
Evolving Asynchronous Cellular Automata for Density Classification

Francis Jeanson

University of Sussex, Brighton, UK
f.jeanson@sussex.ac.uk

Abstract

This paper presents the comparative results of applying the
same genetic algorithm (GA) for the evolution of both syn-
chronous and randomly updated asynchronous cellular au-
tomata (CA) for the computationally emergent task of density
classification. The present results indicate not only that these
asynchronous CA evolve more quickly and consistently than
their synchronous counterparts, but also that the best perform-
ing asynchronous CA find equally good solutions on average
to the density classification task in fewer computational steps
than synchronous CA.

Introduction
For the past 50 years cellular automata (CA) have estab-
lished themselves as popular platforms to investigate com-
plex phenomena. Their attractiveness stems in part from
their ability to expose highly complex or even chaotic be-
haviour from an initially simple spatial configuration and
set of update rules. An important insight that CA may pro-
vide is that in contrast to real world systems their dynamical
laws are not bound by the classical laws of physics. Instead
the laws that dictate the behaviour of a system are fully de-
fined in terms of a state update policy which we may call Φ.
Φ is defined by: the neighbourhood r of cells whose states
causally impact the state of other cells, the rules that dictate
how these neighbouring cell states impact other cells, and
the global selection policy which specifies the set of cells
that are to be updated by those rules. Traditionally work in
this field has mostly been preoccupied in finding new sets
of rules that give rise to interesting emergent phenomena.
Indeed the general behaviour of a CA will exhibit a large di-
versity of dynamics with respect to rule updates. However,
it is important not to omit the role of the neighbourhood and
selection policy. The goal of this paper is to focus partic-
ularly on the latter by exposing the impact of the selection
policy on evolved rules for cellular automata.

The most popular selection policy employed in CA re-
search is synchrony. Here, all cells are selected and updated
to their next state at each time step. Synchrony in cellular
update implies that an automaton may potentially exploit the
entire cell space to perform interesting global computations

from local cellular interactions. This is possible because of
an advantageous set of update rules found by the genetic al-
gorithm (GA). A good set of rules that does in fact exploit
this space efficiently at every time step is rare and ultimately
difficult to find even via genetic search. In contrast an in-
dependent random updating selection policy where a single
cell is updated at each time step does not allow an automa-
ton to exploit space, since only a small region defined by
the neighbourhood r of a single cell can be looked-up at any
given time. This however may favour a genetic selection of
rules that allow a CA to exploit time over space.

Asynchronous Computation
In contrast to synchronous cell state update where all cells
of the automaton are updated in unison, asynchronous cel-
lular automata (ACA) employ a selection policy whereby a
single or a subset of cells are updated at a single time step.
Independent random updating where a single cell is picked
with uniform probability and updated over a single step is
standard, although a number of alternatives have been ex-
plored (Schonfisch and de Roos 1999)1. In the past few
decades ACA have been more carefully considered. Asyn-
chronous update has been argued to be a more realistic ap-
proach in models of biologically inspired complex systems
(Dellaert and Beer 1994; Harvey and Bossomaier 1997; Lee
et al. 2007). Dellaert and Beer initially hypothesized that
one of the main drawbacks from asynchrony comes from
the difficulty due to indeterminacy in analyzing their be-
haviour. Furthermore this indeterminacy also seems to sug-
gest that no general state attractor can be reached by asyn-
chronous cellular automata. Harvey and Bossomaier chal-
lenge these worries and show that for random boolean net-
works (RBNs) asynchronous update may lead to a point at-
tractor with a probability of 1/2N ; where N is the num-
ber of nodes in the network (Harvey and Bossomaier 1997).
They also show that loose attractors may be reached for the
same type of update mechanism. Furthermore they intro-

1They distinguish step-driven from time-driven asynchronous
updating. For instance a number of cells could be picked given a
certain probability, in a particular sequence, or at a particular time.

Artificial Life XI 2008 282

mailto:f.jeanson@sussex.ac.uk

duce practical methods for the analysis of indeterministic
updating via probabilistic reasoning by careful inspection of
node connectivity in RBNs. Interestingly experimental re-
sults by Harvey and Bossomaier indicate that the random
node update with replacement method arrived more quickly
at a point attractor in state space than did random update
without replacement and synchronous update in RBNs. Lee,
Adachi and Peper (2007) also propose asynchronous updat-
ing in two-dimensional cellular automata as a reliable, and
biologically sound mechanism for self-replication. To them
is appears that natural systems must have acquired toler-
ance to indeterministic interactions at the cellular level and
that novel strategies have developed allowing the system to
profit from this indeterminism. Kanada (1997) also empha-
sizes the significance of modeling ACA for real world ap-
plications and biological simulation. According to him syn-
chronous emergent computation causes what he calls ’phan-
toms’ which can be characterized as fragile system states.
Slight disturbances from environmental noise will however
prevent such systems from existing. His work on one-
dimensional ACA shows that random or noisy interactions
that naturally occur in these systems may play a positive role
for our modeling and understanding of real world systems
behaviour.

