangular faces, and projected the center of each face’s tessellations onto the sphere, see
[45] for details. This allowed them to flexibly choose the number of samples, but it is only an
approximation as the samples within each face are placed regularly in the plane, not on the sphere.

The authors of [143] have recently extended the so-called chord length transformation to 3D,
which also requires them to perform uniform sampling on the upper hemisphere. For this purpose,
they placed points on the hemisphere’s surface in planes parallel to the x1x2-plane, achieving an
approximately uniform distribution [127]. An algorithm for equal area partition of the unit sphere
into zones with small diameters, the recursive zonal equal area partition, was described in [104].
That algorithm is very efficient, but it is not easily modified to work only on the hemisphere.

CHAPTER 3. FIBER ORIENTATION 51

0

0
0

1

-1

1-1

1

x3

x1

x2

(a) Coarse sampling: 18 points,
33.1◦ mean distance to nearest
neighbor

0

0
0

1

-1

1-1

1

x3

x1

x2

(b) Medium sampling: 50 points,
19.7◦ mean distance to nearest
neighbor

0

0
0

1

-1

1-1

1

x3

x1

x2

(c) Fine sampling: 98 points, 13.8◦

mean distance to nearest neighbor

Figure 3.3: Sampling points on the upper hemisphere computed as described in App. C. These
points serve as filter directions in 3D when discretizing the maximization in (3.2).
With an increasing number of samples, the angular resolution of the orientation space
representation increases.

3.3.1 Approximately uniformly distributed points on the hemisphere

To compute appropriate sampling points for implementing the maximization in (3.1), the present
chapter follows the work of Fliege and Maier [49, 50], who computed sets of integration nodes on
the sphere using numerical methods. They began by maximizing the pairwise Euclidean distance
between n direction vectors vi ∈ R3, using a combination of simulated annealing and the Newton
method. Next, they computed the weight of each of these n points to be used for numerical
integration. These weights also served as a measure of quality of the detected arrangements on
the sphere.

This approach has advantages over the aforementioned sampling schemes: The number n of
sampling points can be chosen (not any number n is possible, though, see [50]), and since the
solutions are invariant to rotations, they can include (0, 0, 1)t as a fixed point. Furthermore, their
distributions are uniform on the sphere with high numeric precision. Results for up to 1600 points
on the unit sphere are available from the authors of [50]. Unfortunately, their original results are
not applicable here, for they represent uniformly distributed points on the sphere, rather than the
hemisphere.

Therefore, the approach in [50] was modified by simultaneously optimizing the pairwise dis-
tances of the n direction vectors vi and their counterparts on the lower hemisphere, −vi. This
results in n approximately uniformly distributed points on the upper hemisphere. Furthermore,
the three coordinate axis directions (1, 0, 0)t, (0, 1, 0)t and (0, 0, 1)t are fixed, therefore modifying
only the remaining n− 6 vectors vi and −vi when maximizing the pairwise distances. While this
constraint could have a negative impact on the quality of the optimization result, there is an im-
mediate benefit. These three coordinate directions are frequently used to make a quick judgement
about the isotropy or anisotropy of the structures in a given image. Therefore, it will be useful
from a practical point of view to be able to assign weights to these three directions.

All computational details, lists of the resulting vectors and of the corresponding cubature
weights are deferred to App. C. The optimization procedure was conducted for n = 18, 50, 98,
which will be referred to as coarse, medium and fine resolution, respectively. Fig. 3.3 visualizes

52 3.4. COMPUTATION AND INTERPRETATION OF THE ORIENTATION TENSOR

the distribution of the resulting points across the hemisphere for these three resolution levels.
These three sets of filtering directions allow for the user to choose a trade-off between runtime
and accuracy of the achieved results, which will be investigated in Sec. 3.6.

3.4 Computation and interpretation of the orientation ten-

sor

Using the results of this chapter up to this point allows for computation of the reduced orientation
space O(x) in each image pixel x. However, this representation of an image is not useful on its
own. This section therefore introduces methods for averaging and summarizing the orientation
information contained in O(x).

Orientation tensors, originally introduced by Tucker and Advani [163], are frequently used
for simplifying the computation of directional averages when simulating mechanical properties
of fibrous materials, see e.g. [25, 66, 83]. Let p be a density defined on the sphere Sd−1 with
p(v) = p(−v). Orientation tensors are then defined as the moments of the distribution p. The
second order orientation tensor aij ,

aij =
∫
Sd−1

vivjp(v)dv, (3.6)

is v’s correlation matrix and therefore represents an ellipsoidal approximation of p’s shape. Here,
vi denotes the i’th component of v, and i, j = 1, . . . , d.

The use of aij from an image analysis perspective is twofold. It comprises a convenient method
for averaging directional information over images or image areas, see below, and it can directly be
used in subsequent simulation studies using methods such as those described in the references given
above. Therefore, a number of authors have used aij to describe the orientation of fibers in images.
Among those are approaches for computing aij using stereological methods [42, 68, 102, 103], and
by integrating (3.6) over the responses of quadrature filters instead of p [89].

The question then arises how to compute aij from the reduced Gaussian orientation space
O(x). The solution is to use sample averages over all pixels belonging to the fiber system B,
which is identified by a global gray value threshold t0,

B = {x|f(x) > t0} , (3.7)

assuming that fibers appear with larger gray values than the background. In practical experiments
setting t0 to 10% above Otsu’s threshold [129] was sufficient for all datasets tried. To choose a
high threshold t0 is appropriate here as it eliminates pixels close to fiber edges, where orientation
estimates are least stable. In a window W , aij is then estimated by

âij =
1

|W ∩B|
∑

x∈W∩B
vi(x)vj(x). (3.8)

CHAPTER 3. FIBER ORIENTATION 53

In matrix-vector notation, this leads to a sample second order orientation tensor TW ,

TW :=
1

|W ∩B|
∑

x∈W∩B
v(x)vt(x). (3.9)

For averaging over B ∩W to yield correct sample orientation tensors, a few conditions have
to be met. In stochastic geometry, random fiber processes are described by sets of finite smooth
curves. Their orientations are characterized by the tangential vectors of these curves, which posses
distributions that are random measures on the circle or sphere. For a rigorous definition, see [155].
Then, for a system of non-overlapping fibers, the distribution of the tangential direction vectors,
p(v), is a length-weighted distribution, since each fiber contributes proportionally to its length to
the overall probability mass. Under the assumption made above that all fibers have equal diameter
2r, this is also true for the sample mean over vvt in (3.9), as the number of pixels that a single
fiber contributes to B is proportional to its length.

A potential problem in evaluating (3.9) is the edge treatment. When observing stochastic
processes in finite areas W , realizations of large objects, in the present case long fibers, have a
higher probability of intersecting the boundary than small objects. This can lead to a bias in
the estimated quantity. Different methods to avoid this problem have been proposed, see e.g. [7,
Ch. 3] for an overview. These methods, however, all rely on individually segmented objects being
available.

As the present chapter introduces a method for orientation estimation that does not rely on the
segmentation of fibers, there is no immediate remedy for the edge correction problem. Therefore,
when estimating TW using (3.9), one has to either choose a sufficiently large observation window
W , or the orientation distribution of an individual fiber must be independent of its length. Whether
an observation window W can be considered sufficiently large depends on the length of the fibers.

3.4.1 Descriptors derived from the orientation tensor

The sample second order orientation tensor TW contains orientation information about the fibers
in window W . As it is computed as the sum of outer products, it is a symmetric, positive definite
matrix. Analogously to the matrix Σ in Sec. 3.2, the orientation tensor’s eigen decomposition,

TW = ΓΛΓ−1 = ΓΛΓt =
(
γ1 · · · γd

)
λ1

. . .

λd

γt1
...
γtd

 , (3.10)

with orthonormal matrix Γ and diagonal matrix of eigenvalues Λ, can be used to extract the
orientation information contained in TW [48]. Assume again that the eigenvalues are sorted in
descending order, λ1 ≥ . . . ≥ λd (all λi are positive due to TW being positive definite). The
quadratic form of TW , xtTWx = 1, describes an ellipsoid. Therefore, the mean fiber orientation
µ ∈ Rd is given by the eigenvector γ1 corresponding to the largest eigenvalue λ1 of TW ,

µ = γ1. (3.11)

54 3.5. FIBER MODELS FOR EVALUATING THE PROPOSED METHOD

The mean orientation, however, is relevant only for fiber systems that are aligned to one
orientation. Such fiber orientation distributions will be referred to as being of cluster-type, as the
tangent directions of such fiber systems are clustered around one point on the half-sphere. To
characterize other distribution shapes, the remaining eigenvalues of TW must also be taken into
account. Two nonparametric descriptors of spherical distributions for the 3D-orientation tensor,
denoted by T

(3)
W ∈ R3×3 to avoid confusions, are described in [48]. These 3D-descriptors, called

the shape and strength parameters of spherical distributions, are computed from the eigenvalues
λ1 ≥ λ2 ≥ λ3 > 0 of T (3)

W as

γ =
log(λ1/λ2)
log(λ2/λ3)

, (3.12)

ζ = log(λ1/λ3). (3.13)

These two numbers allow to differentiate between cluster-type, girdle-type and isotropic spherical
distributions (cf. Fig. 3.4):

• Cluster-type distributions on the sphere are characterized by shape values larger than one
(γ > 1), for the ellipsoid described by the second order orientation tensor will then have two
approximately equally long minor axes (log(λ2/λ3)→ 0), and the major axis in direction γ1

is longer than the minor axes (log(λ1/λ2)→∞).

• Girdle-type distributions concentrate their probability mass along a great circle of the sphere.
Fiber-systems corresponding to such distributions are arranged in layers and fiber orienta-
tions vary either within or among these layers. The ellipsoid described by the corresponding
T

(3)
W will have an oblate shape, λ1 ≈ λ2, and therefore log(λ1/λ2) → 0. Consequently,

girdle-type distributions can be identified by values γ < 1.

• The second order orientation tensor of an isotropic distribution has three approximately
equally large eigenvalues, i.e. λ1 ≈ λ2 ≈ λ3. Therefore, the strength parameter ζ tends to
zero, regardless of the shape γ.

These two descriptors allow for an easy characterization of spherical distributions. When a
cluster-type fiber distribution was identified, the mean orientation µ summarizes the corresponding
fiber system. The mean orientation µ of girdle-type distribution lies in-plane with the fibers. These
two parameters are capable of differentiating between these three principal forms of directional
distributions. However, due to the limitations of the second order orientation tensor, they do not
cover all possible distribution types. Especially mixtures of these basic forms can not be detected,
e.g., multimodal distributions or mixtures of cluster and girdle-types. Descriptors derived from
moments of higher order would be required.

3.5 Fiber models for evaluating the proposed method

This section introduces two models for fibers in 2D and 3D-images, which will be used below to
evaluate the quality of the proposed method for fiber orientation estimation. The first model is

CHAPTER 3. FIBER ORIENTATION 55

(a) A cluster-type orientation dis-
tribution (γ = 74.56,ζ = 1.87)

(b) A girdle-type orientation dis-
tribution (γ = 0.05,ζ = 1.67)

(c) An orientation distribution of
neither of the previous two types
(γ = 7.61,ζ = 0.30)

Figure 3.4: Histograms on the sphere for realizations from three types of orientation distributions,
showing how γ and ζ relate to different forms of distributions. The shape parameter
clearly distinguishes between cluster and girdle-type distributions (γ = 74.6 and 0.05,
respectively). The third one, which is neither a girdle nor a cluster-type is characterized
as an isotropic spherical distribution (ζ = 0.3).

an overlapping fiber process with a parameter governing the degree of curvature of each fiber. It
is suitable for comparing the proposed method against control methods in terms of the directional
accuracy that is measured in each pixel. The influences of noise, fiber curvature and density
can be assessed. Applications such as the analysis of fiber-reinforced polymers usually require a
characterization of the fiber orientation distribution, and methods for computing these have been
described in the previous sections. As sampling of curved fibers according to a fixed probability
density function on the sphere is difficult, this first fiber model is not suitable for an experimental
evaluation of these measures. Instead, these evaluations will be performed using a second model of
straight fibers, consisting of a system of non-overlapping cylinders. Using this model, experimental
validation of the proposed method for characterizing fiber orientation distributions is possible.

Regardless of whether the modeled fibers are straight or not, a measure for fiber density is
required. In stochastic geometry, the standard density measure of random fiber processes is the
length density LA or LV in R2 or R3, respectively [155]. The length density is the total length of
all fibers in an observation window divided by the area or volume of that window.

3.5.1 Curved fibers

Next, an algorithm for generating 2D and 3D-images of curved fibers is given. It generates fiber
paths by sampling direction vectors from distributions on the unit circle or sphere. The von
Mises and von Mises-Fisher distributions are often referred to as the equivalents of the normal
distribution on the unit circle [47] or unit sphere [48], respectively. In fact, the von Mises-Fisher
distribution is a generalization of the von Mises distribution. Both have two parameters, a mean
direction µ ∈ Rd and a spread parameter κ ∈ R, comparable to the mean and variance of the
normal distribution. For κ = 0, these distributions are equivalent to the uniform distribution on
the circle or sphere. As κ→∞, their probability mass concentrates around the mean direction µ.

These distributions are now used for defining Markov chains along fiber paths. Let (x1,x2, . . . ,xn)

56 3.5. FIBER MODELS FOR EVALUATING THE PROPOSED METHOD

x1

xn

xi

xi-1

vi

d1

1/2 (di-1 + di)

dn-1

Figure 3.5: To evaluate the performance of orientation estimation, simulated fiber systems are
used. The first model of curved fibers in R2 or R3 consists of n points xi and unit
length difference vectors di between consecutive points. The tangential direction vi
at a point xi is parallel to the vector from xi−1 to xi+1.

be a sequence of points in R2 or R3 with the property that ‖xi−xi−1‖ = 1, i = 2, 3, . . . , n. These
points describe the path of a fiber. To each point x, attach a direction vector d, ‖d‖ = 1, such
that

P = (p1, p2, . . . , pn) = ((x1,d1), (x2,d2), . . . , (xn,dn)) (3.14)

represents a fiber path and the vectors between adjacent points, di = xi+1 − xi. As all di are
unit vectors, the fiber’s tangential direction at point xi is parallel to the line from xi−1 to xi+1,
vi = 1/2(di−1 + di) (Fig. 3.5). P is a random variable with joint probability density function
p(P), which will be assumed to be a Markov-1 process with conditional density

p(pi| (p1, . . . , pi−1, pi+1, . . . , pn)) = p(pi|pi−1). (3.15)

This Markov-1 chain can model everything from smooth, almost straight fibers to paths with highly
irregular shapes. Assume stationarity of P . Then p(pi|pi−1) depends only on the difference vectors
di between consecutive points along a fiber path. Choosing the von Mises-Fisher distribution with
parameter κ for the conditional density leads to

p(pi|pi−1) =
κ

4π sinhκ
exp

{
κdtidi−1

}
. (3.16)

Realizations of simulated fiber processes are generated starting from a uniformly distributed
random point p1 = (x1,d1). At each xi, a sample from the Fisher or von-Mises Fisher density is
generated, using di as mean vector, thus specifying the next point xi+1 = xi + di. The parameter
κ influences the degree of curvature of the thus realized fibers (Fig. 3.6). This process is repeated
until reaching the desired fiber length n. A given length density, i.e., the total fiber length in an
observation window W normalized by the size of W , can be achieved by generating multiple fibers.

CHAPTER 3. FIBER ORIENTATION 57

(a) 2D, κ = 10, LA = 0.025 pixel−1

(inverted gray values for visualiza-
tion)

(b) 2D, κ = 100, LA =
0.075 pixel−1 (inverted gray values
for visualization)

(c) 2D, κ = 5000, LA =
0.0125 pixel−1 (inverted gray val-
ues for visualization)

(d) 3D, κ = 10, LV =
0.001 pixel−2 (inverted gray
values for visualization)

(e) 3D, κ = 100, LV =
0.003 pixel−2 (inverted gray values
for visualization)

(f) 3D, κ = 5000, LV =
0.005 pixel−2 (inverted gray values
for visualization)

Figure 3.6: Realizations of the curved fiber process for different values of parameter κ: (a, b, c) in
the plane, and (d, e, f) in 3D. The images are 2562 and 2563 pixels large, respectively.
Each fiber is 128 pixels long with a radius of 5 pixels. The length densities LA and
LV are given by the total fiber length divided by the area or volume of the image,
respectively.

3.5.2 Straight fibers

To evaluate the accuracy of measurements obtained from the 3D-orientation tensor T
(3)
W , see

Sec. 3.4, requires simulated fibers for which the orientation distribution of the entire fiber system
is known. As the previous model described only the amount of flexibility of a fiber, it is not suitable
for this purpose. Instead, a random sequential adsorption (RSA) [161] model of non-overlapping
cylinders will be used. RSA is a general technique to simulate random processes of objects, and it
has already been used in Sec. 2.6.1 to generate 2D-test data for object localization. Starting from
an empty set, RSA randomly adds objects until the space is packed such that no further object
can be added. Here, the objects are oriented cylinders of a given length l and diameter 2r.

Only 3D-fiber systems are considered in this section. The RSA process is equipped with an
orientation distribution p, defined below, which the method proposed in this chapter approximates
by means of the orientation tensor. In Sec. 3.6, realizations of this model are used to test the

58 3.5. FIBER MODELS FOR EVALUATING THE PROPOSED METHOD

(a) β = 0.1, LV = 0.002 pixel−2

(inverted gray values for visualiza-
tion)

(b) β = 1.0, LV = 0.0015 pixel−2

(inverted gray values for visualiza-
tion)

(c) β = 10, LV = 0.001 pixel−2 (in-
verted gray values for visualization)

Figure 3.7: Realizations of the second type of fiber model used for evaluations, a hardcore cylinder
process. Cylinders are generated by random sequential adsorption, with periodic edge
treatment, and are shown here with different sets of parameters. The images are 2563

pixels large, each cylinder is 128 pixels long with a radius of 5 pixels.

accuracy of this method. Therefore, it is important that the following RSA algorithm generates
cylinder systems that adhere to the given p.

1. Draw a direction v according to p(v).

2. Draw a coordinate x from U([0, 1]3).

3. If a cylinder of length l > 0 and radius r > 0 attached to x in direction v does not intersect
any existing cylinders, insert it and go to step 1. Otherwise, go to step 2.

Note that, once drawn, the direction v is never modified. The maximal number of retrials m for
steps 2 and 3 above terminates the algorithm. For the images in Fig. 3.7 and for the experiments
in the sections below it was m = 10000. To influence the density of the resulting fiber system,
these three steps are repeated at most n times. This algorithm was implemented and used to
model glass fiber-reinforced polymers by M. Schöneberger [146].

The spherical von Mises-Fisher distribution is not suitable for testing the performance of T (3)
W

as its concentration parameter κ merely allows for distribution shapes between isotropic and
cluster-type. Instead, the model relies on the one-parameter distribution introduced in [145] for
modelling an acoustic trim. Its sole parameter β > 0 varies the shape of the distribution from
a girdle shape along the equator (0 < β < 1), via a uniform distribution on the sphere (β = 1)
to a cluster shape of vectors mostly parallel to (0, 0, 1)t (β → ∞). Using θ and ϕ, to denote the
colatitude and longitude of v’s polar representation, respectively, the density is given by

p(v) = p(θ, ϕ) =
1

4π
β sin θ

(1 + (β2 − 1) cos2 θ)3/2
. (3.17)

Further properties of this density are listed in [145]. The resulting process can be interpreted as
a marked point process P = {(xi,vi)}i=1,...,n with a density defined on R3 × S2.

CHAPTER 3. FIBER ORIENTATION 59

3.6 Results

This section presents quantitative results on the accuracy of the proposed method on 2D and
3D-data, compared to a control method based on image gradients, introduced below. The range
of evaluations includes robustness to noise, fiber curvature and density, as well as an analysis of
the efficiency of the proposed orientation distribution parameters ζ and γ. But first, a control
method from the literature is introduced

3.6.1 Fiber orientations from the Hessian matrix

To put the performance of the method presented in this chapter into perspective, a method
from medical image processing will be used for reference. There, filtering in directions obtained
from partial second derivatives has been used to improve the quality of images depicting vessels
[17, 51, 112, 90, 134, 144]. These directions can also be used to measure fiber orientation. First
derivatives are commonly used for edge detection, as they indicate changes in a function. Second
derivatives are useful to detect ridges [43], such as fiber profiles.

Let σ be the scale parameter of an isotropic Gaussian convolution filter gσ. Lindeberg intro-
duced the concept of scale-space as a method for detecting image structures at unknown scales
[111]. For this purpose, he defined a normalized partial derivative as

fxi := σγ
∂

∂xi
f ∗ gσ. (3.18)

Here, γ is a parameter required to normalize fxi across different scales such that the maximum
over σ can be used to detect edges in a scale-independent manner. For the purpose of finding fibers
with known diameter 2r, the scale is known, σ = r, and this normalizing factor will therefore be
omitted.

Analogously to (3.18), the Hessian matrix at scale σ for a d-dimensional image is defined as

H =

fx1x1 · · · fx1xd

...
. . .

...
fxdx1 · · · fxdxd

 , (3.19)

where

fxixj :=
∂2

∂xi∂xj
f ∗ gσ (3.20)

are the partial second derivatives. As the order of differentiation is unimportant, H is symmetric.
The second order gradient in direction v can be computed as 52

v = vtHv. As the curvature along
a fiber is low, 52

v will be minimized when v is the tangent fiber direction at a fiber point x. For
a more detailed discussion of the geometric interpretation of H, see [43]. In order to compute v

from H, an eigen analysis similar to the one for orientation tensors in Sec. 3.4.1 is performed. As
the curvature is lowest in the fiber direction, v will be chosen as the eigenvector corresponding to

60 3.6. RESULTS

(a) Additive Gaussian noise
variance 50

(b) Additive Gaussian noise
variance 150

(c) Additive Gaussian noise
variance 250

Figure 3.8: Visualizations of different noise levels used for evaluating the robustness of local fiber
orientation estimation, in 2D.

the smallest eigenvalue of H.