The current topic of research introduces a novel applica-
tion of ACA by applying them to a computationally emer-
gent task: density classification. Although, a priori, asyn-
chronous automata have been considered to bear signifi-
cance principally for the modeling of biologically inspired
systems, the originality of their behaviour and ability to han-
dle noise should give rise to interesting behaviour in a purely
computational task. In fact, exploring the potential of asyn-
chronous cellular updating in the well defined density clas-
sification task should eliminate any conceptual obscurities
and inspire the potentially widespread significance of asyn-
chrony in locally coordinated phenomena. For instance, we
may think of the implications for the understanding of ter-
mite colony stigmergy (Grassé 1959, Beckers et al. 1994),
or even for understanding synergistic effects of neuronal ac-
tivity in large neural groups (Edelman 1993, Kelso 1995).

Synchronous Density Classification
Mitchell et. al (Mitchell, Hraber and Crutchfield 1993;
Mitchell, Crutchfield and Das 1996) have thoroughly inves-
tigated the potential of genetic evolution for computational
emergence in the density classification task. This task re-
quires that a given one-dimensional cellular automaton de-
termines the initial density that is most present in the initial
cellular state within a number of update steps. By the end
of these update iterations all the cells of the CA should be
in the state identical to the state originally dominating the
density of the CA. For instance given a 10 cell, two-state
(0 or 1) CA, the 10 cells after K update steps should all be
set to 1 if the original density of the CA contained more 1’s

than 0’s - or they should all be set to 0 otherwise. Mitchell
describes this problem as a task that the CA needs to ac-
complish by making use of local information for global co-
ordination. In dynamical terms, a set of update rules of a
CA’s policy Φ must be found so that given any initial cellu-
lar state distribution the CA will follow a path in state space
to a point attractor for that initial configuration. Mitchell et
al.’s experiments have all been conducted using synchronous
cellular update. By using a genetic algorithm to evolve the
update rules of synchronous cellular automata (SCA) they
have been able to obtain a diverse number of rules that are
amongst the best known rules to date for the density classifi-
cation task given any initial configuration density. Mitchell
et al.’s φd rule has about 95% success rate in comparison the
best known rule: the GKL rule with 97.8% (Gaks, Kurdyu-
mov and Levin 1978). A few years later Land and Belew
(1995) noted that they obtained from genetic evolution rules
performing as well as GKL. In the same paper however they
prove that no two-state CA can perform the density classifi-
cation task perfectly.

In the following section I present results obtained by par-
tially replicating the evolutionary mechanism employed by
Mitchell et al. Because the purpose of the experiment was
not aimed at discovering better rules I conducted 30 runs on
each experiment instead of the 100 that Mitchell et al. ex-
amined in order to save computational time for the evolution
of asynchronous rules. Exactly the same genetic algorithm
was used to evolve rules in both the synchronous and the
asynchronous scenario. In contrast to the synchronous sce-
nario, asynchronous updating is performed by independent
random selection at a single time step of a single cell which
is then updated according to the rule table for that CA.

Evolving Update Rules
In their initial experiments Mitchell, Hraber and Crutchfield
(1993) evolve one-dimensional cellular automata with lat-
tice size N = 149. This ensures that the initial configura-
tion always contains either a majority of 0’s or a majority
of 1’s. The chromosomes evolved were binary strings en-
coding the rule outputs for a given CA. These update rules
consider a neighbourhood radius r = 3 as can be seen in
figure 1; hence the total number of cells lookup for the up-
date of a particular cell is 2r + 1 = 7: the three cells to the
left, the three cells to the right and the current cell itself2.
Hence given that each cell has either binary state 0 or 1, the
total number of possible update rules is 27 = 128. Thus a
chromosome is represented as a binary strings of length 128.
This implies that the search space in which the genetic algo-
rithm must find good solutions to the density classification
task is of size 2128 - too large for any brute force search. A
single run of their GA consisted of evolving a set of 100 up-
date rules over 100 generations. At each generation 100 new

2Rule lookup wrap arround the CA for beyond boundary con-
ditions.