This observation leads to estimated local orientations v by computing the Hessian and its
eigenvector corresponding to the smallest eigenvalue in every pixel x. These results will be used
below to control the accuracy of the method proposed in this chapter in comparison to this
standard method.

3.6.2 Accuracy of local orientation estimation

This first part of the evaluation section analyzes the accuracy of orientation estimates at fiber
locations. For this purpose, the curved fiber model is used, for which at each location x along a
fiber path P the tangent direction vector v is known, cf. Sec. 3.5.1. The angular difference between
this true orientation v and the estimated v̂, computed either using reduced Gaussian orientation
space or from the Hessian matrix, is the error measure used throughout this section. It is given
by the inner product,

δ = arccos(vtv̂). (3.21)

In the graphical presentations, the median of δ over all fiber path pixels in a number of trials is
shown. The number of trials was 10 for the 2D-experiments, and 5 for the 3D-experiments at each
tested set of parameters. This error measure will be evaluated with respect to three parameters:
Additive independent Gaussian noise (σ2), fiber curvature (κ), and fiber length density (LA, LV).
As the number of fibers varied across the different experiments, the number of angular difference
measurements over which the median was computed was also not constant. Therefore, this number,
denoted by m, will be given for each plot separately.

2D and 3D-realizations of the Markov process were generated in images of size 320× 320 and
128× 128× 128 pixels, respectively. The fiber radius was fixed to r = 5 pixels in either case, and
consequently σ = 5 was used for the Hessian method, and the lengths of the minor axes of the
anisotropic Gaussian convolution filters were s2 = 5.

The control method using the eigenvector corresponding to the smallest eigenvalue of the
Hessian matrix as direction estimate does not require any quantization. In contrast, the orientation

CHAPTER 3. FIBER ORIENTATION 61

Additive noise variance

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0 50 100 150 200 250 300

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss

(a) 2D (LA = 0.039, κ = 1000, m = 40000)

Additive noise variance

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0 50 100 150 200 250 300

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss / coarse

Anisotr. Gauss / medium

Anisotr. Gauss / fine

(b) 3D (LV = 0.0031, κ = 10000, m = 32000)

Figure 3.9: Accuracy of the computed directions along m simulated fiber points with respect to
independent, additive noise. The orientation estimates obtained along the fiber paths
using anisotropic Gaussian filters are more robust to noise than those obtained from
the Hessian matrix, both in 2D and 3D. Exemplary visualizations of the effects of
additive noise are shown in Fig. 3.8.

space must be sampled at a fixed set of points. For all 2D-experiments, the upper semicircle
was quantized in 180 steps. The bank of anisotropic 2D-Gaussian filters therefore has a constant
angular resolution of 1◦ or π/180. Computations of the reduced 3D-orientation space are performed
at the three resolution levels described in Sec. 3.3, referred to as coarse, medium and fine resolution.
These points are approximately uniform with mean angular resolutions of 33.1◦ = 0.18π, 19.7◦ =
0.11π and 13.8◦ = 0.08π, respectively, see App. C for details.

The first experiment analyzes the angular error with respect to noise (Fig. 3.9). For this
purpose, 2D and 3D-images were used, each containing 25 and 50 rather straight fibers of length
160 and 128 pixels, respectively. For this set of parameters, the proposed method is more precise
in detecting the local orientation structure, both in 2D and 3D. While the difference is low for no
or little noise, it increases with noise variance. This is observed in 2D and 3D, but the difference
is less pronounced in planar images. Moving between resolution levels of the Gaussian orientation
space method in 3D, note that the accuracy differences remain below the respective differences in
mean nearest neighbor distance of the sampling points. Moreover, the gain in accuracy from using
more sampling points on the hemisphere vanishes with an increasing amount of additive noise.

Anisotropic Gaussian filters not only detect the image structures to which they are aligned.
They are also low-pass filters, which may explain their good performance on noisy images. Deriva-
tive filters, on the other hand, are high-pass filters. Even though the Hessian is computed here
using derivate-of-Gaussian filters at scale σ, the amount of effective smoothing is lower than for
the anisotropic Gaussian filters.

For the second experiment, the noise variance was fixed to σ2 = 50, a level at which the
anisotropic Gaussian and the Hessian methods both performed well, see above. Then, the fiber
length densities were varied by increasing the number of fibers from 5 to 50 and from 10 to

62 3.6. RESULTS

Fiber length density LA [pixel
−−1

]

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0.00 0.05 0.10 0.15

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss

(a) 2D (κ = 1000, σ2 = 50, m =
8000 . . . 80000)

Fiber length density LV [pixel
−−2

]

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0.000 0.001 0.002 0.003 0.004 0.005 0.006

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss / coarse

Anisotr. Gauss / medium

Anisotr. Gauss / fine

(b) 3D (κ = 10000, σ2 = 50, m =
6400 . . . 64000)

Figure 3.10: Accuracy of the computed directions along m simulated fiber points with respect to
fiber density. The local orientations along fiber paths computed from the Hessian
matrix are more strongly influenced by the fiber density. Realizations at different
fiber length densities are shown in Fig. 3.6.

100 in the 2D and 3D-data, respectively (Fig. 3.10). With increasing fiber density, the simulated
fibers overlap and intersect more strongly, making the orientation detection problem more difficult.
While the local orientations derived from the Hessian matrix are slightly more accurate than those
computed from Gaussian orientation space for very low fiber densities, the proposed method is
more accurate than the control method at higher fiber densities. The results for the Hessian
method are similar in 2D and 3D. The accuracy of anisotropic Gaussian filters, on the other hand,
seems to be less subjective to the fiber density in 3D than in 2D-images.

This different behavior for 3D-data is not a property of the anisotropic Gaussian filters, but
rather a property of the data. In 3D, the amount of fiber intersections and overlap is much lower, a
fact that is also expressed in the fiber length densities: LV remains one order of magnitude below
LA in these experiments. Higher values of LV were not tested as the Hessian control method’s
median angular error was already π/4 = 45◦ at the densities investigated here.

The two experiments reported so far used almost straight, overlapping fibers. As the proposed
method is based on anisotropic kernels with fixed aspect ratio 2:1, it should perform best for
straight fibers. Using the curvature parameter κ of the Markov fiber process from Sec. 3.5.1, the
influence of fiber curvature on the accuracy of local orientation estimates was investigated in a
third experiment (Fig. 3.11). Results obtained using the Gaussian orientation space method are
again more accurate than the gradient-based approach for a wide range of the fiber curvature
parameter κ. Both methods fail for highly curved fibers.

The conclusion of this last experiment is that the use of prolate filter kernels is not a hindrance
when analyzing curved fibers. For highly curved fibers, the method does fail as expected, but this
is also true for the control method which does not rely on such filters.

All evaluations presented so far measured the absolute angular error δ = arccos(vtv̂). While

CHAPTER 3. FIBER ORIENTATION 63

Fiber curvature parameter κκ

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0 1000 2000 3000 4000 5000

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss

(a) 2D (LA = 0.039, σ2 = 50, m = 16000)

Fiber curvature parameter κκ

M
e

d
ia

n
 a

b
s
o

lu
te

 a
n

g
u

la
r

e
rr

o
r

0 1000 2000 3000 4000 5000

0
ππ

8
ππ

4
3

ππ
8

ππ
2

Hessian

Anisotr. Gauss / coarse

Anisotr. Gauss / medium

Anisotr. Gauss / fine

(b) 3D (LV = 0.0031, σ2 = 50, m = 32000)

Figure 3.11: Accuracy of the computed directions along m simulated fiber points with respect to
κ, a measure for the bending of fibers in these simulations. Both the proposed and
the control method are limited by the curvature of fibers. This was to be expected
for the orientation space approach described in this chapter, as the length of the filter
kernel puts a limit on the amount of curvature that can be handled. These results
show that this is not a disadvantage compared the control method. Different degrees
of curvature are shown in Fig. 3.6.

δ is suitable for judging the amount of error in the local orientation estimates, it does not allow
for a judgment of possible systematic errors. No bias was observed in any of the experiments. To
demonstrate this in at least one selected case, the estimated direction vectors along fiber paths,
v̂(x), were centered with respect to their known counterparts, v(x). Projection of the resulting
3D-error vectors into the plane gives a visual impression of the spread and position of these errors
(Fig. 3.12).

3.6.3 Effectiveness of the 3D-orientation distribution parameters

Given the local orientations v(x) which have been evaluated in the previous section, the orientation
tensor TW can be computed. In the following, the hardcore cylinder model introduced above will be
used to evaluate the effectiveness of the distribution parameters γ and ζ that have been described
in Sec. 3.4.

Systems of non-overlapping cylinders in 256×256×256 pixel images were simulated, containing
between n = 50 and 190 cylinders. For each value of n, the orientation distribution’s parameter β
was set to β = 0.01, 0.1, 1.0, 10.0, resulting in sets of images containing three types of orientation
distributions: Two cluster-type distributions (β = 0.01, 0.1), one isotropic (β = 1.0) and one
girdle-type distribution (β = 10.0).

As the proposed spherical distribution descriptors γ and ζ are capable of describing exactly
these three types, they were evaluated with respect to β (Fig. 3.13). The resulting values, especially
the strength parameter, are almost independent of the chosen sampling. Furthermore, the fiber
density or number of cylinders does not have a large impact on the results.

64 3.7. APPLICATIONS

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x1

x
2

Figure 3.12: A closer examination of the difference vectors of the proposed method of a selected
3D-case: Orthogonal projections of the difference vectors into the plane for medium
sampling, no noise, and κ = 1000. The colors stand for individual fibers, but are not
unique. The difference vectors are not biased in any direction (the mean is at (-0.024,
-0.0014) in the projection plane).

Combining the results of γ and ζ, it is concluded that these two parameters are well suited for
characterizing the shape of the 3D-orientation distribution: For β = 0.01, 0.1, they both assume
values larger than one, clearly indicating a cluster-type distribution. In such cases, the mean
orientation derived from TW is a suitable quantity for describing the direction of fiber alignment.
In the case of an isotropic fiber orientation (β = 1.0), the strength parameter ζ tends towards
zero, independent of sampling or fiber density. The remaining case of a girdle-type density, with
fibers arranged in parallel planes, is also detected well by these measurements, with the shape
parameter γ going to zero for all tested resolution levels and fiber densities.

These evaluations have been performed in noiseless images. As good robustness of the local
orientations computed using anisotropic Gaussian filters to noise and other distortions has already
been demonstrated in the previous section, these findings on the effectiveness of the proposed
distribution parameters are expected to be transferable to real-world data.

3.7 Applications

This section presents three applications of the proposed method for detecting the fiber orientation
from image data (Fig. 3.1). First, 2D-microscopic images showing layers of a glass fiber-reinforced
polymer at different depths will be investigated. The manufacturers suspect a change in the fiber
orientation distribution from outer to inner fiber layers of this specimen. The second problem
concerns a sample of a glass fiber-reinforced polymer that consists of two parts which have been
fused. It will be investigated whether this fusing process had any measurable impact on the
arrangement of fibers adjacent to the welding seam. Analysis of special carbon paper that finds
its use as a gas diffusion layer in polymer electrolyte fuel cells is the topic of the third application
example.

CHAPTER 3. FIBER ORIENTATION 65

0.01 0.05 0.50 5.00

0
2

0
4

0
6

0
8

0
1

0
0

ββ

s
h

a
p

e
 γγ

coarse

medium

fine

(a) The shape parameter γ for different sam-
pling resolutions and orientation distributions.

0.01 0.05 0.50 5.00

0
.5

1
.0

1
.5

2
.0

2
.5

ββ

s
tr

e
n

g
th

 ζζ

coarse

medium

fine

(b) The strength parameter ζ for different
sampling resolutions and orientation distribu-
tions.

Figure 3.13: Evaluation on the hardcore cylinder model using different parameters and resolutions.
The shape and strength parameters were computed in 2563 images and are plotted
here against the anisotropy parameter β of the density in Eq. (3.17). Note the
logarithmic scale on the abscissa. The three curves are offset against each other
for better visualization. Measurements have been taken at the same values β =
0.01, 0.1, 1.0, 10.0 in all cases. The dots in these plots correspond to measurements
from individual images, each containing a different number n of cylinders.

3.7.1 Sheet molding compound

Sheet molding compounds (SMC) are thin layers of fiber-reinforced polymers which can be shaped
by compression molding. These sheets are produced with some predefined fiber orientation to
provide the required plasticity and stability when molding the final structure. A specimen of a
glass fiber-reinforced SMC was produced and imaged using scanning acoustic microscopy (SAM)
at Fraunhofer EMI, Freiburg. The SAM images show the 2D-microstructure of the SMC sample at
different depths relative to the top-view surface shown in Fig. 3.1 at the beginning of this chapter.

The sample investigated here, which is part of a larger study, was designed to contain fibers
oriented at 45◦ (in plane). Due to the production process, it is suspected that fibers in the
outer layers of this SMC sample posses a highly anisotropic orientation distribution with mean
orientation at 45◦, and that the fibers tend towards a more isotropic orientation distribution deeper
within the specimen.

Two images depicting parallel layers 0.3 mm apart have been analyzed using the proposed
method (Fig. 3.14). At both depths, the orientation distributions are anisotropic with the desired
mean orientation around 45◦. An increase in isotropy at the lower level could not be detected.
On the contrary, the orientation distribution measured near the surface (Fig. 3.14(b)) spreads
farther around the expected mean orientation than the corresponding distribution deeper within
the sample (Fig. 3.14(d)). At the time of writing, an analysis of this and other effects on a large
series of samples was still under way.

66 3.7. APPLICATIONS

(a) Glass fibers near the surface

0

ππ 2

ππ

3ππ 2

(b) Orientation distribution
near the surface

(c) Glass fibers 0.3 mm deeper inside

0

ππ 2

ππ

3ππ 2

(d) Orientation distribution
0.3 mm deeper inside

Figure 3.14: Fiber orientation distributions in images of a glass fiber-reinforced polymer specimen,
imaged by scanning acoustic microscopy in two different depths. At both depths, the
fibers show an anisotropic distribution with most fibers oriented at 45◦.

3.7.2 Glass fiber-reinforced polymer

The sample investigated here was provided by the Institute for Composite Materials (IVW),
Kaiserslautern, and imaged in phase-contrast mode at the European Synchrotron Radiation Facil-
ity (ESRF), Grenoble. Therefore, the data has little noise and high edge contrast along the glass
fibers. The specimen contains glass fibers with a diameter of about 30 µm imaged with a lateral
resolution of 3.5 µm. The total size of the imaged area, containing both parts and the welding
seam, was about 7× 7× 3 mm3. Out of this larger sample, several 1.4× 1.4× 1.4 mm3 subregions
at and off the welding seam were extracted.

Orientation histograms from Gaussian orientation space for each subregion have been com-
puted, two of which are shown in Fig. 3.15. The strength parameter ζ varies around values of 1.5
for all subregions, clearly indicating an anisotropy of the fibers that is also visible in the image
data. γ, the spherical distribution descriptor for the shape, does differ among the different subre-
gions. For the samples taken off the welding seam, it varies between approximately 0.3 and 0.6,
while the γ-values of the sample along the welding seam are found to be in the range from 0.1 to
0.3. While this observation can not be associated with any statement of its significance, it does
hint at a farther spread of the glass fibers’ orientations near or at the welding seam.

This can also been seen from the orientation histograms in Fig. 3.15, where more fibers oriented
away from the x3-axis are found in the sample taken on the welding seam. The mean orientation

CHAPTER 3. FIBER ORIENTATION 67

(a) Volume rendering of a selected GRP
subregion off the welding seam.

(b) Volume rendering of a selected GRP
subregion on the welding seam.

(c) Histogram of the glass fiber orienta-
tion distribution off the welding seam.

(d) Histogram of the glass fiber orienta-
tion distribution on the welding seam.

Figure 3.15: Visualizations of data and results for the glass fiber-reinforced polymer (GRP) ap-
plication example on and off the welding seam. While the glass fibers are mostly
oriented parallel to the x3-axis (vertical direction in these images), many fibers along
the welding seam are rotated away from that direction.

was found to lie close to (0, 0, 1)t in all cases, but as the orientation distributions show a girdle-type
form in the histograms, this mean orientation is not a meaningful figure in this case.

3.7.3 Carbon-coated paper

A specimen of a carbon paper gas diffusion layer was imaged using µCT with a lateral resolution of
0.7 µm at the European Synchrotron Radiation Facility (ESRF), Grenoble. For a detailed account
of this specific dataset, and for simulation results concerning the material’s physical properties such
as permeability and relative diffusivity, see [14]. To obtain an image region suitable for evaluation,
a cubic volume of 231 × 231 × 231 µm3 was chosen for image analysis out of the original sample
(1.43×1.43×0.34 mm3). The fiber diameter in this dataset is approximately 11 µm. This evaluated
region and the resulting histogram of fiber orientations are shown in Fig. 3.16. The paper fibers
show a clear planar arrangement in the x1x2-plane, with a preferred orientation parallel to the
x1-axis.

68 3.8. DISCUSSION

(a) Volume rendering of the evaluated
region of the carbon paper specimen.

(b) Orientation histogram of the carbon
paper fibers.

Figure 3.16: Visualization and Gaussian orientation space results for the carbon paper example.
The orientation histogram shows a girdle-type fiber orientation distribution. Within
the plane in which the fibers are aligned, a preferred direction can be seen in the
histogram.

The resulting mean orientation vector µ = (−0.75, 0.66,−0.07)t accordingly lies in the x1x2-
plane. The shape γ = 0.15 and strength ζ = 0.66 indicate a girdle-type orientation distribution,
but as the value of ζ is smaller than one, a significant amount of fibers with non-planar tangent
direction vectors must exist.

3.8 Discussion

This chapter described a novel method for computing the orientation distribution of 2D and
3D-fiber systems from image data, which does not require segmentation of individual fibers. Ex-
perimental evaluations on simulated data have shown that the proposed approach is more robust
to noise and fiber density (overlap) than an alternative method that is frequently used in the im-
age processing literature. Using the sample second order moments of the local orientation vectors
obtained by this method, the second order orientation tensor can be computed. This tensor is
frequently used for simulating mechanical or other physical properties of anisotropic fibrous mate-
rials. Furthermore, it allows for non-parametric descriptors of the orientation distribution’s prop-
erties (mean orientation, shape) to be computed. These descriptors were experimentally shown
to be accurate and powerful descriptive tools for analyzing fiber-reinforced polymers and other
fibrous structures, especially when combined with visualizations of the measured 3D-orientation
distributions.

The basic operation required to implement the proposed approach is image filtering with an-
isotropic Gaussian kernels, which is repeatedly performed to detect local image structures. Conse-
quently, it is essential to efficiently implement this filter operation. No runtime or implementation
details have been reported in this chapter, as the following chapter will introduce a factorization
of the Gaussian kernel that leads to a highly efficient implementation of anisotropic Gaussian fil-
tering. Timing results of the method proposed in the present chapter will also be presented there,

CHAPTER 3. FIBER ORIENTATION 69

compared to an alternative implementation.
Even when using such an optimized implementation, computation of the reduced Gaussian

orientation space remains an expensive computational problem. The control method that was used
to put the performance of the proposed approach into a relation to established algorithms requires
a smoothing operation followed by several differentiation filters and one eigen decomposition of a
d×d matrix per pixel. Summing these operations together, computation of local orientations using
this alternative method remains significantly faster than the proposed method using anisotropic
filter banks. Note however that this aforementioned control method has a high memory cost,
requiring O(d2) memory per pixel.

It is worth paying the price of long runtime of the presented method, though, as it results in
more precise and more stable results than the aforementioned other method. While the analysis of
the microstructure of materials is beginning to be routinely used in some industry sectors, it still
remains an offline procedure. Considering this circumstance, this chapter contributes a reliable
and suitable method to the collection of available tools for analyzing the microstructure of fibrous
materials.

70 3.8. DISCUSSION

Chapter 4

A Non-Orthogonal Separation of

the Anisotropic Gaussian

Convolution Filter

4.1 Introduction

The method for computing the orientation distribution of fibers in 2D and 3D-images that was
introduced in the previous chapter requires a large number of anisotropic Gaussian filtering oper-
ations. This chapter describes a novel separation of the anisotropic Gaussian filter kernel, which
generalizes a previously known result, and leads to a faster implementation of the corresponding
convolution operation.

The commonly used isotropic Gaussian filter has one degree of freedom, which is the kernel
width. The d-dimensional anisotropic Gaussian filter, on the other hand, has d(d + 1)/2 degrees
of freedom. Geometrically, these variables govern the spread of the filter in d directions and its
orientation. When using this type of filter, a mechanism must be devised for choosing those
parameters. Applications of anisotropic Gaussian convolution filters can be grouped into three
categories, according to how they approach this parameter choice.

The first method applies filter banks, i.e., sets of filters with different parameter settings, for
constructing orientation spaces. This was the approach in Ch. 3, where Gaussian kernels of prolate
shapes were used to measure local orientations in images of fibrous microstructures.

A second group of methods computes the filter parameters from images. Yang et al. align
anisotropic Gaussian kernels with local gradient directions to avoid smoothing across edges [175].
Following that general idea, Knossow et al. applied anisotropic Gaussian filters to 2D-images for
smoothing in a tracking application [87], and Sijbers et al. aligned anisotropic Gauss kernels with
the directions of a second moment matrix derived from an image’s power spectrum to smooth
3D-images obtained by magnetic resonance imaging (MRI) [149]. Crum et al. apply anisotropic
3D-Gaussian filters to compensate for anisotropic pixel grids in registering medical MRI data [33].

The third and last group of applications of anisotropic Gaussian filters are those where the filter

71

72 4.1. INTRODUCTION

parameters follow from the imaging system itself, which is the case for diffusion tensor MRI (DT-
MRI) [170]. That imaging modality measures the diffusion of water, which relates directly to local
anisotropies. Gaussian filters can be aligned to that tensor, resulting in one of the best-performing
smoothing filters among those tested in [101] for smoothing DT-MRI images.

Regardless of how the filter parameters are set, all of these applications of anisotropic Gaus-
sian filters can profit from the separation scheme and corresponding implementation that will be
described in this chapter.

Apart from Gaussian filters, a variety of anisotropic image filters have been proposed. Aniso-
tropic diffusion [168] filters along edges by effectively deforming the filter mask according to local
gradients. Steerable filters [52] have drawn a lot of attention, which generate a filter basis from
which the filter response at an arbitrary orientation can be computed as a linear combination of
the elements in that basis. The derivative of Gaussian filter is the most prominent steerable filter.
Anisotropic Gaussian filters are not steerable, methods for constructing approximate steerable
filter bases have been described by Perona [131].

The concept of separable filters is different from that of steerable filters. Separable filters are
factorizations of convolution filters into a series of (usually) lower-dimensional filter kernels. Fast
filtering is achieved by applying a sequence of these lower dimensional convolutions, rather than
filtering a d-dimensional image with a d-dimensional filter mask.

Several approximate separation schemes for efficient anisotropic filtering have been proposed.
Andersson et al. developed a general strategy for separating filters into a sequence of convolutions
that involves a numerical optimization to obtain the filter coefficients [2]. Lakshmanan proposed a
separable anisotropic filter for smoothing weather radar images [93]. An approximate separation of
the 3D-anisotropic Gaussian kernel with 2 fixed and one variable filtering directions was proposed
in [172], but it is accurate only for a certain range of kernel orientations. Recently, Lam and
Shi introduced an interpolation-free implementation of the 2D-anisotropic Gaussian filter that is
suitable for some kernel aspect ratios [94].

The first accurate factorization of the anisotropic Gaussian convolution kernel in R2 into a
product of two one-dimensional Gaussian kernels was described by Geusebroek, Smeulders and van
de Weijer [60, 61]. Their result demonstrated that fast and accurate anisotropic 2D-filtering could
be implemented by filtering along one axis-parallel direction and along a second, non-orthogonal
direction that can be derived from the filter parameters.

This chapter introduces a factorization of the d-dimensional anisotropic Gaussian filter kernel
that is optimal in the required number of memory accesses and interpolation operations. The novel
filter separation has an intuitive geometric interpretation, and it will turn out that the separation
of the two dimensional Gaussian kernel proposed in [60, 61] is a special case of this result. Through
this fundamental understanding of optimal factorizations of the anisotropic Gaussian filter, efficient
implementations of the three dimensional Gaussian filter are accessible, which lead to practically
significant speedups of both adaptive smoothing and orientation space computations.

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 73

4.1.1 Separable filters

To see how and why separable filtering would lead to a speedup of anisotropic Gaussian convo-
lution, let x,y ∈ Rd denote vectors and g : Rd → R the d-dimensional Gaussian kernel given
by

g(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
xtΣ−1x

}
. (4.1)

Σ is the d× d covariance matrix, and |Σ| its determinant. To convolve an image f : Rd → R with
filter g means to integrate over the point-wise product of f and g at all locations x,

(f ∗ g)(x) :=

∞∫
−∞

. . .

∞∫
−∞

∞∫
−∞

f(y)g(x− y) dy1 dy2 . . . dyd, (4.2)

where ∗ denotes the linear convolution operator and y1, y2, . . . , yd are the d components of vector
y. Without forestalling much of the material on different implementation strategies for convolu-
tions that will be covered in Sec. 4.5, the motivation for what follows is to achieve an efficient
implementation of this integral.

The simplest implementation of (4.2) replaces the continuous integrals by sums of discretized
representations of g and f and truncates sums at some point, say at ±w ∈ Z. This results in a
computational complexity of O(nd · wd) for the nd pixels in a discrete image. By utilizing the
convolution theorem and the fast Fourier transformation (FFT), the integrals in (4.2) can be
evaluated in O(nd log nd) time [135]. As w is not a negligible factor for filters with large spread,
this is an improvement over the implementation using sums truncated at ±w.

Imagine that the integrals in (4.2) could be unraveled to a series of decoupled one-dimensional
integrals as in

(f ∗ g)(x) =

∞∫
−∞

gd(ud − vd) . . .

∞∫
−∞

g2(u2 − v2)

∞∫
−∞

g1(u1 − v1)f(v) dv1 dv2 . . . dvd, (4.3)

where u and v are x and y transformed to a new coordinate system, respectively, using a yet to be
specified mapping, see Sec. 4.2. Eq. (4.3) consists of d one-dimensional convolutions, rather than
one d-dimensional convolution as in (4.2). A filter g for which a convolution integral in the form
of (4.3) exists is called separable. If discrete variants of these one-dimensional convolutions could
be implemented with O(1) complexity per pixel, then then the d-dimensional discrete convolution
could be performed in O(nd) time.

The following section first demonstrates how the Gaussian kernel g(x) can be factorized. This
factorization will then be substituted into Eq. (4.2), which leads to the sought after form of a sep-
arated convolution integral. In the sequel of the present chapter, an optimal transformation from
x to v is derived, and different algorithms for implementing this separated anisotropic Gaussian
filter will be discussed and analyzed.

74 4.2. SEPARATING THE GAUSSIAN CONVOLUTION INTEGRAL

4.2 Separating the Gaussian convolution integral

Isotropic and axis-aligned Gaussians, where Σ is diagonal, factorize readily along the d coordinate
directions. For the general, anisotropic Gaussian considered in the present chapter, many different
factorizations are possible. E.g., the separation of possibly anisotropic Gaussians along their
orthogonal major axes is a standard procedure in statistical pattern recognition, usually in the
setup of the “whitening transform”, see e.g. [41, Ch. 2]. This chapter, however, considers more
general separations of the Gaussian convolution filter along arbitrary, possibly non-orthogonal
axes in Rd.

The following two results build the basis for what follows in this chapter. While the first
of these describes a general mechanism for separating the Gaussian filter kernel by factorizing
its covariance matrix, the second one demonstrates that such a separation leads to a separated
convolution filter. Sec. 4.3 then introduces a factorization that that is optimal for implementing
(4.2).

Proposition 1 (Non-orthogonal factorizations of the Gaussian) Let Σ be the d × d sym-
metric, positive definite covariance matrix of the Gaussian function. For any decomposition
Σ = V DV t into square matrices D and V , where D is diagonal with positive entries and V has
determinant 1, there exists a factorization of the d-dimensional Gaussian into d one-dimensional
Gaussians. The separation directions and the 1D-Gaussians’ variance parameters are defined by
V and D, respectively.

Proof 1 Assuming that the required factorization of Σ exists, the Gaussian function g from (4.1)
can be rewritten as

g(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
xtΣ−1x

}
=

1
(2π)d/2|Σ|1/2

exp
{
−1

2
xt(V −tD−1V −1)x

}
. (4.4)

Since |V | = 1, it follows that |D| = |Σ| and

g(x) =
exp

{
− 1

2xt(V −tD−1V −1)x
}

(2π)d/2|D|1/2
=

exp
{
− 1

2 (V −1x)tD−1(V −1x)
}

(2π)d/2|D|1/2
.

After a linear change of coordinates from x to v = (v1, . . . , vd) with v := V −1x, this becomes

g(x) =
1

(2π)d/2|D|1/2
exp

{
−1

2
vtD−1v

}
.

D is known to be a diagonal matrix with positive entries, denoted by d2
1, . . . , d

2
d, such that

|D|1/2 = d1 · . . . · dd. It follows that D−1 is diagonal with positive entries as well, namely
D−1 = diag(1

d21
, . . . , 1

d2d
). D−1 exists as |D| = |Σ| > 0. Therefore, the matrix product is in

fact just a weighted sum of squares,

g(x) =
1

(2π)d/2d1 · . . . · dn
exp

{
−1

2

d∑
i=1

v2
i

d2
i

}
.

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 75

According to the laws of exponentiation, this can be factorized into

g(x) =
1√

2πd1

exp
(
−1

2
v2
1

d2
1

)
· . . . · 1√

2πdd
exp

(
−1

2
v2
d

d2
d

)
= g1(v1) · . . . · gd(vd), (4.5)

where each gi(vi) := 1√
2πdi

exp
(
− 1

2
v2i
d2i

)
is an ordinary 1-dimensional Gaussian of mean 0 and

variance d2
i . As v = V −1x, this factorization has the required form. �

Corollary 1 (Separations of the Gaussian convolution integral) Let Σ be the d × d sym-
metric, positive definite covariance matrix of the Gaussian function. For any decomposition
Σ = V DV t into square matrices D and V , where D is diagonal with positive entries and V has
determinant 1, the d-dimensional Gaussian convolution integral can be computed by a sequence of
d one-dimensional Gaussian convolution integrals in not necessarily orthogonal directions given by
the columns of V .

Proof 2 For a general function f : Rd → R, the convolution with the Gaussian g is defined as

(f ∗ g)(x) :=

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

f(y)g(x− y) dy1 dy2 . . . dyd.

As V is not singular (|V | = 1), a change in coordinates from x to u := V −1x and from y to
v := V −1y gives

(f ∗ g)(x) =

∞∫
−∞

. . .

∞∫
−∞

∞∫
−∞

f(V v)g (V u− V v) |V −1| dv1 dv2 . . . dvd,

where the factor |V −1| enters due to the coordinate change. Using Proposition 1, and |V −1| =
|V |−1 = 1, the Gaussian function in V u = x can be factorized, yielding

(f ∗g)(x) =

∞∫
−∞

gd(ud−vd)
∞∫
−∞

gd−1(ud−1−vd−1) . . .

∞∫
−∞

g1(u1−v1)f(V v) dv1 . . . dvd−1 dvd. (4.6)

Note that the factor V in the d-dimensional Gaussian g (V u− V v) cancels out when substituted
into Eq. (4.4). This is the standard form of a separated convolution integral. Using vi to denote
the i’th column of V , the matrix-vector product in the argument of f can be expanded to V v =
v1v1+v2v2+. . .+vdvd. When integrating over vi, all vj remain constant (j 6= i). The i’th integral
in (4.6) therefore convolves a 1D-Gaussian gi with image f along the direction vi, as demanded
by the corollary. �

The result of Corollary 1 can be written very compactly using the notation of directional
convolutions,

g ∗ f = gd ∗vd . . . g2 ∗v2 g1 ∗v1 f,

76 4.3. AN OPTIMAL SYMMETRIC FACTORIZATION OF Σ

where the directional convolution operator ∗v indicates convolution along direction v, defined as

(g ∗v f)(x) :=

∞∫
−∞

g(λ)f(x− λv) dλ. (4.7)

This integration is one-dimensional, even though the direction is specified by a vector v ∈ Rd.
With these results at hand, the problem of separating the d-dimensional anisotropic Gaussian
convolution reduces to the problem of finding useful factorizations Σ = V DV t. These factoriza-
tions are not unique and can be constructed using elementary matrix operations [63]. One such
factorization of Σ is the eigen decomposition that has already been discussed in the context of
Gaussian orientation spaces in Sec. 3.2.

When using the eigen decomposition of Σ, the columns of V correspond to the major axes of
the hyper-ellipsoid {x : xtΣ−1x = 1}. As Σ is symmetric, these d column vectors are mutually
orthogonal and of unit length. This reproves the well-known fact that an anisotropic Gaussian is
always separable along its major axes.

For implementing Eq. (4.7), however, the eigen decomposition is not very useful. Except for
axis-aligned Gaussians, Σ’s eigenvectors vi, i = 1, . . . , d, do not have any integer entries (their
norms are 1). Therefore, x−λv does not lie on the sampling grid. While this is not a problem from
the mathematical point of view, discretized implementations must interpolate in all d dimensions
during each of the d integration steps. This makes the computations slow and numerical errors
can occur and accumulate.

4.3 An optimal symmetric factorization of Σ

Following the previous train of thought on the weaknesses of an implementation of anisotropic
Gaussian convolution separated along the filter’s major axes leads to criteria that characterize
useful symmetric factorizations of Σ. In case of the eigen decomposition, each filter direction vi is
a unit vector. In general, it requires d-dimensional interpolation when implementing discretized
variants of each of the d 1D-convolutions in the directions described by Corollary 1. A factorization
that is optimal for discrete implementation of Eq. (4.2), on the other hand, will eliminate the
need for interpolation whenever possible. Discrete implementations of the directional convolution
operator ∗v from Eq. 4.7 are therefore most efficient and precise if v fulfills the following:

• v should have as many zero components as possible, as each zero lowers the dimensionality
of required interpolation by 1.

• v should have as many integer entries as possible, as each of these eliminates the need for
interpolation in the corresponding dimension.

By Corollary 1, the d convolution directions vi are given by the columns of V . V must have
determinant 1, which restricts the possible choices. Consider the symmetric factorization

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 77

Σ = V DV t (4.8)

=

1 v1,2 v1,3 . . . v1,d

1 v2,3 . . . v2,d
. . .

...
1 vd−1,d

1

d2
1

d2
2

. . .

d2
d−1

d2
d

1
v1,2 1

v1,3 v2,3
. . .

... 1
v1,d v2,d . . . vd−1,d 1

.

This factorization has some similarities to the Cholesky decomposition A = LLt of a symmetric
positive definite matrix A. There, L is lower triangular and has positive diagonal entries [63]. Let
d̃ii denote the d entries along the diagonal of L. As all d̃ii are positive, the Cholesky decomposition
can be further factorized into A = LLt = L̃D̃L̃t with D̃ := diag(d̃2

11, d̃
2
22, . . . , d̃

2
dd). As L̃ is again

lower triangular, not upper triangular, Eq. (4.8) will be referred to as the symmetric factorization
of Cholesky type. The existence of this factorization for d = 2 and d = 3 will follow from the
results in Sec. 4.4.1. Next, the implications of the factorization of Σ in Eq. (4.8) for d-dimensional
anisotropic convolution filters will be discussed.

Proposition 2 (An optimal symmetric factorization of Σ) For discretized implementation
of separated anisotropic Gaussian filters, the symmetric factorization of Cholesky type (4.8) is
optimal in the number of required interpolations.

Proof 3 Since Σ is a d× d symmetric matrix, it has d(d+1)
2 degrees of freedom. The matrices V

and D in any symmetric factorization Σ = V DV t must have at least as many degrees of freedom.
As D is diagonal, d(d−1)

2 degrees of freedom remain for V . These are exactly the vi,j , i 6= j, in
the upper half of V in (4.8). To fulfill the condition that |V | = 1, the diagonal entries of V are
set to one, eliminating the need for interpolation in exactly one dimension per filter direction.
All remaining entries of V are zero. No further elements of V can be restricted to be either zero
or integral, as this would contradict either the fact that V and D together must account for the
d(d+1)

2 degrees of freedom of Σ, or that |V | = 1. �

Other separations reaching this dimensionality bound are possible. However, the special form
of V in (4.8) has a very intuitive geometric interpretation, see below, which furthermore leads to
a very efficient implementation, later in this chapter. Summarizing, the symmetric factorization
of Cholesky type results in a separation of anisotropic Gaussian filters that, when discretized, is
optimal in the number of required interpolations. In Rd, the first filter operation is aligned to the
x1 axis and does not require any interpolation at all. The second operation filters along a line and
requires 1D-interpolation. For each further filter, the dimensionality of the required interpolation
grows by 1 until reaching d − 1-dimensional interpolation required for implementing the d’th
discretized convolution operation. Each of these d convolution steps requires fewer interpolations
than any one in the eigen decomposition-based separation scheme.

78 4.4. SEPARABLE ANISOTROPIC GAUSSIAN FILTERS IN IMAGE PROCESSING

x
2

x
1

(a)

x
2

x
1

(b)

x
2

x
1

(c)

Figure 4.1: (a) Any ellipse in the plane can be transformed into an axis-aligned ellipse by using
either a (b) rotation or (c) shear. In terms of symmetric factorizations of the Gaus-
sian function’s covariance matrix Σ, these two geometric transformations correspond
to an eigen decomposition and a triangular decomposition of Cholesky type thereof,
respectively. (This figure first appeared in [97], c©IEEE)

4.3.1 Geometric Interpretation

Proposition 2 specifies d filtering directions. To understand the implications of this result, it is
useful to look at it from a geometric perspective. One geometric interpretation of separations of
the anisotropic Gaussian convolution filter is the following. A linear transformation (V −1) is a
applied to the signal, followed by d axis-parallel orthogonal filters and back-transformation of the
result (V). Conversely, the directions of convolution in (4.6) are the V -transformations of the
Cartesian coordinate axes. In 2D, this process can be visualized by ellipses, which correspond to
level sets of Gaussians.

The matrix V obtained by an eigen decomposition of Σ is a rotation matrix that specifies the
directions of the Gaussian’s major axes. Therefore, implementing separated anisotropic Gaussian
convolution using an eigen decomposition Σ = V DV t has the geometric analog of rotating an
ellipse onto the coordinate axes (Fig. 4.1(b)).

In case of the symmetric factorization of Cholesky type, the matrix V is a shear matrix. In
2D, the process of filtering along the directions resulting from that matrix therefore corresponds
to a shear of the x2 axis, while the x1 axis remains fixed (Fig. 4.1(c)). In Rd, the first direction
of convolution is the x1 axis (the first column of V will be (1, 0, . . . , 0)t). The i’th convolution
direction vi is a sheared version of i − 1 coordinate axes. vi intersects the ellipsoid at the point
where it extends farthest in the direction of the respective coordinate axis xi.

4.4 Separable anisotropic Gaussian filters in image process-

ing

In order to make the theoretical results of this chapter practically applicable in image processing,
this section derives explicit formulas and useful parameterizations of the factorization in Eq. (4.8)
for the practically most relevant cases d = 2, 3.

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 79

So far, it has implicitly been assumed that the triangular factorization of Cholesky type existed.
This section explicitly computes the entries of V and D. This serves two purposes. First, it proves
the existence of the required factorization Σ = V DV t in R2 and R3. Second, the resulting
formulas are useful in practice, for they allow to compute the filtering directions and the 1D-
Gaussians’ variances directly from a given 2D or 3D-covariance matrix Σ. For higher dimensions,
this derivation could be performed in the same fashion, but that is not done in the present chapter.

Even though a Gaussian’s covariance matrix encodes all information on the filter’s orientation
and shape, these are entangled across its entries. Therefore this section also proposes parameter-
izations of anisotropic Gaussian filters in terms of the direction of the filter’s major axis in polar
coordinates.

4.4.1 Triangular factorization of Cholesky type in R2 and R3

The required entries of V and D can be computed using elementary calculus. The basic mechanism
is to compute the matrix product V DV t and to equate it with the known entries of the given
matrix Σ. This leads to d(d+1)

2 equations that need to be solved for the entries of V and D. Denote
by vi,j , 1 ≤ i < j ≤ d, the d(d−1)

2 entries in the upper half of V , and by d2
i the positive diagonal

terms of D, 1 ≤ i ≤ d. The elements of Σ will be denoted by si,j , 1 ≤ i, j ≤ d.

Explicit formulas in R2

Multiplying out the two required matrices results in

V DV t =

(
1 v1,2

0 1

)(
d2
1 0

0 d2
2

)(
1 0
v1,2 1

)
=

(
d2
1 + d2

2v
2
1,2 d2

2v1,2

d2
2v1,2 d2

2

)
. (4.9)

Equating this result to the known covariance matrix Σ leads to a system of four equations,(
d2
1 + d2

2v
2
1,2 d2

2v1,2

d2
2v1,2 d2

2

)
!=

(
s1,1 s1,2

s1,2 s2,2

)
, (4.10)

which can be solved for for the 3 unknowns,

v1,2 =
s1,2
s2,2

, d2
1 = s1,1 −

s21,2
s2,2

, and d2
2 = s2,2. (4.11)

Σ is positive definite, such that s2,2 > 0 and |Σ| = s1,1s2,2 − s21,2 > 0. Hence, all expressions are
well defined. Note that d2

1d
2
2 = s1,1s2,2 − s21,2, which is the explicit formulation in R2 of the fact

that |D| = |Σ|. It follows that |V | = 1, as required by Corollary 1, proving the existence of the
triangular factorization of Cholesky type of Σ in R2.

Explicit formulas in R3

For the case of Gaussian filters in R3, the steps for deriving the six unknowns in the desired
factorization of Σ are almost identical to those in the case of R2, above. The formulas do get more

80 4.4. SEPARABLE ANISOTROPIC GAUSSIAN FILTERS IN IMAGE PROCESSING

complicated. Therefore, this section simply states the results, and the details of the derivation are
deferred to App. D.

Given a 3× 3 covariance matrix, the unknowns in the factorization

V DV t =

1 v1,2 v1,3

0 1 v2,3

0 0 1

d

2
1 0 0

0 d2
2 0

0 0 d2
3

 1 0 0
v1,2 1 0
v1,3 v2,3 1

 (4.12)

are equated with the corresponding elements of Σ. Again denoting these by si,j , the diagonal
elements of D result as

d2
1 = s1,1 −

(s1,2s3,3 − s1,3s2,3)2

s3,3(s2,2s3,3 − s22,3)
−
s21,3
s3,3

, d2
2 = s2,2 −

s22,3
s3,3

, d2
3 = s3,3, (4.13)

and the elements in the upper half of V are

v1,2 =
s1,2s3,3 − s1,3s2,3
s2,2s3,3 − s22,3

, v1,3 =
s1,3
s3,3

, v2,3 =
s2,3
s3,3

. (4.14)

From Σ being positive definite it follows that all terms above are well defined, which is also true for
the intermediate steps leading to these results, see App. D for details. By definition, the diagonal
elements of V are 1. It follows that |V | = 1 as demanded by Corollary 1, and these results therefore
prove the existence of the symmetric factorization of Cholesky type of Σ in R3.

4.4.2 Independent parameters for orientation and shape in R2 and R3

In practice, Σ is often not given explicitly, but rather implicitly by the directions in which the
Gaussian filtering should take place and by the desired kernel size in that and remaining orthogonal
directions. By splitting Σ into a rotation matrix R and a diagonal matrix S of variance values,
these matrices independently encode filter direction and spread, respectively. This is equivalent to
an eigen decomposition of Σ, cf. Sec. 4.3.1. An intuitive and compact representation of the filter’s
orientation is to express the filter direction in polar coordinates.

Parameterization in R2

An anisotropic Gaussian in R2 is uniquely determined by an angle α and two variances σ2
1 and σ2

2 .
α specifies the filtering direction corresponding to the variance σ2

1 , and σ2
2 describes the width of

the kernel in the remaining orthogonal direction. Σ’s eigen decomposition results in two matrices,
one orthonormal and the other diagonal. The orthonormal one of these specifies the resulting
filter’s orthogonal major axes. To parameterize these directions by a polar coordinate α, the
same mechanism can be utilized to compose the required matrix. The 2D-covariance matrix is
Σ = RαSR

t
α with

Rα =

(
cosα sinα
− sinα cosα

)
and S =

(
σ2

1 0
0 σ2

2

)
. (4.15)

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 81

Multiplication leads to a general parameterization,

Σ =

(
σ2

1 cos2 α+ σ2
2 sin2 α (σ2

2 − σ2
1) cosα sinα

(σ2
2 − σ2

1) cosα sinα σ2
1 sin2 α+ σ2

2 cos2 α

)
. (4.16)

Plugging these terms into (4.11), the symmetric factorization of Cholesky type in terms of polar
coordinate α and variances σ2

1 and σ2
2 is given by

V =

(
1 (σ2

2−σ
2
1) cosα sinα

σ2
1 sin2 α+σ2

2 cos2 α

0 1

)
, (4.17)

D =

(
σ2
1σ

2
2

σ2
1 cos2 α+σ2

2 sin2 α
0

0 σ2
1 cos2 α+ σ2

2 sin2 α

)
. (4.18)

Remark 1 (Generalization of the result by Geusebroek et al.) This result demonstrates
that the separation of 2D-anisotropic Gaussian filters proposed by Geusebroek et al. [61] is a
special case of the results of the present chapter. To see this, let ϕ denote the angle between V ’s
column vectors, i.e. ϕ =](v1,v2),

tanϕ =
σ2

1 sin2 α+ σ2
2 cos2 α

(σ2
2 − σ2

1) cosα sinα
. (4.19)

This is exactly the direction of the second convolution operation reported in [61], with correspond-
ing variance given by the second entry on the diagonal of D in (4.18). 2

Parameterization in R3

To obtain a useful parameterization of the separated anisotropic Gaussian convolution filter in R3,
the same mechanism as in the section above for R2 is used. That is, a triangular factorization of
Cholesky type V DV t of the 3D-covariance matrix parameterized in spherical polar coordinates is
derived.

In 3D, these formulas get more complicated than in 2D. To obtain results in a tolerable form,
the parameterization will be derived not for the general 3D-Gaussian filter, but only for the case
that is most relevant in image processing: The material in this section is limited to rotationally
symmetric Gaussian filters. These can have either a prolate shape which is useful for filtering
line-like image structures, or an oblate shape matching flat surfaces in 3D-images.

The polar coordinate of a point x ∈ R3 is given by two angles θ and ϕ, which are called the
colatitude and longitude, respectively [48]. The colatitude is the angle away from the x3-axis,
and the longitude is a rotation in the x1x2-plane, about the x3-axis. To obtain the triangular
factorization of Σ, the system of equations

R(θ, ϕ)

σ
2
1 0 0

0 σ2
1 0

0 0 σ2
3

R(θ, ϕ)t =

1 v1,2 v1,3

0 1 v2,3

0 0 1

d

2
1 0 0

0 d2
2 0

0 0 d2
3

1 v1,2 v1,3

0 1 v2,3

0 0 1

t

(4.20)

82 4.5. DISCRETE IMPLEMENTATIONS OF THE SEPARATED FILTER

needs to be solved for the unknowns v1,2, v1,3, v2,3, d2
1, d2

2 and d2
3. σ2

1 and σ2
3 define the variances

of the resulting filter along its major axes, and R(θ, ϕ) denotes an appropriate rotation matrix.
Note that in (4.20), the parameter σ2

3 specifies the length of the axis of rotational symmetry of the
resulting filter. Accordingly, an unrotated prolate filter (σ2

1 < σ2
3) is centered on the x3-axis, and

an unrotated oblate filter (σ2
1 > σ2

3) lies parallel to the x1x2-plane. Refer to App. D for details,
where also the steps leading to the following set of solutions are given.

d2
1 =

σ2
1σ

2
1σ

2
3

d2
2d

2
3

(4.21)

d2
2 =

σ2
1(σ2

3 sin2 ϕ+ cos2 ϕ(σ2
3 cos2 θ + σ2

1 sin2 θ))
σ2

1 sin2 θ + σ2
3 cos2 θ

(4.22)

d2
3 = σ2

1 sin2 θ + σ2
3 cos2 θ (4.23)

v1,2 =
2(σ2

3 − σ2
1) sin 2ϕ sin2 θ

σ2
1 + 3σ2

3 + (σ2
1 − σ2

3)(cos 2ϕ− 2 cos2 ϕ cos 2θ)
(4.24)

v1,3 =
(σ2

3 − σ2
1) cosϕ cos θ sin θ

σ2
1 sin2 θ + σ2

3 cos2 θ
(4.25)

v2,3 =
(σ2

3 − σ2
1) cos θ sinϕ sin θ

σ2
1 sin2 θ + σ2

3 cos2 θ
(4.26)

Depending on the choice of σ2
1 and σ2

3 , these results fully specify the separated convolution integral
(4.6) of a prolate, isotropic or oblate 3D-anisotropic Gaussian convolution filter. When the filter
is prolate, it has exactly the form required for detecting local orientations in 3D-images of fibers
in Ch. 3. The filter direction is v = (cosϕ sin θ, sinϕ sin θ, cos θ)t, the Cartesian equivalent of the
polar coordinate (θ, ϕ).

4.5 Discrete implementations of the separated filter

The previous section derived explicit formulas for the optimal non-orthogonal separation of the
Gaussian convolution integral. These can be used for 2D and 3D-image filtering. Implementations
of this separated filter require discretized signals and filters, which will be investigated next.
Discrete functions will be indicated by capital letters instead of small letters in the continuous
case. E.g. the discrete Gaussian will be denoted by G(x) instead of g(x).

When implemented, the optimal triangular factorization of Σ given by Proposition 2 results
in a sequence of discrete 1D-convolutions requiring interpolation of increasing dimension. Similar
to the continuous case, this can be written compactly using a discrete directional convolution
operator defined as

(Gi ∗v F)(x) =
∑
k∈Z

Gi(k)F (x− kv). (4.27)

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 83

()
1

0

0

x1

x2

x3

(a)

v12

1

0
()

d
1

1
-
d
1

(b)

()
v13

v23

1

1
-
d
1

d2

1-d2

d
1

(c)

Figure 4.2: In 3D, implementing the proposed separation results in three directional convolution
operations, requiring (a) no interpolation, (b) 1D, or (c) 2D interpolation. (This figure
first appeared in [97], c©IEEE)

Here, the coefficients Gi are derived from the 1D-Gaussian by sampling at the grid points. In the
discrete separated Gaussian filter operation,

G ∗ F = G1 ∗v1 G2 ∗v2 . . . Gn ∗vn F, (4.28)

the directions vi will generally not contain only integral entries. There are a few exception,
e.g. when the filter G is aligned to the Cartesian coordinate grid. Therefore, x−kv does generally
not lie on the sampling grid. To obtain a value for F at this position requires interpolation from
neighboring sample points, see e.g. [135, Ch. 9]. To better understand this process, consider the
case of R3. The general case of Rd follows the same scheme. A separated 3D-discrete convolution,

G ∗ F = G3 ∗v3 G2 ∗v2 G1 ∗v1 F, (4.29)

is a sequence of three 1D-convolutions. Each step in this sequence will now be examined for
required interpolations. Let X = (X1, X2, X3) ∈ Z3 denote a position on the sampling grid of the
image F . The first convolution operation,

F1(X) := (G1 ∗v1 F)(X) =
∑
k∈Z

G1(k)F (X − k (1, 0, 0)t)

=
∑
k∈Z

G1(k)F (X1 − k,X2, X3), (4.30)

along the direction given by the first column v1 of V , computed using the triangular factorization
of Cholesky type, does not require interpolation (Fig. 4.2(a)). It convolves along lines parallel to
the x1-axis. If the data can be organized in memory such that these lines form compact blocks,
computation of F1 is both fast and accurate.

Except for axis-aligned Gaussians, the two remaining filter operations will require interpolation.

84 4.5. DISCRETE IMPLEMENTATIONS OF THE SEPARATED FILTER

The second direction v2 = (v1,2, 1, 0)t, leads to the following convolution operation.

F2(X) := (G2 ∗v2 F1)(X) =
∑
k∈Z

G2(k)F1(X − k (v1,2, 1, 0)t)

=
∑
k∈Z

G2(k)F1(X1 − kv1,2, X2 − k,X3). (4.31)

Among the variables in this function, only v1,2 is not an integer. Consequently, this second
convolution operation needs to access the discrete convolution result F1 from Eq. (4.30) at non-
grid positions along the first dimension. This necessitates 1D-interpolation in the direction parallel
to the x1-axis (Fig. 4.2(b)).

The third and last 1D-convolution step in the complete convolution operation in R3,

F3(X) := (G3 ∗v3 F2)(X) =
∑
k∈Z

G3(k)F2(X − k (v1,3, v2,3, 1)t)

=
∑
k∈Z

G3(k)F2(X1 − kv1,3, X2 − kv2,3, X3 − k). (4.32)

operates along the third column v3 of the triangular matrix V . Here, the coefficients v1,3 and v2,3
will generally not be integers. Therefore, non-grid elements of the discrete convolution result F2

from Eq. (4.31) need to be accessed. These accesses lie on the grid positions along the x3-axis,
but require two-dimensional interpolation in the x1x2-plane (Fig. 4.2(c)).

Summarizing, this closer analysis of the separated Gaussian filter procedure in R3 demon-
strates in detail the properties of the proposed separation scheme in terms of interpolation that
have already been mentioned in Sec. 4.3: General d-dimensional Gaussian convolution can be im-
plemented as a sequence of d one-dimensional Gaussian convolutions, where the i’th convolution
step requires at most i − 1-dimensional interpolation. The interpolations themselves can be im-
plemented using nearest neighbor, linear, or higher order schemes, see e.g. [108, Ch. 8], depending
on the accuracy that is required.

4.5.1 Finite and infinite impulse response filtering

Different variants for implementing the discrete directional convolution operator in (4.27) exist.
The simplest approach is finite impulse response (FIR) filtering,

(Gi ∗v F)(X) =
K∑

k=−K

Gi(k)F (X − kv), (4.33)

where the sum is truncated to extend at most K steps from X. K is chosen such that only terms
remain in the sum where Gi(k) differs significantly from 0, usually a constant multiple of the
standard deviation of the Gaussian.

Due to this inherent dependency between the filter’s spread and the number of terms in (4.33),
such implementations have the drawback of runtime being dependent on filter size. One well-
known remedy is point-wise multiplication of filter and signal in the Fourier domain, as prescribed
by the convolution theorem. However, this approach is not well-suited for the problem at hand,

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 85

as it would be more efficient to compute a d-dimensional Fourier transformation and to perform
the convolution in one step instead of applying the proposed separation. This alternative imple-
mentation variant of Gaussian filtering will in fact be considered in the evaluations in Sec. 4.6.

A second technique that avoids this dependence on filter size is the infinite impulse response
(IIR) implementation of Gaussian filters proposed by Young and van Vliet [177]. They recursively
implemented a rational approximation to the 1D-Gaussian filter. This implementation consists of
a pair of filters, called the forward and backward filters. It is straight-forward to extend these to
directional filtering in direction v, resulting in the following filter pair.

w(x) = B · F (x) +
1
b0

3∑
k=1

bk · w(x− kv) (4.34)

(G ∗v F)(x) = B · w(x) +
1
b0

3∑
k=1

bk · (G∗vF)(x + kv) (4.35)

See [177, 178] for details on the filter coefficients b0, b1, b2, b3 and B and [162] for boundary con-
ditions which need to be applied to avoid certain errors. As σ, the standard deviation of the
1D-Gaussian filter G, enters only through these coefficients, the number of operations required for
evaluating (4.34) and (4.35) is independent of the filter size. Note that since the number of opera-
tions in both filter steps is constant for each x, this filter implementation satisfies the requirement
of O(1) complexity per pixel from Sec. 4.1.1. Thus, when combined with the non-orthogonal sepa-
ration scheme proposed in this chapter, it results in a O(nd)-implementation of the d-dimensional
anisotropic Gaussian convolution filter.

4.5.2 Implementations

With different implementations of the one-dimensional convolution operator (4.27) at hand, the
question remains how these should be applied. Three implementation variants of the proposed
separated anisotropic Gaussian filters will be considered.

• Naive implementation – In this simple implementation, Eq. (4.33) is sequentially applied in
d directions given by the columns of V , at every pixel grid location X.

• Line-buffer implementation – To apply the IIR filter requires a sequence of data. Therefore,
the line-buffer implementation of the proposed method extracts pixel values along parallel
lines through an image, with the lines’ directions given by the columns of V . Each 1D-
filter operation results in directionally filtered values along lines that are generally not axis-
aligned. This implementation therefore requires interpolation not only when extracting the
line-buffers prior to IIR filtering, but also when writing the filtered values back to their
respective image locations.

• Geometric implementation – The third variant for implementing the proposed filter follows
not from the notion of the directional convolution operator, but rather from the geometric
interpretation of the triangular factorization of Cholesky type, cf. Sec. 4.3.1. That is, the
image is first sheared using the transformation matrix V −1. Then, d orthogonal axis-aligned

86 4.6. RESULTS

1D-Gaussian filters are applied, which do not require any interpolation. The filter operations
can again be performed using the efficient IIR implementation. Finally, the filter results are
transformed back to the original image coordinates using V . This implementation variant
separates the filtering from the interpolation, as interpolation is only required when per-
forming the shear. In R3, the shear operation itself can again be split into two steps, first
a shear in the x1, and then in the x2-direction. This also implies that only one-dimensional
interpolation needs to be performed. The general case of Rd can be treated in the same
fashion.

These three alternative implementations all perform separated anisotropic Gaussian filtering.
One task of the following section will be to determine which one of them is the most efficient when
applied to 2D and 3D-images.

4.6 Results

This section presents numerical results on the speed and accuracy of the proposed separated
anisotropic Gaussian filter in 2D and 3D. The three alternative implementations described in
Sec. 4.5.2 will be compared in terms of their runtime. The most efficient one will then be compared
against a state-of-the-art implementation based on the fast Fourier transformation (FFT). As not
only speed but also accuracy are relevant, the impulse response function of the separated filter
implementation will be compared to that of the true Gaussian function.

The three proposed implementations were realized in C. For the recursive IIR 1D-Gaussian
filter, which two out of the three implementations use as a subroutine, cf. Sec. 4.5.2, a publicly
available implementation by J.M. Geusebroek was used1.

Furthermore, to demonstrate the impact of interpolation, two interpolation schemes were
tested, linear and nearest neighbor (NN) interpolation. For the directional convolution opera-
tor in 3D, which requires 2D-interpolation in the third filter direction, a bilinear interpolation
with respect to the four surrounding pixel grid position was applied.

For the control experiment comparing the efficiency of the proposed method against the FFT,
the FFTW library (version 3) in single precision mode was used [54]. Single precision with real
input is the fastest mode of operation of that library. The FFTW, which includes highly optimized
SIMD (single instruction multiple data) assembler code, is one of the fastest implementations
available. Benchmark results comparing the performance of FFTW against other implementations
on different hardware are regularly published on the internet2.

4.6.1 Speed

Isotropic Gaussian filters will be considered as a baseline method in the following. These are
widely used, efficiently implementable, and present an upper bound to the performance that is
achievable for general Gaussian filters. This reference method was implemented by applying d IIR

1http://www.science.uva.nl/~mark/
2http://www.fftw.org

http://www.science.uva.nl/~mark/
http://www.fftw.org

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 87

(a) Mean 2D-performance relative to isotropic Gaussian filtering.

Method Interpolation Relative runtime
float data 8 bit data

isotropic 1.00
FFT 7.69± 6.92

geometric NN 1.98± 0.55 1.62± 0.29
geometric linear 2.01± 0.55 1.70± 0.29
line buffer NN 2.09± 0.06 2.01± 0.35
line buffer linear 3.69± 0.15 2.89± 0.60

Geusebroek [60] linear 1.26± 0.07 1.42± 0.07
naive depends on σ (see text)

(b) Mean 3D-performance relative to isotropic Gaussian filtering.

Method Interpolation Relative runtime
float data 8 bit data

isotropic 1.00
FFT 4.30± 3.99

geometric NN 1.21± 0.05 1.01± 0.07
geometric bilinear 1.22± 0.05 1.10± 0.05
line buffer NN 2.11± 0.22 1.46± 0.16
line buffer bilinear 3.73± 0.44 2.24± 0.27

naive depends on σ (see text)

Table 4.1: Average performance of different implementations of the anisotropic Gaussian filter,
measured in relative units. For each method, the ratio between its runtime and the
runtime of isotropic Gaussian filtering was measured. The tables show the means and
standard deviations of this ratio across different image sizes.

1D-Gaussian filters parallel to the coordinate axes, with runtime being therefore independent of
the variance parameter σ2.

In a first evaluation step, the three different separated implementations and the alternative
FFT filter were applied to 2D and 3D-images with side lengths N = 100, 130, . . . , 4990 and N =
50, 55, . . . , 450, respectively. The goal of this first step is to identify the most efficient separated
implementation scheme, while the discussion of the implementation’s accuracy will be deferred to
the following section. The runtime for each method was measured in 30 trials for each of these
image sizes. The final performance measure is the mean runtime of these trials after excluding
the top and bottom 10% as outliers.

The FFT filter timings presented here include a forward transform of the image, point-wise
multiplication with the Fourier-transformed filter kernel, and an inverse transformation of the
multiplication result. Note that a forward transformation step of the filter kernel is not included.
This step can be omitted as it can be precomputed, either analytically or numerically.

Tab. 4.1 lists the mean results of this experiment across all tested image sizes. The runtime of
the naive implementation, which applies d directed FIR Gaussian filters at each image location,
depends on the size of the filter kernel. It can therefore not be listed in this table, in which
results are generally independent of that parameter. Furthermore, it was apparent early in the
experiments that its performance was not competitive with any other implementation, and was
therefore dropped.

88 4.6. RESULTS

0 1000 2000 3000 4000 5000

0
1

2
3

4
5

side length [pixels]

ru
n

ti
m

e
 [

s
e

c
]

FFT

geometric

isotropic

(a) 2D

100 200 300 400

0
5

1
0

1
5

side length [voxels]

ru
n

ti
m

e
 [

s
e

c
]

FFT

geometric

isotropic

(b) 3D

Figure 4.3: Performance of different methods: Geometric implementation vs. FFT-based convo-
lution vs. isotropic filtering (float data). Runtimes were measured on a 2.2 GHz
Athlon64 3200+ CPU using the Intel ICC compiler (version 9) under a 32 bit
GNU/Linux operating system. (This figure first appeared in [97], c©IEEE)

Clearly, all implementations based on the non-orthogonal separation and IIR-filter subroutine
outperform the FFT implementation. Among the implementations proposed in this chapter, the
geometric implementation is the fastest, both in 2D and 3D. In 2D, however, the implementation
provided by J.M. Geusebroek turns out to be the best-performing one. In this implementation, in-
terpolation and filtering are interwoven, explaining its low runtime. Geusebroek’s implementation,
on the other, is not able to handle integral data, which therefore had to be converted on-the-fly
in order to obtain the results on 8-bit integers in Tab. 4.1. This additional data conversion step
explains the lower performance of Geusebroek’s implementation for integer data compared to the
float case.

Regarding the differences between linear and nearest neighbor interpolation, the additional
cost of linear interpolation is small, especially when using the geometric implementation.

Having identified the geometric implementation as the most efficient one among the variants
described in this chapter, its performance relative to the FFT and isotropic filtering across the
test image sizes is analyzed (Fig. 4.3).

The most obvious feature of the absolute runtimes in Fig. 4.3 is the smoothness of the curve
corresponding to the geometric implementation compared to the FFT. For the proposed method,
some image sizes with lower performance are visible (N = 2560, 3520, 4000, 4480, 4960 for 2D,
N = 160, 320 for 3D). The reason for this behavior is not entirely understood, as the program
follows a deterministic code path that does not differentiate in any fashion between different input
data sizes. Therefore, these effects can most likely be explained by cache prefetch operations,
which may fail for some disadvantageous data block sizes. These optimizations are built into the
program code by modern compilers [58, 74].

So far, the performance of image filtering has been considered. One motivation for deriving
a separable anisotropic Gaussian filter was its use for detecting local orientations as described in

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 89

0 1000 2000 3000 4000 5000

0
1

0
2

0
3

0
4

0
5

0

side length [pixels]

ru
n

ti
m

e
 [

m
in

]

FFT

Geusebroek

(a) 2D

100 200 300 400

0
1

0
2

0
3

0
4

0
5

0

side length [voxels]

ru
n

ti
m

e
 [

m
in

]

FFT / fine

Geometric / fine

FFT / medium

Geometric / medium

FFT / coarse

Geometric / coarse

(b) 3D

Figure 4.4: Runtimes of computing the 2D and 3D-Gaussian orientation space, see Ch. 3. In
2D, the semi-circle was sampled in 1◦ steps, i.e., at 180 points. In 3D, the three
curves shown for each method correspond to coarse, medium and fine sampling of
the hemisphere (Sec. 3.3). These three resolution levels require 18, 50, and 98 filter
operations, respectively. Runtimes were measured on a 2.33 GHz Intel Xeon 5148LV
CPU using the GNU C++ compiler (version 4) under a 64 bit GNU/Linux operating
system.

Ch. 3. Therefore, the time required for constructing the orientation space representation using
either the FFT algorithm or the geometric implementation was evaluated (Fig. 4.4). Those results
were measure on square or cubic images with side lengths N = 100, 120, . . . , 5000 and N =
50, 55, . . . , 450, respectively.

Using separable filters to construct the Gaussian orientation space is faster than using a FFT-
based algorithm, both in 2D and 3D. Similar to the results for anisotropic image filtering in Fig. 4.3,
the performance gain is larger in 2D than in 3D. Runtimes of FFT and separated anisotropic
Gaussian filtering for constructing the Gaussian orientation space are similar at image sizes that
are well suited for the FFT. For image sizes not suited for the FFT, the differences can be huge.
As an example from the experiment described above, consider the computation of the finely
resolved 3D-orientation space of a 3003 image, which required roughly 6 minutes using either
implementation. When increasing the image side length to N = 305, the proposed geometric
filter implementation used 6 minutes and 44 seconds CPU time for performing the 98 3D-filter
operations and the overhead of bookkeeping necessary to obtain the best orientation in each pixel.
The FFT-based implementation required 19 minutes and 20 seconds for the same operation on
the same image, roughly three times the runtime of the separated implementation.

For image filtering, the FFT method requires one forward Fourier transform, multiplication
of filter mask and image in Fourier space, and one inverse transformation. For computing the
Gaussian orientation space, however, the image does not need to be transformed for each tested
filter orientation. Rather, the Fourier transformation of the image is computed once. To obtain
the filter response at any given orientation then only requires multiplication of filter and image

90 4.6. RESULTS

x1

x
2

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

Gaussian

impulse response

x1
x

3

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

x2

x
3

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

(a) Convolution using single precision floating point data and linear interpolation.

x1

x
2

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

Gaussian

impulse response

x1

x
3

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

x2

x
3

−15 −10 −5 0 5 10 15

−
1

5
−

1
0

−
5

0
5

1
0

1
5

(b) Convolution using single precision floating point data and nearest neighbor interpolation.

Figure 4.5: Orthogonal slices through the impulse response of the geometric implementation in
3D (θ = 30◦, ϕ = 60◦, σ1 = σ2 = 5 and σ3 = 10). For comparison, the contour lines of
the true Gaussians are depicted as well. (This figure first appeared in [97], c©IEEE)

in the Fourier domain, followed by one inverse Fourier transformation. This explains why the
performance gains of the proposed over the FFT implementation are larger for image filtering
(Fig. 4.3) than for computing the Gaussian orientation space (Fig. 4.4).

4.6.2 Accuracy

To judge the accuracy of separated anisotropic Gaussian filters, consider the impulse response of
the geometric implementation in R3 in Fig. 4.5. The impulse response of the proposed implemen-
tation fits well to that of the true Gaussian function, regardless of which interpolation scheme is
used. Furthermore, a comparison of Figures 4.5(a) and 4.5(b) shows that the differences due to
the choice of interpolation scheme are local. This observation is crucial as interpolation errors may
– in theory – be propagated through the image due to the sequential order of the d IIR filters. In
Sec. 4.6.1, it was shown that the additional cost of linear over nearest neighbor interpolation is
small. Together with the local errors caused by nearest neighbor interpolation that are visible in
Fig. 4.5(b), linear interpolation appears to be appropriate for implementing separated anisotropic
Gaussian filters.

To systematically evaluate the influences of the filter parameters, the distance between the
Gaussian function and the geometric implementation’s impulse response was measured with re-
spect to σ1 and σ3. To account for the filter orientation, the maximum across all orientations was
taken. This maximum Euclidean error assumes e.g. a value of 0.0223 at σ1 = 1 and σ3 = 3 for

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 91

the geometric implementation with linear interpolation, but drops quickly, e.g. to a value of 0.001
at σ1 = 4 and σ3 = 7. Yet, this drop of the maximum Euclidean error measure is mainly caused
by the lower filter values that larger filter kernels possess. Consequently, this error measure drops
with the determinant of the covariance matrix, |Σ|, and is only of limited practical use. Further-
more, the accuracy of linear and nearest neighbor interpolation in terms of this maximal distance
measure was observed to converge to the same value with increasing |Σ|. In summary, graphical
comparison of the filter’s impulse response to the Gaussian function as in Fig. 4.5 turned out to
be more suitable for judging an implementation’s accuracy than the Euclidean error metric.

4.7 Applications

The most important application of anisotropic Gaussian filters within this thesis is to construct
the orientation space representation of images which was used in Ch. 3. To also demonstrate their
potential as low-pass filters, this section presents some application examples for data smoothing
using anisotropic Gaussian filters.

4.7.1 Anisotropic filtering of tomographic images

Metal foams, light-weight materials that find their applications e.g. as filters, are produced starting
from a mixture of metal or alloy powder. This powder is mixed with a foaming agent and heated
in a furnace. Pores start forming as this propellant releases gas. In an effort to better understand
the forming process of such metal foams, current research in the field tries to better understand
the mechanisms of this foaming process, see e.g. [13]. Through such findings, materials scientists
hope to be able to make better predictions on the resulting foam structures.

One metal foam that was recently investigated is produced from AW-6061 aluminium alloy
with TiH2 foaming agent [137]. There it was observed that the early forming pores had a strong
spatial correlation with the original positions of TiH2 particles. To analyze these correlations
requires to segment the pores in µCT-images. These images with a spatial resolution of 0.7µm,
show tubular pores that run in parallel through the volume data.

In this image, a vector v along which these tubular pores are approximately aligned was
manually determined, cf. the caption of Fig. 4.6 for the corresponding polar coordinate. A prolate
anisotropic filter was designed with σ2

1 = 4 and σ2
3 = 16, and a corresponding isotropic Gaussian

filter with σ2 = 6.3 was chosen such that σ2
1σ

2
1σ

2
3 ≈ σ6. The corresponding shear parameters for

the separated implementation then resulted from Equations (4.21) to (4.26). While both filter
results show similar smoothing characteristics due to this choice of the variance parameters, the
aligned anisotropic Gaussian filter preserves some details of the pore space, which is relevant in
this application.

After zero-padding, the image was 760 × 760 × 760 pixels large, requiring 55 seconds for
anisotropic Gaussian filtering on a 2.4GHz Intel Xeon CPU.

92 4.7. APPLICATIONS

(a) Original (slice #340) (b) Isotropically filtered (c) Anisotropically filtered

(d) Original (slice #490) (e) Isotropically filtered (f) Anisotropically filtered

Figure 4.6: Microtomographic reconstructions of an aluminium alloy (AW-6061) foam at an early
foaming stage. The foaming agent (TiH2) is visible in the form of bright spots.
This propellant distributes through the specimen along parallel tubular pores. This
0.46mm3 volume was filtered with isotropic and anisotropic Gaussian filters, with pa-
rameters set such that |Σ| was equal in both bases. Due to the structure of parallel,
tubular pores in this image, an anisotropic filter manually aligned to these pores
smoothes the images while preserving more details of the pore space (ϕ = 1.62,
θ = 1.50, σ2

1 = 4, σ2
3 = 16, image source: ANKA Karlsruhe)

4.7.2 Adaptive smearing of text lines

The following two application examples of anisotropic Gaussian filters demonstrate the applica-
bility of this techniques in domains other than image processing of microstructures. In document
digitization systems, which usually consist of a sequence of processing steps, overall system perfor-
mance depends heavily on layout analysis, e.g. extraction of text lines [147]. This line extraction
can be difficult especially for camera-captured documents, where text lines are often curled due
to bent page surfaces (Fig. 4.7(a)). A recent contest at the International Workshop on Camera-
Based Document Analysis and Recognition (CBDAR) objectively evaluated the performance of
several algorithms for dewarping, i.e., straightening, of such images [148]. The data used here to
demonstrate the applicability of anisotropic Gaussian filters to document images has been taken
from the image database belonging to that contest (Fig. 4.7).

Images from the aforementioned CBDAR contest were filtered with a bank of 2D-anisotropic
Gaussian filters (σ2

1 = 18, σ2
2 = 6) in 1◦ steps. At each pixel, the minimal filter response across

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 93

(a) Original image (dsc00612) (b) Anisotropically filtered (dsc00612)

(c) Original image (dsc00616) (d) Anisotropically filtered (dsc00616)

Figure 4.7: Camera-captured document images from the CBDAR 2007 document dewarping con-
test [148]. Due to the large inter-character distances and the curled text-lines, seg-
mentation requires suitable preprocessing. The images were filtered with a bank of
differently oriented anisotropic Gaussian filters. As these text lines are black on white
background, taking the minimum across all filter orientations yields images in which
adjacent letters have been smeared, but text lines remain separated. This property
makes this method suitable for preprocessing in text line segmentation. (image source:
CBDAR 2007 document dewarping contest)

these 180 orientations was recorded, and the corresponding result for two images is shown in
Figures 4.7(b) and 4.7(d). For each of the 2112×2816 pixel images, only parts of which are shown
here, the total processing time was about 36 seconds on a 2.4 GHz Intel Xeon CPU.

Due to the local adaptivity of this method and by choosing a filter size that allows to fill
inter-character gaps, the result of this method is a filtered image in which the letters on individual
text lines are merged. These results may be suitable for a subsequent text line segmentation step,
e.g. by using a recently proposed modified snake model that is especially well suited for text lines
in camera-captured document images [23].

4.7.3 Spatiotemporal smoothing of a video sequence

Low-pass filtering is a common preprocessing step for object detection in video. This can be done
for each individual frame, e.g. prior to motion estimation and feature extraction. An alternative
approach that better accounts for the correlation structure between subsequent video frames would
be to use that information for video filtering.

This process is demonstrated for the “New Mobile and Calender” (mobcal) [67] video sequence
(Fig. 4.8). It depicts a pan shot of a toy train moving from right to left in front of differently tex-

94 4.8. DISCUSSION

(a) Original frame (mobcal #240). (b) Anisotropically filtered.

Figure 4.8: Anisotropic filtering to selectively smoothen 2+1D video data. A strongly prolate
anisotropic 3D-Gaussian is aligned with the motion of the front of the toy train. The
resulting filter acts as a motion aware blurring filter, only weakly smoothing the first
two cars of the train, but strongly blurring the background and other objects which
show different movement patterns. (This figure first appeared in [97], c©IEEE, image
source: TU München, electrical engineering department)

tured background. The motion vector of the car carrying the plastic tiger was manually extracted.

To this motion vector, a prolate anisotropic 3D-Gaussian filter was aligned and used to filter
this 2+1D-video sequence around frame #240. The effect can be seen in Fig. 4.8(b): All parts of
the image that have a different temporal correlation structure than this leftmost car are strongly
blurred. The car carrying the plastic tiger, on the other hand, remains sharp. Here, the aligned
anisotropic Gaussian filter acted mainly as a small low-pass filter, preserving most image features.
Filtering the 474 MB clip (80 RGB frames in 1920× 1080 resolution) took less than 1 minute on
a 2.2 GHz AMD Athlon64 CPU.

4.8 Discussion

The main contribution of this chapter is an in-depth understanding of the mechanisms and prop-
erties of non-orthogonal factorizations of the Gaussian convolution kernel. It was shown that all
symmetric factorizations of the covariance matrix Σ of the form Σ = V DV t into square matrices
D and V , where D is diagonal and V has determinant 1, lead to a separated Gaussian convolution
integral. Based on this result, a symmetric factorization of the covariance matrix, similar to a
Cholesky decomposition, was identified as being optimal for discrete implementations. It is not
unique in this sense. Other factorizations of the Gaussian kernel with the same or similar proper-
ties would be possible. The factorization used here has an intuitive geometric interpretation that
leads to an implementation of Gaussian convolution achieved by image shearing and axis-aligned
Gaussian filtering (called the “geometric” implementation). The result obtained here generalizes
a previously known one concerning anisotropic Gaussian filters in R2 by Geusebroek et al. [61].

Factorizations of the Gaussian convolution kernel into 1D-Gaussians allow the use of fast recur-
sive implementations of 1D-Gaussian convolutions. These implementations have O(1) complexity
per filtered point. Combined with the proposed separation mechanism, this leads to implementa-
tions of the anisotropic d-dimensional convolution operation with linear complexity in the number

CHAPTER 4. SEPARATION OF ANISOTROPIC GAUSSIAN FILTERS 95

of pixels. Two such implementations of 2D and 3D-Gaussian filters were proposed, both of which
were shown to be faster than state-of-the-art implementations based on the FFTW library. Among
all tested implementations, the 2D-anisotropic Gaussian filter routine that is publicly available
from J.M. Geusebroek [61], and the geometric 3D-anisotropic Gaussian filter method proposed in
the present chapter are fastest for 2D and 3D-image filtering, respectively.

Another advantage of this novel non-orthogonal separation is its versatility compared to a
standard implementation based on the Fourier transformation. E.g., it allows for efficient im-
plementations of local image filters by applying a sequence of directional convolution operators,
introduced in this chapter, and it even enables implementations of anisotropic Gaussian filters in
fixed-point arithmetic. The feasibility of such fixed point implementations has been demonstrated
in [96], where the filter described in the present chapter was implemented using integer arithmetic
on an ETRAX 100LX 32 bit RISC processor. This approach should also be suitable for specialized
hardware platforms such as FPGAs (field programmable gate arrays).

These efficient implementations of anisotropic Gaussian filtering are useful for speeding up
computation of the Gaussian orientation space discussed in Ch. 3. Moreover, applications to images
and video sequences in the present chapter demonstrate the potentials of anisotropic Gaussian
filters for adaptive image smoothing.

96 4.8. DISCUSSION

Chapter 5

Discussion

From the task of determining the coordinates of cells in histological resections to the problem of
computing the 3D-fiber orientation distribution in reinforced polymers, this thesis proposed novel
methods for the image-based analysis of microstructures. At the outset, constraints for image
analysis algorithms in these application areas were defined: Limited user interaction, avoidance
of image segmentation, and applicability to large datasets. The models and algorithms proposed
thereafter addressed these issues in various ways.

For planar images of non-overlapping objects such as tumor cells or metal particles, a novel sta-
tistical model comprising a spatial prior and a likelihood term for which non-parametric statistical
classifiers can be used was introduced. The entire system is trainable from a given set of images and
associated object coordinates. Given access to such training data, it was demonstrated in Ch. 2
that the system is applicable to different image data. As this process does not require any changes
to the method itself, no user interaction other than the provision of training data is required for
switching between different multiple object localization tasks. Standard image segmentation-based
methods (isodata binarization, watershed transformation, nonmaximum suppression) were shown
to perform poorly both on simulated data and on the H&E-stained meningioma cell images. In
those cases, where noise was strong, objects overlapped or background clutter complicated the
task, the trainable statistical localization method introduced in Ch. 2 produced significantly more
accurate localization results than those standard methods.

The next image analysis task addressed in this thesis was the problem of determining the
fiber orientation distribution in materials such as glass and carbon fiber-reinforced polymers.
While micro-computed tomography is widely used in non-destructive testing of such materials,
segmentation of individuals fibers is difficult. This is mostly due to the limits of spatial resolutions
achievable by µCT systems (approximately 1µm), which is often insufficient to separate fibers. To
obtain orientation estimates in such situations nevertheless, a method based on repeated image
convolutions with anisotropic Gaussian filters (2D and 3D) was introduced. This approach was
shown to be more accurate and more robust to noise than an alternative, gradient-based algorithm.
It is applicable to fiber-reinforced plastics, as well as to paper fibers. The only parameter of the
method is the fiber diameter, which was assumed to be constant throughout the image. With this
method, Ch. 3 introduced a system for fiber orientation estimation that does not require any user

97

98

interaction and which retrieves this information even when segmentation is not possible.
Repeated image filtering as it is used to detect local fiber orientations in this thesis is compu-

tationally expensive, especially for volume images. This limits the applicability of the proposed
fiber orientation estimation approach to large datasets. In order to make it better applicable to
large amounts of data nevertheless, factorizations of the required anisotropic Gaussian kernel were
in investigated in Ch. 4. An analysis of the properties of different factorizations resulted in one
that was shown to be optimal in the number of required interpolation steps when implemented.
This result, which generalized a previous one reported elsewhere, showed that convolution with an
anisotropic Gaussian kernel in Rd can be implemented efficiently by an image shear, recursive axis-
aligned 1D-Gaussian filters, and an inverse image shear. Experiments with implementations of this
method showed that it was faster than state-of-the-art implementations based on the fast Fourier
transformation for anisotropic Gaussian filtering of 2D and 3D-image data. This improvement
was demonstrated to carry over to the computation of Gaussian orientation spaces, thus making
the fiber orientation estimation method proposed in this thesis applicable to large dataset.

To characterize the novelty of each contribution over previous results achieved by other authors,
overviews over relevant publications were given in each chapter. Few authors have dealt with
the multiple object localization problem in the form presented in this thesis. More commonly,
object coordinates have been computed as a by-product of dedicated segmentation algorithms.
As demonstrated in Ch. 2, it can be advantageous to treat and model these locations separately,
as image segmentation can fail in many situations. Methodically, that chapter contributed a
novel combination of trainable algorithms with point process statistics, resulting in the first fully
trainable application of such spatial statistics models in computer vision. Comparing the proposed
fiber orientation estimation algorithm to related publications, the novel contribution there should
be characterized as a practical, alternative algorithm to what has been used elsewhere. Clearly, the
experimental evaluations of Ch. 3 have shown that this method has some merits over an alternative
approach described in the literature. In contrast to other filter types that can be used to compute
orientation space representations of images, the Gaussian orientation space used in this thesis
comes with the efficient implementation scheme derived in Ch. 4. The theoretical contributions of
that chapter were a general analysis of separable anisotropic Gauss filters and a derivation of an
optimal one for implementations. These results generalized earlier ones reported elsewhere, and
opened the path to new efficient implementations of anisotropic Gaussian filters.

Summarizing the novel contributions of this thesis in all of these fields, the following improve-
ments in the image analysis of microstructures were made. Customized image processing solutions
for segmenting and thereby locating objects in images could be replaced by a trainable method,
which can be trained to be applicable to a large variety of image data instead of solving only
one specific problem. For 2D and 3D-images of fibrous materials in which fibers overlap due to
insufficient image resolution, accurate estimation of fiber orientation distributions was enabled
through the use of Gaussian orientation space. A principled mathematical treatment of factoriza-
tions of Gaussian convolution kernels lead to an optimal separated implementation of anisotropic
Gaussian convolution filters with significant speedups of anisotropic 2D and 3D-image filtering
and computation of Gaussian orientation spaces.

Appendix A

Gradient-Based Training of

Convolutional Neural Networks

While the concept of weight sharing in MLPs is described e.g. in [100], the technical details on
how these weights are updated and how this is implemented can rarely be found in the literature.
An exception is a paper by Simard et al. [150], who provide some implementation details for
convolutional neural networks. But this paper also does not formally derive the forward and
backward propagation rules for this network architecture. Therefore, this appendix derives the
weight update rules for gradient descent training of convolutional neural networks and lists the
routines that were used for the experiments presented in Ch. 2. Due to weight sharing in this
specific MLP type, the resulting update formulae are slightly different from those known for
standard fully connected MLPs. The derivation below follows [20], with the main difference that
one needs to deal with the indices of shared weights in the present case.

Note that for simplicity of notation, only 1D-convolutional neural networks will be considered
here. Furthermore, the subsampling layers in convolutional neural networks, cf. Sec. 2.3.1, need
not be treated separately, for they do not possess any trainable weights. The activations pass
through the subsampling layers, and are simply added with a fixed coefficient depending on the
number of units that are combined.

A.1 Backpropagation training

Let a, b and c denote vectors of activations in subsequent layers of a convolutional neural network,
indexed by i, j and k, respectively. In forward propagation, activations are passed from layer a

through layer b up to layer c. The elements of each layer are connected by arcs, and each arc is
associated with a weight vα or wβ , depending on whether it connects layer a to b or layer b to
c. These weights are shared, i.e., the indices α, β ∈ Z are independent of the indices of units to

99

100 A.1. BACKPROPAGATION TRAINING

wβ

vα

a

b

c

i

j

k

vα vα

wβ wβ

Figure A.1: Illustration of the nomenclature used to derive weight update rules for convolutional
neural networks. The connections between adjacent layers a-b and b-c share weights
vα and wβ , respectively. The activation of unit bi is computed as a linear combination
of weights vα and activations of connected units in layer a. As other units in layer
b use the same weights vα, the activations in layer b are the result of a finite linear
convolution of a and weights vα, i.e., b = v ∗ a.

which they connect (Fig. A.1). With this notation, the activation of unit bj is computed as

bj =
nw∑

α=−nw

vαf(ai+α), (A.1)

where ai is the central unit in layer a to which bj connects, f denotes the transfer function, e.g.,
the sigmoid, which has the convenient property that f ′(x) = f(x)(1−f(x)). 2nw+1 is the number
of incoming connections in each unit.

Denote the error function measured at the output units by E. For the purpose of this thesis,
E is the sum-of-squares error function. The first derivative of the overall error with respect to one
weight vα,

∂E

∂vα
=
∂E

∂bj
· ∂bj
∂vα

=
∂E

∂bj
· ∂

∂vα

[
nw∑

α=−nw

vαf(ai+α)

]
, (A.2)

gives the direction in which the value vα should be modified in order to locally decrease the error
E. In (A.2), the only term that cannot be computed from the state of the previous layer, a, is
∂E
∂bj

. To compute it requires the following reformulation of that term, leading to the so-called
backpropagation algorithm.

∂E

∂bj
=
∑
k

∂E

∂ck
· ∂ck
∂bj

=
∑
k

∂E

∂ck
· ∂
∂bj

 nw∑
β=−nw

wβf(bk+β)

 = f ′(bj) ·
∑
k

∂E

∂ck
wj−k, (A.3)

where the last step follows from k + β = j, as bj and ck would not be connected if that was not
true. In the partial derivative of the sum with respect to bj , all terms except for the one where
β = j − k vanish. Observe here that only the term ∂E

∂ck
cannot be computed from the state of

the current layer. It can, however, be computed from the same formula (A.3) by substituting the

APPENDIX A. TRAINING OF CONVOLUTIONAL NEURAL NETWORKS 101

appropriate term. This derivative will therefore depend again on the error in the next higher level.
This process continues up to the output layer of a MLP, where it can finally be evaluated. Given
the error at the last layer, these derivatives in all previous layers can be evaluated, which is called
error-backpropagation.

In (A.2), the derivative of the error E with respect to a weight vα was split at a fixed unit bj .
This is a standard procedure in deriving the weight update for MLPs, as a weight can usually be
assigned to exactly one unit. This is not the case when using weight sharing. There, the weight
vα is used by every unit bj in layer b. Therefore, when minimizing the error E with respect to
vα, all these units must be taken into account. Using the mean gradient across all units bj leads
to weight update directions ∆vα ,

∆vα =
1
nb

nb∑
j=1

∂E

∂bj
· ∂bj
∂vα

, (A.4)

where nb denotes the number of units in layer b. The corresponding weight update rule

vt+1
α = vtα − ε∆vα (A.5)

with step size parameter ε > 0 gives a gradient-descent learning rule for convolutional neural
networks.

A.2 Implementation

The update (A.5) rule is directly implementable. In the following C source code, all data is ar-
ranged in floating point type arrays. delta denotes arrays containing the values δi :=

∑
j
∂E
∂bj

wi−j ,
and input represents the values f ′(ai) in the same form. The first step in backpropagation train-
ing is the computation of the error terms δ in each layer, starting at the last layer. This requires
a call to the following routine called backprop for each layer.

// Propagate error terms delta in backward direction, using shared weights

void backprop(float *delta_left, const float *delta_right,

const float *input, int ninput, const float *weights, int nweights)

{

// the number of connections to the left and right of an index i

int offset = nweights/2;

// the following layer is smaller than the previous one

int noutput = ninput - 2*offset;

for (int j = 0; j < ninput; j++)

{

float sum = 0.0f;

102 A.2. IMPLEMENTATION

for (int beta = -offset; beta <= offset; beta++)

{

int k = j + beta - offset;

if ((k >= size_out) || (k < 0)) continue;

sum += delta_right[k] * weights[beta+offset];

}

delta_left[j] = (1.0f - input[j]) * input[j] * sum;

}

}

Given the arrays deltas in each layer, the weights can be updated using a second function
called update.

// Update shared weights using gradient descent

void update(float *weights, int nweights, const float *deltas,

const float *input, int ninput, float rate)

{

// the number of connections to the left and right of an index i

int offset = nweights/2;

// number of arcs with which one shared weight is associated.

int nlocations = ninput - 2*offset;

for (int i = offset; i < ninput-offset; i++)

{

for (int j = -offset; j <= offset; j++)

{

// gradient descent

weights[j+offset] += (rate / (float)nlocations) * deltas[i-offset] * input[i+j];

}

}

}

Result of this second function, update, is an updated array of weights. To simplify the code
and to speed up the computation, the routines above do not perform any edge treatment. Instead,
each convolutional layer is 2 × offset units shorter than its predecessor. Note that in backprop,
it therefore needs to be checked whether k remains within the bounds of delta right before
accessing its elements.

Appendix B

Source Codes of the “Isodata” and

“Watershed” Control Methods

In an effort to make the results reported on this thesis fully reproducible, this appendix lists
the complete source codes of the control methods used in Ch. 2. These are in the form of NIH
ImageJ [138] macros. The results reported in Ch. 2 have been produced using version 1.41c of
that software.

B.1 Isodata Thresholding

macro "Batch Isodata Find Objects" {

requires("1.41c");

setBatchMode(true);

// set ImageJ to assume white objects on black background

saveSettings();

run("Options...", "iterations=1 black count=1");

// low-pass filter

run("8-bit");

run("Smooth");

run("Smooth");

run("Smooth");

run("Smooth");

run("Smooth");

// binarize

setAutoThreshold();

103

104 B.2. WATERSHED SEGMENTATION

run("Apply LUT");

run("Options...","iterations=3 count=1")

run("Open");

// output center coordinate of each isolated segment

run("Set Measurements...", "centroid decimal=0");

run("Analyze Particles...", "size=100-Infinity circularity=0.00-1.00 show=Nothing

clear include display");

restoreSettings();

close();

}

The ImageJ macro listed above smoothes a grey-valued image by applying some low-pass
filters. An automatic thresholding algorithm (isodata thresholding) is applied to the smoothed
image. Isolated foreground regions are then identified and the center coordinate for each such
object is output, resulting in a multiple object localization method. In the last step, small regions
are omitted to exclude false positives that are introduced due to noise.

B.2 Watershed Segmentation

macro "Batch Watershed Find Objects" {

requires("1.41c");

setBatchMode(true);

// set ImageJ to assume white objects on black background

saveSettings();

run("Options...", "iterations=1 black count=1");

// low-pass filter

run("8-bit");

run("Smooth"); // smooth

run("Smooth"); // smooth

run("Smooth"); // smooth

run("Smooth"); // smooth

run("Smooth"); // smooth

// binarize

run("Make Binary");

APPENDIX B. SOURCE CODE OF CONTROL METHODS 105

// compute distance transform, then use watershed algorithm to segment the image

run("Watershed");

run("Invert LUT");

// output center coordinate of each segment

run("Set Measurements...", "centroid decimal=0");

run("Analyze Particles...", "size=100-Infinity circularity=0.00-1.00 show=Nothing

clear include display");

restoreSettings();

close();

}

Except for the segmentation step, this ImageJ macro is identical to the Isodata one from the
previous section. Instead of relying on the binarization step to yield separated objects in the image,
this macro applies the watershed transformation on a distance map (these steps are subsumed
in the call to ImageJ’s Watershed method). These steps are standard in the image processing
literature and allow for touching objects to to be separated, if they have circular shapes.

106 B.2. WATERSHED SEGMENTATION

Appendix C

Points on the Upper Hemisphere

Ch. 3 presented the concept of reduced Gaussian orientation spaces, which, in 3D, requires to filter
an image with n anisotropic Gaussian filters oriented along uniformly distributed direction vectors
on the upper hemisphere. This appendix presents a detailed description of the method that was
used to generate the directions used in Ch. 3. Except for a few numbers n, there exists no general
solution to the problem of uniformly arranging n points on the sphere S2 [142]. In [49] and [50],
a numerical algorithm for computing uniform arrangements of n points on the three-dimensional
unit sphere S2 has been proposed. The inverse pairwise Euclidean distance between unit vectors
xi ∈ R3, ‖xi‖ = 1, i = 1, . . . , n,

n∑
i=1

n∑
j=i+1

1
‖xi − xj‖

, (C.1)

is minimized in two stages. Initially, they apply simulated annealing to get a rough solution, then,
in the second step, local Newton optimization is applied to improve upon the results from the
first step. In their work, Fliege and Maier constructed these n points on the sphere in order to
perform accurate numerical integrations. That is, they were searching for unit vectors xi ∈ R3

and associated weights wi ∈ R such that integrals over polynomials f(·) on the sphere could be
computed via the cubature formula

∫
S2
f(x)dx =

∑
i

wif(xi). (C.2)

Therefore, the wi are referred to as the cubature weights. Let m be the degree of the polynomial f .
For the case of 3 dimensions, if n = (m+ 1)2, the weights w = (w1, w2, . . . , wn)t can be computed
as the solution of

Gw = (1, 1, . . . , 1)t, (C.3)

107

108 C.1. MODIFICATIONS FOR THE HEMISPHERE

where G is the reproducing kernel matrix,

Gm(xi,xj) =
1

4π

(
C3/2
m (xtixj) + C

3/2
m−1(xtixj)

)
(C.4)

and C
3/2
m denotes the Gegenbauer polynomial of degree m with index 3/2,

C3/2
m (ξ) =

[m/2]∑
k=0

(−1)k
3
2 (3

2 + 1) · · · (3
2 +m− k − 1)

(m− 2k)!k!
(2ξ)m−2k (C.5)

For large m, computation of the Gegenbauer polynomials via (C.5) becomes intractable due
to the factorial terms. For an alternative method for computing the C3/2

m in such cases, and for
other details, see [50]. The weights can then be computed from Eq. (C.3) via QR decomposition.
For the results presented below, GNU R [136] (Version 2.4), which provides an interface to the
corresponding LINPACK function, was used to compute this decomposition.

C.1 Modifications for the hemisphere

For the purposes of Ch. 3, what is needed are uniformly distributed sampling points on the upper
hemisphere. This appendix describes a modification of Fliege and Maier’s approach in order to
compute such points and their cubature weights, which are used here as figures of merit.

The original two-stage method for computing arrangements of n points on the full sphere is
reduced to a one-step simulated annealing optimization of n/2 points on the upper hemisphere.
The second stage, a Newton optimization, was omitted since the simulated annealing alone gave
satisfactory results when a very conservative annealing schedule was used (exponential cooling
from T0 = 104 to T1 = 10−7). To avoid degenerate solutions, and to guarantee correct edge
treatment at the equator (z = 0), the score (C.1) is computed for the points xi on the upper
and their mirror points −xi on the lower hemisphere, simultaneously. Due to the symmetry of
the filter masks used in Ch. 3, sampling at these points does then not introduce an error at the
boundary. For the reasons given in Sec. 3.3, the set of solutions is constrained to include the three
unit vectors on the coordinate axes, (1, 0, 0)t, (0, 1, 0)t and (0, 0, 1)t.

Computation of weights wi is more sensitive. Of course only the solutions for i = 1, . . . , n/2
on the upper hemisphere are relevant here, but to compute these weights for all n points (original
and mirror) need to be considered. Simply adding −x for each x as in the optimization process
above is not sufficient here, as this turns the matrix G from (C.4) into a singular matrix.

This is avoided by applying slight perturbations of the points on the lower hemisphere. For
this, samples from the Fisher-von Mises distribution, c.f. Ch. 3, with very narrow spread (κ = 104)
with mean directions −vi were used (i = 1, . . . , n/2).

APPENDIX C. POINTS ON THE UPPER HEMISPHERE 109

n/2
∑
i wi/2π min{wi − 4π/n} max{wi − 4π/n}

18 1.001870 -0.08013 0.08192
50 1.003970 -0.04413 0.04718
98 1.000330 -0.03424 0.03638

Table C.1: Figures of merit for the three sets of points on the upper hemisphere, analogous to
[49, 50], rounded to four significant digits. The normalized sum of absolute weights
should ideally be one, the minimal and maximal deviation from the theoretical weight
2π should be close to zero.

n/2 Mean [◦] Minimum [◦] Maximum [◦]
18 33.13 32.14 34.57
50 19.74 18.03 21.23
98 13.80 12.71 14.99

Table C.2: Angular distances to the nearest neighbor at the three resolution levels, computed as
the arccosine of their inner products. The largest deviation is below 2◦.

C.2 Results

Due to the restrictions induced by symmetry, the proposed approach does not allow for an arbitrary
number n of points to be chosen. In addition to the restriction that n = (m+ 1)2, n must also be
an even number. The first few n that obey both conditions are n/2 = 2, 8, 18, 32, 50, 98, 162, 200.
From these, three “resolution levels” have been selected: 18, 50, and 98. These are sufficient
for handling the trade off between orientation resolution and runtime restrictions. The resulting
points along with their cubature weights are listed in Tables C.3 through C.5.

The quality of the computed point arrangements on the sphere can be judged by analyzing the
cubature weights wi. Their absolute sum should equal the area of the hemisphere, and they should
not deviate too far from their theoretical optimum, 4π/n. Compared to the results presented in
[50], the scaled sums of absolute weights loose several decimal places of precision, but the minimal
and maximal deviations from 4π/n remain within the error bounds that have also been reported,
there. This loss of accuracy is explained by the much higher number of constraints in the present
optimization process (due to the fact that the points on the lower half could not move freely).

Another measure of interest is the geodesic distance to resulting points’ nearest neighbors. The
geodesic distance on the sphere is simply the angle between two unit vectors, cf. Tab. C.2. These
distances allow for an assessment of the gain in precision when switching between one of these
three resolution levels. Furthermore, the small range of angular distances to the nearest neighbor
(at most 3.2◦) is another indicator for the quality of the results.

110 C.2. RESULTS

x y z w
0.0000 0.0000 1.000 0.3355
0.0000 1.000 0.0000 0.4310
1.000 0.0000 0.0000 0.2689
0.6882 -0.7223 0.06836 0.3614

-0.8340 0.3837 0.3965 0.3878
0.2682 -0.8340 0.4822 0.3203
0.1375 0.6612 0.7375 0.4103

-0.2538 -0.5008 0.8275 0.3853
0.4728 0.8347 0.2826 0.2912

x y z w
-0.4067 0.3681 0.8361 0.3451
-0.7079 -0.1383 0.6926 0.3321
0.8243 0.4038 0.3969 0.3833

-0.3536 0.8306 0.4301 0.2845
0.3993 -0.4139 0.8180 0.3449

-0.3993 -0.8279 0.3938 0.3104
-0.8276 -0.5064 0.2419 0.3879
0.5262 0.2095 0.8241 0.3146
0.8364 -0.2939 0.4626 0.3847

Table C.3: 18 approximately uniform points on the upper hemisphere along with their cubature
weights.

x y z w
0.0000 0.0000 1.000 0.1119
0.0000 1.000 0.0000 0.1208
1.000 0.0000 0.0000 0.1097

-0.9509 -0.3006 0.07362 0.1409
0.7522 -0.1830 0.6330 0.09602
0.4999 -0.1132 0.8587 0.1298

-0.7268 -0.4291 0.5364 0.1305
0.3504 -0.4871 0.8000 0.1025

-0.5508 0.4231 0.7195 0.1151
-0.6260 0.7467 0.2248 0.08153
0.6810 0.5184 0.5172 0.1359

-0.8963 -0.1344 0.4225 0.1377
-0.07356 -0.5348 0.8418 0.1332
-0.1808 0.2854 0.9412 0.1205
-0.2378 0.9286 0.2847 0.1442
0.3961 -0.9175 0.03496 0.1269
0.1450 -0.2750 0.9504 0.1291

-0.4510 -0.5155 0.7286 0.1227
-0.5295 -0.7528 0.3911 0.1444
0.5013 0.7895 0.3541 0.1120
0.7212 0.1620 0.6735 0.1578

-0.6430 -0.1561 0.7498 0.1153
-0.2062 -0.7613 0.6147 0.1171
0.1636 -0.9293 0.3310 0.1545

-0.2936 -0.2392 0.9255 0.1296

x y z w
0.3065 0.1606 0.9382 0.1394

-0.04071 0.8130 0.5808 0.1006
0.4786 0.4078 0.7776 0.08581
0.8163 -0.4627 0.3458 0.08454
0.6441 0.7649 0.01028 0.1154
0.1135 0.4861 0.8665 0.1372
0.6003 -0.5230 0.6051 0.1728
0.1648 0.9332 0.3193 0.1303

-0.2319 0.5956 0.7691 0.1233
-0.2023 -0.9235 0.3261 0.1128
-0.7970 -0.5593 0.2278 0.09738
0.9391 -0.1293 0.3183 0.1692
0.9086 0.2116 0.3600 0.09114
0.8296 0.5206 0.202 0.1406

-0.4512 0.729 0.5148 0.1456
-0.3654 -0.9308 0.009956 0.1326
-0.7777 0.4919 0.3914 0.1440
0.1807 -0.7539 0.6316 0.1293

-0.4492 0.09224 0.8887 0.1404
0.3007 0.7050 0.6423 0.1502
0.9132 -0.4076 0.001086 0.1213
0.7095 -0.6982 0.09548 0.1675
0.4884 -0.7808 0.3896 0.09009

-0.7626 0.1729 0.6233 0.1223
-0.9370 0.1960 0.2892 0.1161

Table C.4: 50 approximately uniform points on the upper hemisphere along with their cubature
weights.

APPENDIX C. POINTS ON THE UPPER HEMISPHERE 111

x y z w
0.0000 0.0000 1.000 0.05356
0.0000 1.000 0.0000 0.05561
1.000 0.0000 0.0000 0.07369
0.1123 0.2105 0.9711 0.06419
0.4640 0.7170 0.5203 0.07475

-0.4386 0.3664 0.8206 0.04615
0.6042 -0.6614 0.4445 0.09299
0.1835 0.8200 0.5421 0.05276

-0.8416 0.3514 0.4101 0.06615
0.9205 0.1188 0.3723 0.08265
0.3976 0.5863 0.7059 0.04235

-0.4412 0.8904 0.1119 0.06790
0.4022 -0.4835 0.7775 0.06828
0.7104 0.6265 0.3207 0.04532

-0.7290 0.07126 0.6807 0.03598
-0.7544 0.5888 0.2902 0.07259
-0.5773 -0.7556 0.3095 0.07099
0.6306 -0.4188 0.6535 0.07568
0.3253 0.9437 0.05981 0.06261
0.6153 0.7827 0.09348 0.06810

-0.2080 0.9681 0.1399 0.06610
-0.7751 0.6318 0.0002917 0.07112
-0.3475 -0.5671 0.7467 0.04805
-0.2752 0.1736 0.9456 0.05140
-0.8673 0.1268 0.4814 0.06631
0.5109 -0.8465 0.1499 0.07899
0.6801 -0.6961 0.2302 0.04062
0.2842 0.8961 0.3408 0.07022
0.6628 0.5296 0.5294 0.08203
0.3802 0.1785 0.9075 0.05094

-0.2258 -0.7664 0.6014 0.1005
0.2839 -0.9504 0.1273 0.05653

-0.1631 -0.9726 0.1658 0.05939
-0.3477 0.8640 0.3641 0.06000
-0.1244 -0.5157 0.8477 0.08321
-0.08116 0.9264 0.3678 0.06516
0.4428 -0.6666 0.5997 0.03692

-0.5520 0.7312 0.4009 0.07292
-0.9629 -0.2334 0.1351 0.07528
-0.2252 -0.06329 0.9723 0.07986
-0.2798 -0.3154 0.9068 0.05675
-0.1102 0.3377 0.9348 0.08216
0.5882 0.3877 0.7097 0.05481

-0.6770 0.3189 0.6633 0.08162
-0.6754 0.5194 0.5235 0.04665
-0.5308 0.1442 0.8351 0.08507
-0.4842 -0.8698 0.0952 0.05582
0.9044 -0.2821 0.3200 0.07742

-0.8823 -0.4613 0.09337 0.06465

x y z w
0.7990 0.3133 0.5132 0.05387

-0.7340 -0.5676 0.3729 0.07807
-0.2617 0.5248 0.8100 0.07432
0.2246 -0.2885 0.9308 0.06246
0.2230 -0.6909 0.6877 0.08180

-0.9558 -0.04514 0.2905 0.03612
0.9608 -0.2727 0.05055 0.05677
0.3487 0.3934 0.8507 0.08560
0.1053 -0.9558 0.2745 0.07098

-0.02105 -0.7113 0.7026 0.03521
0.5157 -0.01183 0.8567 0.05747

-0.5745 -0.5484 0.6077 0.08850
-0.6623 -0.1663 0.7305 0.07778
-0.4629 -0.08714 0.8821 0.05062
0.7631 -0.4670 0.4468 0.04723
0.6780 -0.1597 0.7175 0.06393

-0.5033 -0.3536 0.7885 0.07177
-0.7285 -0.6742 0.1213 0.04581
-0.0825 0.6486 0.7566 0.05022
-0.08044 -0.8949 0.4390 0.04499
0.1608 -0.8489 0.5035 0.07458
0.8267 -0.1966 0.5272 0.06607

-0.4457 -0.7350 0.5111 0.03027
0.3824 -0.8408 0.3832 0.05841

-0.07185 0.8220 0.5649 0.06939
0.6541 0.1579 0.7397 0.08107

-0.8672 -0.3559 0.3483 0.06342
0.8162 0.5672 0.1097 0.08290

-0.3272 -0.8899 0.3180 0.07861
0.9630 0.2419 0.1189 0.05983
0.1663 0.6637 0.7293 0.08514

-0.9596 0.1902 0.2072 0.07666
0.8727 0.3922 0.2907 0.06243
0.4641 -0.2585 0.8472 0.05850
0.2510 -0.04831 0.9668 0.07867
0.09778 0.4631 0.8809 0.04617
0.1065 0.9722 0.2085 0.06186

-0.6261 0.7696 0.1254 0.05341
0.9686 -0.05805 0.2418 0.04658

-0.7321 -0.3648 0.5753 0.02988
-0.8492 -0.1375 0.5099 0.09299
-0.3187 0.7403 0.5919 0.06328
0.8540 -0.4903 0.1740 0.06812
0.1285 -0.5054 0.8533 0.05953

-0.4847 0.5791 0.6555 0.06843
0.5052 0.8107 0.2959 0.05914

-0.02569 -0.2709 0.9623 0.06006
0.8098 0.04909 0.5847 0.05192

-0.8902 0.4334 0.1401 0.04916

Table C.5: 98 approximately uniform points on the upper hemisphere along with their cubature
weights.

112 C.2. RESULTS

Appendix D

Details on the Factorization and

Parameterization of Σ in R3

For applications in image processing, explicit factorizations and parameterizations of the 3D-
anisotropic Gaussian convolution filter were presented in Ch. 4. As the corresponding derivations
are cumbersome and not very instructive, they have been deferred until the present appendix,
which contains all mathematical details of the symmetric factorization of Cholesky type and its
parameterization using polar spherical coordinates.

D.1 Explicit symmetric factorization of Cholesky type in

R3

The following steps for deriving explicit formulas for the entries of V and D in the factorization
Σ = V DV t have been described in Sec. 4.4.1. As there, let vi,j , 1 ≤ i < j ≤ d, denote the entries
in the upper half of V , and d2

i , i = 1, . . . , d, the entries on the diagonal of D. The elements of Σ
will be written as si,j with si,j = sj,i.

V DV t =

1 v1,2 v1,3

0 1 v2,3

0 0 1

d

2
1 0 0

0 d2
2 0

0 0 d2
3

 1 0 0
v1,2 1 0
v1,3 v2,3 1

=

d
2
1 d2

2v1,2 d2
3v1,3

0 d2
2 d2

3v2,3

0 0 d2
3

 1 0 0
v1,2 1 0
v1,3 v2,3 1

=

d
2
1 + d2

2v
2
1,2 + d2

3v
2
1,3 d2

2v1,2 + d2
3v1,3v2,3 d2

3v1,3

d2
2v1,2 + d2

3v1,3v2,3 d2
2 + d2

3v
2
2,3 d2

3v2,3

d2
3v1,3 d2

3v2,3 d2
3

 !=

s1,1 s1,2 s1,3

s1,2 s2,2 s2,3

s1,3 s2,3 s3,3

 (D.1)

113

114 D.2. PARAMETERIZATION OF V DV T IN R3 USING POLAR COORDINATES

Solving the individual equations column-by-column from right to left, starting at the elements
with the highest row index leads to the following set of solutions.

d2
3 = s3,3

v2,3 =
s2,3
s3,3

v1,3 =
s1,3
s3,3

d2
2 = s2,2 − d2

3v
2
2,3 = s2,2 − s3,3

s22,3
s23,3

= s2,2 −
s22,3
s3,3

v1,2 =
s1,2 − d2

3v1,3v2,3
d2
2

=
s1,2 − s3,3 s1,3s3,3

s2,3
s3,3

s2,2 −
s22,3
s3,3

=
s1,2 − s1,3s2,3

s3,3

s2,2 −
s22,3
s3,3

=
s1,2s3,3−s1,3s2,3

s3,3

s2,2s3,3−s22,3
s3,3

=
s1,2s3,3 − s1,3s2,3
s2,2s3,3 − s22,3

d2
1 = s1,1 −

(
s2,2 −

s22,3
s3,3

)
(s1,2s3,3 − s1,3s2,3)2

(s2,2s3,3 − s22,3)2
− s3,3

s21,3
s23,3

= s1,1 −
(s1,2s3,3 − s1,3s2,3)2

s3,3(s2,2s3,3 − s22,3)
−
s21,3
s3,3

(D.2)

Since Σ is positive definite, all its diagonal elements must be strictly positive. Furthermore, it
also follows that the determinants of all principal submatrices of Σ are strictly positive, especially∣∣∣∣∣
(
s2,2 s2,3

s2,3 s3,3

)∣∣∣∣∣ = s2,2s3,3 − s22,3 > 0. For an account of these and other propeties of positive

definite matrices, see e.g. [63, Ch. 4]. Therefore, all terms in the derivation above are well defined,
which therefore proves the existence of the required symmetric factorization of Cholesky type for
covariance matrices Σ in R3.

D.2 Parameterization of V DV t in R3 using polar coordinates

Let ϕ and ψ be rotation angles about the x3-axis, and θ about the x1-axis. Euler rotation reduces
3D-rotation to a sequence of three rotations about three coordinate axes. One variant of Euler
rotation is a composition of rotations about the x3-, x2- and again the x3-axes. The resulting
rotation matrix R in a right-handed coordinate system is composed as

R = Rx3(ϕ)Rx2(θ)Rx3(ψ) (D.3)

=

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

cosψ − sinψ 0

sinψ cosψ 0
0 0 1

 . (D.4)

APPENDIX D. FACTORIZATION AND PARAMETERIZATION OF Σ 115

When rotating the unit vector e3 = (0, 0, 1)t, the third rotation about the x3-axis becomes irrele-
vant,

Re3 = Rx3(ϕ)Rx2(θ)Rx3(ψ)e3 = Rx3(ϕ)Rx2(θ)e3 (D.5)

=

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 e3 =

cosϕ sin θ
sinϕ sin θ

cos θ

 , (D.6)

which shows the relation between spherical polar coordinates and Euler rotations: Euler rotations
transform e3 onto the point (θ, ϕ) in polar coordinates, where θ denots the colatitude angle away
from the x3-axis, and ϕ the longitude angle in the x1x2-plane. This observation gives rise to a
convenient parameterization of the 3D-covariance matrix Σ in terms of polar coordinates. Let σ2

1 ,
σ2

2 and σ2
3 denote the spead parameters of an axis-aligned Gaussian kernel along its three major

axes. From the practical perspective in Sec. 4.4.2, it is not necessary to consider the most general
3D-Gaussian with six degrees of freedom. Therefore, start with a Gaussian kernel that is invariant
to rotations about the x3-axis i.e. σ1 = σ2. Depending on whether σ2

3 > σ2
2 or σ2

3 < σ2
2 , this

corresponds to either a prolate or oblate filter shape, respectively. When rotating such a kernel
using R from (D.4), the third rotation about the x3 axis becomes once again irrelevant. Recall
the eigen decomposition Σ = V DV t, where V is orthonormal and D diagonal, from Sec. 3.2. By
specifying D as the diagonal matrix of variances and choosing a rotation matrix for V , Σ can be
derived as follows.

Σ = Rx3(ϕ)Rx2(θ)

σ
2
1 0 0

0 σ2
1 0

0 0 σ2
3

 (Rx3(ϕ)Rx2(θ))t (D.7)

=

cosϕ cos θ − sinϕ cosϕ sin θ
sinϕ cos θ cosϕ sinϕ sin θ
− sin θ 0 cos θ

σ

2
1 0 0

0 σ2
1 0

0 0 σ2
3

cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0

cosϕ sin θ sinϕ sin θ cos θ

(D.8)

=

a1,1 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3

 , (D.9)

116 D.2. PARAMETERIZATION OF V DV T IN R3 USING POLAR COORDINATES

where

a1,1 = σ2
1 sin2 ϕ+ cos2 ϕ(σ2

1 cos2 θ + σ2
3 sin2 θ)

a1,2 = (σ2
3 − σ2

1) cosϕ sinϕ sin2 θ

a1,3 = (σ2
3 − σ2

1) cosϕ sin θ cos θ

a2,2 = σ2
1 cos2 ϕ+ sin2 ϕ(σ2

1 cos2 θ + σ2
3 sin2 θ)

a2,3 = (σ2
3 − σ2

1) cos θ sinϕ sin θ

a3,3 = σ2
1 sin2 θ + σ2

3 cos2 θ

The 3D-covariance matrix in (D.9) specifies a Gaussian kernel that is aligned to the direction
(ϕ, θ) in spherical polar coordinates. For ϕ = 0 and θ = 0, all but the diagonal entries vanish,
leaving a kernel that is aligned to the x3-axis. Setting ϕ = 0 and θ = π/2 rotates the kernel onto
the x1 axis, since again all off-diagonal elements vanish (each of them contains a multiplicative
term cos θ) and σ2

3 appears in the first diagonal entry of Σ. To reach the third coordinate axis x2,
set ϕ = θ = π/2, thus again canceling out all off-diagonal terms and moving σ2

3 into the central
element of this 3D-covariance matrix.

To obtain a parameterization of V and D, the two matrices representing the non-orthogonal
separation of the Gaussian filter kernel proposed in Ch. 4, the elements of Σ in (D.9) are substituted
into the different terms in (D.2).

This results in six equations that define the elements of V and D depending on the given
parameters σ2

1 , σ
2
3 , the spread of the unrotated Gaussian, and θ, ϕ, the spherical polar coordinate

of the filtering direction. As these terms have rather complicated forms, they were automatically
simplified using the Mathematica software package [173].

d2
1 =

σ2
1σ

2
1σ

2
3

d2
2d

2
3

(D.10)

d2
2 =

σ2
1(σ2

3 sin2 ϕ+ cos2 ϕ(σ2
3 cos2 θ + σ2

1 sin2 θ))
σ2

1 sin2 θ + σ2
3 cos2 θ

(D.11)

d2
3 = σ2

1 sin2 θ + σ2
3 cos2 θ (D.12)

v1,2 =
2(σ2

3 − σ2
1) sin 2ϕ sin2 θ

σ2
1 + 3σ2

3 + (σ2
1 − σ2

3)(cos 2ϕ− 2 cos2 ϕ cos 2θ)
(D.13)

v1,3 =
(σ2

3 − σ2
1) cosϕ cos θ sin θ

σ2
1 sin2 θ + σ2

3 cos2 θ
(D.14)

v2,3 =
(σ2

3 − σ2
1) cos θ sinϕ sin θ

σ2
1 sin2 θ + σ2

3 cos2 θ
(D.15)

It is again easy to check a few special cases. Whenever θ = 0, V reduces to a unit matrix
as the terms for v1,2, v1,3 and v2,3 all contain a factor sin θ in the numerator. Furthermore, this
simple, unrotated case results in d2

1 = σ2
1 , d2

2 = σ2
1 and d2

3 = σ2
3 , as required. Recall from Sec. 4.3.1

that applying the V -transformation to the Gaussian kernel has the geometric interpretation of
a 3D-shear of an ellipsoid onto the Cartesian x1x2x3-coordinate grid, with x3 being the fixed
coordinate. Therefore, V will remain a unit matrix for all θ, ϕ = k · π/2, k ∈ N.

Appendix E

Curriculum Vitae

Personal Data

Name Oliver Wirjadi
Date of Birth October 6, 1978
Place of Birth Berlin, Germany

Education

1998 Abitur, Canisius-Kolleg Berlin
2003 Diploma, Computer Science, Technische Universität Berlin

Academic and Professional Experience

1998 Intern, Vestibular Research Lab, Freie Universität Berlin
1998–2001 Student assistant, Vision Pearls GbR, Berlin
2001–2002 Student assistant, Electrical and Computer Engineering Department,

Illinois Institute of Technology, Chicago
2002–2003 Software developer, Idencom Germany GmbH, Berlin
2004–2008 Ph.D. student, Department of Computer Science,

Technische Universität Kaiserslautern
2004–2008 Stipendiary, Image Processing Department, Fraunhofer ITWM,

Kaiserslautern (with an interruption in 2007)
2007 Research assistant, Department of Mathematics and Sciences,

Hochschule Darmstadt

117

118

Acknowledgements

Never had I been able to finish this thesis without the support of all the people that I worked with
over the course of the past years. Thanks to everyone at the “MAB” and – just down the street!
– at “IUPR”.

Special thanks for help in preparing this thesis go to ...

... Prof. Thomas Breuel for supervision and counsel.

... Prof. Andreas König for volunteering as referee of this thesis.

... Ronald Rösch and Katja Schladitz for continuous support.

... all volunteer reviewers: Claudia Redenbach, Katja Schladitz, Katharina Robb, Adrian Ulges,
Christoph Lampert, Yoo-Jin Kim and Steffi Peters.

... Christoph Keßler for OpenGL magic.

... Yoo-Jin Kim for providing the Meningioma data.

... Rudi Velthuis, Alexander Rack and Jürgen Goebbels for providing the glass fiber-reinforced
polymer data.

... Jürgen Becker for providing the carbon paper data.

... T. Potyra, M. Steinhauser and Michael Godehardt for providing the SMC data.

... Alexander Rack and Lukas Helfen for providing the aluminium alloy data.

... Faisal Shafait for providing the camera-captured document images.

... Manuel Schöneberger for his implementation of RSA cylinder processes.

... the authors of various open source software that I used: the GNU R development team,
A. Baddeley, R. Turner, B.M. Clapper, J.-M. Geusebroek, T. Joachims, W.S. Rasband, M.
Frigo, S.G. Johnson.

119

120

Bibliography

[1] M.R. Amin, M. Kurosaki, T. Watanabe, S. Tanaka, and T. Hori. A comparative study of
MIB-1 staining indices of gliomas measured by NIH image analysis program and conventional
manual cell counting method. Neurological Research, 22(5):495–500, Jul 2000.

[2] M. Andersson, J. Wiklund, and H. Knutsson. Sequential filter trees for efficient 2D 3D and
4D orientation estimation. Technical Report LiTH-ISY-R-2070, ISY, SE-581 83 Linköping,
Sweden, Nov. 1998.

[3] F. Al-Awadhi, M. Hurn, and C. Jennison. Improving the acceptance rate of reversible jump
MCMC proposals. Statistics & Probability Letters, 69(2):189–198, Aug 2004.

[4] F. Al-Awadhi, C. Jennison, and M. Hurn. Statistical image analysis for a confocal microscopy
two-dimensional section of cartilage growth. J. Royal Statistical Society: Series C (Applied
Statistics), 53(1):31–49, Jan 2004.

[5] H. Axer, M. Leunert, M. Mürköster, D.Gräßel, L. Larsen, L.D. Griffin, and D. Keyserlingk.
A 3D fiber model of the human brainstem. Computerized Medical Imaging and Graphics,
26(6):439–444, Dec 2002.

[6] S.R. Aylward and E. Bullit. Initialization, noise, singularities, and scale in height ridge
traversal for tubular object centerline extraction. IEEE Trans. Medical Imaging, 21(2):61–
75, Feb 2002.

[7] A. Baddeley and E.B. Vedel Jensen. Stereology for Statisticians. Monographs on Statistics
and Applied Probability. Chapman & Hall/CRC, Boca Raton, FL, USA, 2004.

[8] A.J. Baddeley and M.N.M. van Lieshout. Object recognition using Markov spatial processes.
In Proc. Int. Conf. Pattern Recognition, volume 2, pages 136–139, Aug 1992.

[9] A.J. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point pat-
terns. Austr. NZ J. Statistics, 42(3):283–322, Sep 2000.

[10] A.J. Baddeley and R. Turner. Spatstat: An R package for analyzing spatial point patterns.
J. Statistical Software, 12(6):1–42, Jan 2005.

[11] C.E. Bakis, L.C. Bank, V.L. Brown, E. Cosenza, J.F. Davalos, J.J. Lesko, A. Machida, S.H.
Rizkalla, and T.C. Triantafillou. Fiber-reinforced polymer composites for construction –
state-of-the-art review. J. Composites for Construction, 6(2):73–87, 2002.

[12] J. Banhart, editor. Advanced Tomographic Methods in Materials Research and Engineering.
Monographs on the Physics and Chemistry of Materials. Oxford University Press, Oxford,
UK, 2008.

[13] J. Banhart, D. Bellmann, and H. Clemens. Investigation of metal foam formation by mi-
croscopy and ultra small-angle neutron scattering. Acta Materialia, 49(17):3409–3420, Oct
2001.

121

122 BIBLIOGRAPHY

[14] J. Becker, V. Schulz, and A. Wiegmann. Numerical determination of two-phase material
parameters of a gas diffusion layer using tomography images. J. Fuel Cell Science and
Technology, 5(2):021006, May 2008.

[15] S. Becker and Y. LeCun. Improving the convergence of back-propagation learning with
second-order methods. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. 1988
Connectionist Models Summer School, pages 29–37, San Mateo, 1989. Morgan Kaufman.

[16] E. Bengtsson, C. Wählby, and J. Lindblad. Robust cell image segmentation methods. Pattern
Recognition and Image Analysis, 14(2):157 – 167, 2004.

[17] H.E. Bennink, H.C. van Assen, G.J. Streekstra, R. ter Wee, J.A.E. Spaan, and B.M. ter
Haar Romeny. A novel 3D multi-scale lineness filter for vessel detection. In Proc. Medical
Image Computing and Computer-Assisted Intervention, pages 436–443, Oct 2007.

[18] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, Sep 1975.

[19] J. Besag. On the statistical analysis of dirty pictures. J. Royal Statistical Society B,
48(3):259–302, 1986.

[20] C.M. Bishop. Neural networks for pattern recognition. Oxford University Press, Oxford,
UK, 1995.

[21] C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, New York, NY, USA, 2006.

[22] L. Bottou and Y. LeCun. Large scale online learning. In Sebastian Thrun, Lawrence Saul,
and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA, 2004.

[23] S.S. Bukhari, F. Shafait, and T.M. Breuel. Segmentation of curled text lines using active
contours. In Proc. IAPR Int. Workshop Document Analysis Systems, Sep 2008.

[24] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, Jun 1998.

[25] W. Camacho C, C.L. Tucker III, S. Yalvaç, and R.L. McGee. Stiffness and thermal expansion
predictions for hybrid short fiber composites. Polymer Composites, 11(4):229–239, Aug 1990.

[26] C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[27] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection of blood ves-
sels in retinal images using two-dimensional matched filters. IEEE Trans. Medical Imaging,
8(3):263–269, Sep 1989.

[28] J. Chen, Y. Sato, and S. Tamura. Orientation space filtering for multiple orientation line
segmentation. In Proc. IEEE Conf. Computer Vision and Pattern Recongnition, pages 311–
317, Jun 1998.

[29] J. Chen, Y. Sato, and S. Tamura. Orientation space filtering for multiple orientation line
segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(5):417–429, May
2000.

[30] X. Chen, X. Zhou, and S.T.C. Wong. Automated segmentation, classification, and tracking of
cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomedical Engineering, 53(4):762–
766, Apr 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 123

[31] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American
Statistician, 49(4):327–335, Nov 1995.

[32] A.R. Clarke, G. Archenhold, and N.C. Davidson. A novel technique for determining the 3D
spatial distribution of glass fibres in polymer composites. Composites Science and Technol-
ogy, 55(1):75–91, 1995.

[33] W.R. Crum, C. Tanner, and D.J. Hawkes. Anisotropic multi-scale fluid registration: evalu-
ation in magnetic resonance breast imaging. Physics in Medicine and Biology, 50(21):5153–
5174, Nov 2005.

[34] F. Daniels, B. ter Haar Romeny, M. Rubbens, and H. van Assen. Quantification of col-
lagen orientation in 3D engineered tissue. In Proc. Kuala Lumpur Int. Conf. Biomedical
Engineering, pages 282–286, Dec 2006.

[35] D. Decoste and B. Schölkopf. Training Invariant Support Vector Machines. Machine Learn-
ing, 46(1–3):161–190, Jan 2002.

[36] X. Descombes and J. Zerubia. Marked point process in image analysis. IEEE Signal Pro-
cessing Magazine, 19(5):77–84, Sep 2002.

[37] P.J. Diggle, T. Fiksel, G. Grabarnik, Y. Ogata, D. Stoyan, and M. Tanemura. On parameter
estimation for pairwise interaction processes. Int. Statistical Review, 62(1):99–117, Apr 1994.

[38] M. Donoser and H. Bischof. 3D segmentation by maximally stable volumes (MSVs). In
Proc. Int. Conf. Pattern Recognition, pages 63–66, Aug 2006.

[39] S. Drot, H. Le Men, X. Descombes, and J. Zerubia. Object point processes for image
segmentation. In Proc. Int. Conf. Pattern Recognition, volume 2, pages 913–916, Aug 2002.

[40] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,
New York, NY, USA, 1973.

[41] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, New
York, NY, USA, 2nd edition, 2000.

[42] C. Eberhardt and A. Clarke. Fibre-orientation measurements in short-glass-fibre composites.
Part I: automated, high-angular-resolution measurement by confocal microscopy. Composites
Science and Technology, 61(10):1389–1400, Aug 2001.

[43] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image analysis. J.
Mathematical Imaging and Vision, 4(4):353–373, Dec 1994.

[44] H.E. Exner. Grundlagen von Sintervorgängen. Materialkundlich-Technische Reihe. Gebrüder
Borntraeger, Stuttgart, Germany, 1978.

[45] F.G.A. Faas and L.J. van Vliet. 3D-orientation space; filters and sampling. In Proc. Scan-
dinavian Conf. Image Analysis, pages 457–466, Jun 2003.

[46] M. Felsberg. Low-level image processing with the structure multivector. PhD thesis,
Christian-Albrechts-Universität zu Kiel, 2002.

[47] N.I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, Cambridge,
UK, 1993.

[48] N.I. Fisher, T. Lewis, and B.J.J. Embleton. Statistical Analysis of Spherical Data. Cambridge
University Press, Cambridge, UK, 1987.

124 BIBLIOGRAPHY

[49] J. Fliege and U. Maier. A two-stage approach for computing cubature formulae for the
sphere. Technical Report 139T, Fachbereich Mathematik, Universität Dortmund, 1996.

[50] J. Fliege and U. Maier. The distribution of points on the sphere and corresponding cubature
formulae. IMA J. Numerical Analysis, 19(2):317–334, 1999.

[51] A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever. Multiscale vessel enhancement
filtering. In Proc. Medical Image Computing and Computer-Assisted Intervention, pages
130–137, Oct 1998.

[52] W.T. Freeman and E.H. Adelson. The design and use of steerable filters. IEEE Trans.
Pattern Analysis and Machine Intelligence, 13(9):891–906, Sep 1991.

[53] W.T. Freeman, E.C. Pasztor, and O.W. Carmichael. Learning low–level vision. Int. J.
Computer Vision, 40(1):25–47, Oct 2000.

[54] M. Frigo and S.G. Johnson. The design and implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, Feb 2005.

[55] S.Y. Fu and B. Lauke. Effects of fiber length and fiber orientation distributions on the
tensile strength of short-fiber-reinforced polymers. Composites Science and Technology,
56(10):1179–1190, Oct 1996.

[56] T.J. Fuchs, T. Lange, P.J. Wild, H. Moch, and J.M. Buhmann. Weakly supervised cell
nuclei detection and segmentation on tissue microarrays of renal clear cell carcinoma. In
Proc. 30th DAGM Symposium, pages 173–182, Jun 2008.

[57] F. Gadala-Maria and F. Parsi. Measurement of fiber orientation in short-fiber composites
using digital image processing. Polymer Composites, 14(2):126–131, 1993.

[58] GCC Team. Data prefetch support. Technical report, Free Software Foundation, Boston,
MA, USA, Oct 2007.

[59] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-
6(6):721–741, Nov 1984.

[60] J.M. Geusebroek, A.W.M. Smeulders, and J. van de Weijer. Fast anisotropic gauss filtering.
In Proc. Europ. Conf. Computer Vision, volume 1, pages 99–112, May 2002.

[61] J.M. Geusebroek, A.W.M. Smeulders, and J. van de Weijer. Fast anisotropic gauss filtering.
IEEE Trans. Image Processing, 12(8):938–943, Aug 2003.

[62] M. van Ginkel. Image Analysis using Orientation Space based on Steerable Filters. PhD
thesis, Delft University of Technology, 2002.

[63] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, USA, 3rd edition, 1996.

[64] G.H. Granlund and H. Knutsson. Signal processing for computer vision. Kluwer Academic
Publishers, Dordrecht, NL, 1995.

[65] P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, Dec 1995.

[66] M. Gupta and K.K. Wang. Fiber orientation and mechanical properties of short-fiber-
reinforced injection-molded composites: Simulated and experimental results. Polymer Com-
posites, 14(5):367–382, Oct 1993.

BIBLIOGRAPHY 125

[67] L. Haglund, N. Guest, S. Einerman, H. Öster, P. Björkman, and H.Graf. Overall-quality
assessment when targeting wide-XGA flat panel displays. Technical report, SVT Corporate
Development Technology, Stockholm, SE, Apr 2002.

[68] T.P. Harrigan and R.W. Mann. Characterization of microstructural anisotropy in orthotropic
materials using a second rank tensor. J. Materials Science, 19(3):761–767, Mar 1984.

[69] D. Hastie. Towards automatic reversible jump Markov chain Monte Carlo. PhD thesis,
University of Bristol, 2005.

[70] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer, New York, NY, USA, 2001.

[71] P.J. Hine and R. A. Duckett. Fiber orientation structures and mechanical properties of
injection molded short glass fiber reinforced ribbed plates. Polymer Composites, 25(3):237–
254, Jun 2004.

[72] M. Hurn, I. Steinsland, and H. Rue. Parameter estimation for a deformable template model.
Statistics and Computing, 11(4):337–346, Oct 2001.

[73] M. Ide, M. Jimbo, M. Yamamoto, and O. Kubo. Tumor cell counting using an image
analysis program for MIB-1 immunohistochemistry. Neurologia Medico-Chirurfica (Tokyo),
37(2):158–162, Feb 1997.

[74] Optimizing applications with the Intel C++ and Fortran compilers. Intel Corp., Santa
Clara, CA, USA, Jul 2005. White paper.

[75] B. Jähne. Digital Image Processing. Springer, Heidelberg, DE, 5th edition, 2002.

[76] J.L. Jensen and J. Møller. Pseudolikelihood for exponential family models of spatial point
processes. The Annals of Applied Probability, 1(3):445–461, Aug 1991.

[77] T. Joachims. Making large-scale svm learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Support Vector Learning. MIT Press, 1999.

[78] M. Kawamura, S. Ikeda, S. Morita, and Y. Sanomura. Unambiguous determination of 3D
fiber orientation distribution in thermoplastic composites using SAM image of elliptical mark
and interference fringe. J. Composite Materials, 39(4):287–299, Feb 2005.

[79] Z. Khan, T. Balch, and F. Dellaert. MCMC-based particle filtering for tracking a variable
number of interacting targets. IEEE Trans. Pattern Analysis and Machine Intelligence,
27(11):1805–1819, Nov 2005.

[80] M. Kiderlen. Non-parametric estimation of the directional distribution of stationary line
and fibre processes. Advances in Applied Probability, 33(1):6–24, Mar 2001.

[81] M. Kiderlen and A. Pfrang. Algorithms to estimate the rose of directions of a spatial fibre
system. J. Microscopy, 219(2):50–60, Aug 2005.

[82] J.K. Kim and S.H. Park. Fiber orientation and rheological properties of short fiber-reinforced
plastics at higher shear rates. J. Materials Science, 35(5):1069–1078, Mar 2000.

[83] J.K. Kim and J.H. Song. Rheological properties and fiber orientations of short fiber-
reinforced plastics. J. Rheology, 41(5):1061–1085, Sep 1997.

[84] Y.J. Kim, B.F. Romeike BF, J. Uszkoreit J, and W. Feiden. Automated nuclear segmentation
in the determination of the Ki-67 labeling index in meningiomas. Clinical Neuropathology,
25(2):67–73, Mar–Apr 2006.

126 BIBLIOGRAPHY

[85] Y.J. Kim, B.F.M. Romeike, and W. Feiden. Automated morphometric determination of the
Ki-67 labelling-index in meningiomas: A validation-model for a fast and facile method. Acta
Neuropathologica, 108(4):357, Oct 2004.

[86] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, May 1983.

[87] D. Knossow, J. van de Weijer, R.P. Horaud, and R. Ronfard. Articulated-body tracking
through anisotropic edge detection. In Dynamical Vision, volume 4358 of Lecture Notes in
Computer Science, pages 86–99. Springer, 2007.

[88] D.E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-
Wesley, Reading, MA, USA, 1994.

[89] H. Knutsson. Representing local structure using tensors. In Proc. Scandinavian Conf. Image
Analysis, pages 244–251, Jun 1989.

[90] K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model-based detection
of tubular structures in 3D images. Computer Vision and Image Understanding, 80(2):130–
171, Nov 2000.

[91] C. Lacoste, X. Descombes, and J. Zerubia. Point processes for unsupervised line network
extraction in remote sensing. IEEE Trans. Pattern Analysis and Machine Intelligence,
27(10):1568–1579, Oct 2005.

[92] J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. Int. Conf. Machine Learning,
pages 282–289, Jun 2001.

[93] V. Lakshmanan. A separable filter for directional smoothing. IEEE Tran. Geoscience and
Remote Sensing Letters, 1(3):192–195, Jul 2004.

[94] S.Y. Lam and B.E. Shi. Recursive anisotropic 2-d gaussian filtering based on a triple-axis
decomposition. IEEE Trans. Image Processing, 16(7):1925–1930, Jul 2007.

[95] C.H. Lampert, M.B. Blaschko, and T. Hofmann. Beyond sliding windows: Object local-
ization by efficient subwindow search. In Proc. Int. Conf. Computer Vision and Pattern
Recognition, Jun 2008.

[96] C.H. Lampert and O. Wirjadi. Anisotropic gaussian filtering using fixed point arithmetic.
In Proc. Int. Conf. Image Processing, pages 1565–1568, Oct 2006.

[97] C.H. Lampert and O. Wirjadi. An optimal non-orthogonal separation of the anisotropic
Gaussian convolution filter. IEEE Trans. Image Processing, 15(11):3501–3513, Nov 2006.

[98] L. Latson, B. Sebek, and K.A. Powell KA. Automated cell nuclear segmentation in color
images of hematoxylin and eosin-stained breast biopsy. Analytical and Quantitative Cytology
and Histology, 25(6):321–331, Dec 2003.

[99] C. Lautensack, K. Schladitz, and A. Särkkä. Modeling the microstructure of sintered copper.
In Proc. Int. Conf. Stereology, Spatial Statistics and Stochastic Geometry, Jun 2006.

[100] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[101] J.E. Lee, M.K. Chung, and A.L. Alexander. Evaluation of anisotropic filters for diffusion
tensor imaging. In Proc. 3rd IEEE Int. Symp. Biomedical Imaging, pages 77–80, Apr 2006.

BIBLIOGRAPHY 127

[102] K.S. Lee, S.W. Lee, K. Chung, T.J. Kang, and J.R. Youn. Measurement and numerical simu-
lation of three-dimensional fiber orientation states in injection-molded short-fiber-reinforced
plastics. J. Applied Polymer Science, 88(2):500–509, Apr 2003.

[103] Y.H. Lee, S.W. Lee, J.R. Youn, K. Chung, and T.J. Kang. Characterization of fiber orien-
tation in short fiber reinforced composites with an image processing technique. Materials
Research Innovations, 6(2):65–72, Sep 2002.

[104] P. Leopardi. A partition of the unit sphere into regions of equal area and small diameter.
Electronic Transactions on Numerical Analysis, 25:309–327, 2006.

[105] M.N.M. van Lieshout. Stochastic annealing for nearest-neighbor point processes with appli-
cation to object recognition. Advances in Applied Probability, 26(2):281–300, Jun 1994.

[106] M.N.M. van Lieshout. Markov point processes and their applications. Imperial College Press,
London, UK, 2000.

[107] M.N.M. van Lieshout and R.S. Stoica. The Candy model: properties and inference. Statistica
Neerlandica, 57(2):177–206, May 2003.

[108] J.S. Lim. Two-Dimensional Signal and Image Processing. Signal Processing Series. Prentice-
Hall, 1990.

[109] B. Lin, X. Jin, R. Zheng, F.S. Costa, and Z. Fan. 3D Fiber Orientation Simulation for Plastic
Injection Molding. In S. Ghosh, J.C. Castro, and J.K. Lee, editors, American Institute of
Physics Conference Series, volume 712 of American Institute of Physics Conference Series,
pages 282–287, Jun 2004.

[110] H.T. Lin, C.J. Lin, and R.C. Weng. A note on Platts probabilistic outputs for support vector
machines. Machine Learning, 68(3):267–276, Oct 2007.

[111] T. Lindeberg. Principles for automatic scale selection. Technical Report ISRN KTH/NA/P-
98/14-SE, KTH Royal Institute of Technology, Stockholm, 1998.

[112] C. Lorenz, I.-C. Carlsen, T.M. Buzug, C. Fassnacht, and J. Weese. Multi-scale line seg-
mentation with automatic estimation of width, contrast and tangential direction in 2D and
3D medical images. In Proc. Joint Conf. Computer Vision, Virtual Reality and Robotics in
Medicine and Medial Robotics and Computer-Assisted Surgery, pages 233–242, Mar 1997.

[113] D.N. Louis, H. Ohgaki, O.D. Wiestler, and W.K. Cavenee, editors. WHO classification of
tumors of the central nervous system. IARC Press, Lyon, France, 4th edition, 2007.

[114] C.G. Loukas, G.D. Wilson, B. Vojnovic, and A. Linney. An image analysis-based approach
for automated counting of cancer cell nuclei in tissue sections. Cytometry Part A, 55A(1):30–
42, 2003.

[115] N. Malpica, C.O. de Solorzano, J.J. Vaquero, Andres Santos, I. Vallcorba, J.M. Garcia-
Sagredo, and F. del Pozo. Applying watershed algorithms to the segmentation of clustered
nuclei. Cytometry, 28(4):289–297, Aug 1997.

[116] I. Markovic. High-Performance Hybrid-Fibre Concrete: Development and Utilisation. IOS
Press, Amsterdam, NL, 2006.

[117] R.B. Martin and D.L. Boardman. The effects of collagen fiber orientation, porosity, density,
and mineralization on bovine cortical bone bending properties. J. Biomechanics, 26(9):1047–
1054, Sep 1993.

128 BIBLIOGRAPHY

[118] R.B. Martin and J. Ishida. The relative effects of collagen fiber orientation, porosity, density,
and mineralization on bone strength. J. Biomechanics, 22(5):419–426, 1989.

[119] J.J. McGrath and J.M. Willie. Determination of 3D fiber orientation distribution in ther-
moplastic injection molding. Composites Science and Technology, 53(2):133–143, 1995.

[120] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine Learning, Neural and
Statistical Classification. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, 1994.

[121] J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial Point
Processes. Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca
Raton, FL, USA, 2004.

[122] V.J. Napadow, Q. Chen, V. Mai, P.T.C. So, and J. Gilbert R. Quantitative analysis of
three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using
NMR and optical imaging methods. Biophysical Journal, 80(6):2968–2975, Jun 2001.

[123] A. Nedzved, S. Ablameyko, and I. Pita. Morphological segmentation of histology cell images.
In Proc. Int. Conf. Pattern Recognition, volume 1, pages 500–503, Sep 2000.

[124] H. Netten, I.T. Young, L.J. van Vliet, H.J. Tanke, H. Vroljik, and W.C.R. Sloos. FISH
and chips: Automation of fluorescent dot counting in interphase cell nuclei. Cytometry,
28(1):1–10, May 1997.

[125] M. Nöthe, K. Pischang, P. Ponizil, B. Kieback, and J. Ohser. Investigation of sintering
processes by microfocus computer tomography (µ-CT). In Proc. DGZfP, pages BB 84–CD,
2003.

[126] M. Nöthe, M. Schulze, R. Grupp, B. Kieback, A. Haibel, and J. Banhart. Analysis of particle
rearrangement during sintering by micro focus computed tomography (µCT). In Materials
Science Forum, volume 534–536, pages 493–496, 2007.

[127] J. Ohser. personal communication, 2008.

[128] M. Ortner, X. Descombes, and J. Zerubia. A marked point process of rectangles and seg-
ments for automatic analysis of digital elevation models. IEEE Trans. Pattern Analysis and
Machine Intelligence, 30(1):105–119, Jan 2008.

[129] N. Otsu. A threshold selection method from grey-level histograms. IEEE Trans. Systems,
Man, and Cybernetics, 9(1):62–66, Jan 1979.

[130] S. Perkins, K. Edlund, D. Esch-Mosher, D. Eads, N. Harvey, and S. Brumby. Genie pro:
robust image classification using shape, texture, and spectral information. In Proc. SPIE
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI,
volume 5806, pages 139–148, Mar 2005.

[131] P. Perona. Steerable-scalable kernels for edge detection and junction analysis. Image and
Vision Computing, 10(10):663–672, Dec 1992.

[132] S. Peters and A. König. Optimized texture operators for the automated design of image
analysis systems: Non-linear and oriented kernels vs. gray value co-occurrence matrices. Int.
J. Hybrid Intelligent Systems, 4(3):185–202, Aug 2007.

[133] J.C. Platt. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in large margin classifiers. MIT Press, Cambridge, 2000.

BIBLIOGRAPHY 129

[134] T. Pock, R. Beichel, and H. Bischof. A novel robust tube detection filter for 3D centerline
extraction. In Proc. Scandinavian Conf. Image Analysis, pages 481–490, Jun 2005.

[135] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 1996.

[136] R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.

[137] A. Rack, L. Helfen, T. Baumbach, S. Kirste, J. Banhart, K. Schladitz, and J. Ohser. Analysis
of spatial cross-correlations in multi-constituent volume data. J. Microscopy, 2008. to appear.

[138] W.S. Rasband. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA,
1997-2007. http://rsb.info.nih.gov/ij/.

[139] C. Redon, L. Chermant, J.L. Chermant, and M. Coster. Assessment of fibre orientation in
reinforced concrete using fourier image tansform. J. Microscopy, 191(3):258–265, Sep 1998.

[140] K. Robb, O. Wirjadi, and K. Schladitz. Fiber orientation estimation from 3D image data:
Practical algorithms, visualization, and interpretation. In Proc. Int. Conf. Hybrid Intelligent
Systems, pages 320–325, Sep 2007.

[141] A.C. Ruifrok and D.A. Johnston. Quantification of histochemical staining by color decon-
volution. Analytical and Quantitative Cytology and Histology, 23(4):291–299, Aug 2001.

[142] E.B. Saff and A.B.J. Kuijlaars. Distributing many points on a sphere. The Mathematical
Intelligencer, 19(1):5–11, 1997.

[143] K. Sandau and J. Ohser. The chord length transform and the segmentation of crossing
fibres. J. Microscopy, 226(1):43–53, Apr 2007.

[144] Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis. 3D
multi-scale line filter for segmentation and visualization of curvilinear structures in medical
images. In Proc. Joint Conf. Computer Vision, Virtual Reality and Robotics in Medicine
and Medial Robotics and Computer-Assisted Surgery, pages 213–222, Mar 1997.

[145] K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, and J. Ohser. Design of acoustic trim
based on geometric modeling and flow simulation for non-woven. Computational Materials
Science, 38(1):56–66, Nov 2006.

[146] M. Schöneberger. Entwicklung eines Hardcore Zylinderprozesses zur Modellierung von Faser-
systemen in 3D. Master’s thesis, Fachhochschule Kaiserslautern, 2008.

[147] F. Shafait. Geometric Layout Analysis of Scanned Documents. PhD thesis, Technische
Universität Kaiserslautern, 2008.

[148] F. Shafait and T.M. Breuel. Document image dewarping contest. In Proc. Int. Workshop
Camera-Based Document Analysis and Recognition, pages 181–188, Sep 2007.

[149] J. Sijbers, A.J. den Dekker, A. van der Linden, M. Verhoye, and D. Van Dyck. Adaptive
anisotropic noise filtering for magnitude mr data – a general tool for early vision. Magnetic
Resonance Imaging, 17(10):1533–1539, Dec 1999.

[150] P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks
applied to visual document analysis. In Proc. Int. Conf. Document Analysis and Recognition,
pages 958–962, Aug 2003.

[151] P.J. Sjöström, B.R. Frydel, and L.U. Wahlberg. Artificial neural network-aided image anal-
ysis system for cell counting. Cytometry, 36(1):18–26, May 1999.

130 BIBLIOGRAPHY

[152] C.O. de Solorzano, A. Santos, I. Vallcorba, J.M. Garcia-Sagredo, and F. del Pozo. Auto-
mated FISH spot counting in interphase nuclei: Statistical validation and data correction.
Cytometry, 31(2):93–99, 1998.

[153] C. Soutis. Carbon fiber reinforced plastics in aircraft construction. Materials Science and
Engineering: A, 412(1-2):171–176, Dec 2005.

[154] R. Stoica, X. Descombes, and J. Zerubia. A gibbs point process for road extraction from
remotely sensed images. Int. J. Computer Vision, 57(2):121–136, May 2004.

[155] D. Stoyan, W.S. Kendall, and J. Mecke. Stochastic Geometry and its Applications. John
Wiley & Sons, Chichester, UK, 2nd edition, 1995.

[156] J. Summerscales, editor. Non-Destructive Testing of Fibre-Reinforced Plastics Composites,
volume 2. Elsevier Science Publishers, Barking, UK, 1990.

[157] K. Takayama, T. Igarashi, R. Haraguchi, and K. Nakazawa. A sketch-based interface for
modeling myocardial fiber orientation. In Proc. Int. Symp. Smart Graphics, pages 1–9, Jun
2007.

[158] D.S. Taubman and M. Marcellin. JPEG2000: Image Compression Fundamentals, Standards
and Practice. Kluwer Academic Publishers, Dordrecht, NL, 2002.

[159] N. Theera-Umpon and P.D. Gader. System-level training of neural networks for counting
white bloodcells. IEEE Trans. Systems, Man and Cybernetics C, 32(1):48–53, Feb, 2002.

[160] K. Tomita, N. Sakuma, and T. Mama. Method and device for determining fiber orientation
of paper, and apparatus for removing image forming substance from paper). US Patent
#5729349, 1998.

[161] S. Torquato. Random Heterogeneous Materials. Interdisciplinary applied mathematics.
Springer, New York, NY, USA, 2002.

[162] B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet recursive filtering. IEEE
Trans. Signal Processing, 54(6):2365–2367, Jun 2006.

[163] C.L. Tucker and S.G. Advani. Processing short-fiber systems. In S.G. Advani, editor,
Flow and Rheology in Polymer Composites Manufacturing, Composite Materials. Elsevier,
Amsterdam, NL, 1994.

[164] R. Waagepetersen and D. Sorensen. A tutorial on reversible jump MCMC with a view
towards applications in QTL-mapping. Int. Statistical Review, 69(1):49–61, Apr 2001.

[165] H.M. Wallach. Conditional random fields: An introduction. Technical Report MS-CIS-04-21,
Department of Computer and Information Science, University of Pennsylvania, 2004.

[166] A. Wallack and D. Manocha. Robust algorithms for object localization. Int. J. Computer
Vision, 27(3):243–262, May 1998.

[167] Y. Watanabe and T. Fujii. Experimental study on magnetic torque measurement to es-
timate fiber orientation in fe-fiber-reinforced composites. Japanese J. Applied Physics,
42(4A):L391–L393, Apr 2003.

[168] J. Weickert. Theoretical foundations of anisotropic diffusion in image processing. Computing.
Supplementum, 11:221–236, 1996.

[169] C.F. Westin, A. Bhalerao, R. Kikinis, and H. Knutsson. Using local 3D structure for seg-
mentation of bone from computer tomography images. In Proc. Int. Conf. Computer Vision
and Pattern Recognition, pages 794–800, Jun 1997.

BIBLIOGRAPHY 131

[170] C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A. Jolesz, and R. Kikinis. Processing
and visualization of diffusion tensor MRI. Medical Image Analysis, 6(2):93–108, Jun 2002.

[171] O. Wirjadi, T.M. Breuel, W. Feiden, and Y.J. Kim. Automated feature selection for the
classification of meningioma cell nuclei. In Bildverarbeitung für die Medizin, Informatik
aktuell, pages 76–80. Springer, 2006.

[172] O. Wirjadi, A. Jablonski, K. Schladitz, and M. Nöthe. Volumetric analysis of a sinter process
in time. In Proc. 27th DAGM Symposium, pages 409–416, Aug 2005.

[173] Wolfram Research, Inc. Mathematica, version 6.0. Champaign, IL, USA, 2007.

[174] R. Wootton, D.R. Springall, and J.M. Polak, editors. Image Analysis in Histology: Con-
ventional and Confocal Microscopy. Postgraduate Medical Science. Cambridge University
Press, Cambridge, UK, 1995.

[175] G.Z. Yang, P. Burger, D.N. Firmin, and S.R. Underwood. Structure adaptive anisotropic
image filtering. Image and Vision Computing, 14(2):135–145, Mar 1996.

[176] H. Yang and W.B. Lindquist. Three-dimensional image analysis of fibrous materials. In
Proc. SPIE Applications of Digital Image Processing XXIII, volume 4115, pages 275–282,
Dec 2000.

[177] I.T. Young and L.J. van Vliet. Recursive implementation of the Gaussian filter. Signal
Processing, 44(2):139–151, Jun 1995.

[178] I.T. Young, L.J. van Vliet, and M. van Ginkel. Recursive Gabor filtering. IEEE Trans.
Signal Processing, 50(11):2798–2805, Nov 2002.

[179] T. Yu and Y. Wu. Collaborative tracking of multiple targets. In Proc. Int. Conf. Computer
Vision and Pattern Recognition, volume 1, pages 834–841, Jun 2004.

[180] T. Zhao and R. Nevatia. Tracking of multiple humans in crowded environment. In Proc.
Int. Conf. Computer Vision and Pattern Recognition, volume 2, pages 406–413, Jun 2004.

	Introduction
	Object Localization
	Introduction
	The proposed model
	Classifiers used as image models
	Point processes as object models
	Model-based multiple object localization
	Results
	Applications
	Discussion

	Fiber Orientation
	Introduction
	Gaussian orientation space
	Sampling on the hemisphere
	Computation and interpretation of the orientation tensor
	Fiber models for evaluating the proposed method
	Results
	Applications
	Discussion

	Separation of Anisotropic Gaussian Filters
	Introduction
	Separating the Gaussian convolution integral
	An optimal symmetric factorization of
	Separable anisotropic Gaussian filters in image processing
	Discrete implementations of the separated filter
	Results
	Applications
	Discussion

	Discussion
	Training of Convolutional Neural Networks
	Backpropagation training
	Implementation

	Source Code of Control Methods
	Isodata Thresholding
	Watershed Segmentation

	Points on the Upper Hemisphere
	Modifications for the hemisphere
	Results

	Factorization and Parameterization of
	Explicit symmetric factorization of Cholesky type in R3
	Parameterization of VDVt in R3 using polar coordinates

	Curriculum Vitae