Artificial Life XI 2008 283

Figure 1: Illustration of cell state transition from step t to
step t + 1 according to an arbitrary update rule. With r =
3, three neighbours to the left and to the right of the current
cell i are looked-up to determine cell i’s subsequent state.

initial configurations with a biased distribution were created.
This biased distribution ensures that there is a uniform dis-
tribution over the initial 100 densities. According to them
the biased distribution allowed for the GA to find increas-
ingly better solutions to the problem much more easily than
if all the initial configurations had a probability distribution
of 1/2, which rendered the task almost intractable. Each of
the 100 rules are tested on each of these initial configura-
tions over a fixed number K = 149 update steps. After the
100 rules have been tested the top 20 rules were selected
from the population and copied to the next generation. Out
of these 20 elite rules two were picked with replacement
at random. Single point crossover was performed between
these two rules after which mutation at exactly two loci was
applied for each new offspring. In order to pick the best
rules for the subsequent generation each rule was given a
score corresponding to the number of correct density classi-
fications it accomplished over the 100 initial configurations.
The GA in the present experiment on synchronous updating
was implemented exactly as described above. Mitchell et al.
however collected their results after 300 runs. Because my
aim was to compare the dynamics of synchronous updating
with respect to asynchronous updating I opted for a more
economical set of 30 runs per cellular configuration, in a to-
tal of 6 configurations. Initial test runs showed however that
rule populations would often get stuck in very low minima.
Yet because each configuration was meant to be evaluated
over 30 runs only, I decided to add more noise to the mu-
tation rate by allowing for a random mutation to occur at
any loci with double probability, i.e. 1/64 for each 128 rule
outputs.

The GA used for finding rules in asynchronous updating
is identical to the algorithm for synchronous updating. As
opposed to the SCA where all cells are updated according
to the state of their neighbouring cells at the same time, the
ACA implemented here selects a single cell with uniform
random probability with replacement. Hence a cell has a
probability of 1/N of being selected for update at every step
while the remaining cells stay unchanged.

Figure 2: Sample iteration of a successful 1D-SCA in den-
sity classification. On the left the rule solving for a greater
density of 0s; and the right the same rule for a greater density
of 1s.

Finding Good Solutions Reliably
After running this evolutionary algorithm on 30 runs for
SCA, I obtained by the final generations a majority of rules
that would correctly classify the density of a given initial
configuration about 50% of the time. These results are sim-
ilar to those obtained by Mitchell et al. This would suggest
that most runs found rules that could classify for almost any
initial density whether the initial configuration contained
more 1s than 0s or vice versa, but not both. All runs typ-
ically start with a set of poor performing rules. Out of the
30 runs, 1 run failed to evolved any rule that would correctly
classify over 5% of the time; yet 7 runs succeeded in find-
ing rules that classified with a success rate of 97% or higher.
Although at first glance this seems to suggest that rules bet-
ter than GKL were found, it is important not to forget that
these rules where only tested on a set of 100 biased initial
configurations. Further testing of these rules on larger set
of initial configurations would provide a more accurate idea
of a rule’s actual performance. This is beyond the scope of
the present paper however. Figure 2 illustrates the cellular
progression of one of the best rules in synchronous updat-
ing. From this figure we notice that the evolved rules find a
solution quickly for a greater initial density of 1s but takes
much longer when the initial configuration contains more 0s.
This was true for all the highest performing rules evolved
for this SCA, and suggests that although a large number of
SCA rules are capable of correctly classifying higher den-
sities of 1s or 0s, a special strategy must evolve to success-
fully classify the opposite state density - we may call this
’density preference’. It is interesting to note that these rules
highly resemble a specific type of rule found by Mitchell et
al. which they call φa. This rule performs what they call
block expansion to solve the task (Mitchell 1998).

Hence it isn’t trivial for the GA to find good solutions to
the density classification task in SCA. It seems that a satis-
factory point attractor is only reached for half of the initial
conditions on a large majority of the runs. In contrast how-
ever asynchronous updating gave interesting results in other
dynamical systems. Harvey and Bossomaier for instance,

Artificial Life XI 2008 284

Figure 3: Average fitness of ACA for K = 149, K =
298, K = 447, K = 596, and K = 745 over 100 gener-
ations in 30 runs.

noticed that asynchronous RBNs tend to arrive a point at-
tractors more quickly than synchronous updating. It should
be interesting then to investigate this phenomenon in ACA
for the density classification task.

Because ACA require that only a single cell be updated
at every step, they require N times less computation over
a given number of steps K. It was predicted then that a
greater number of update steps would be required to obtain
well performing rules in the density classification task with
asynchrony. For this reason I conducted 30 runs on 5 differ-
ent ACA configurations. The first configuration held the K
number of update steps to 149. I’ll refer to this scenario as
Async 149. For the second configuration I decided to dou-
ble the number of K steps in an ACA’s computation: Async
298, and run the GA 30 times. Following the same proce-
dure I ran the evolutionary algorithm on Async 447, Async
596, and Async 745, each extensions of Async 149 by fac-
tors of 3, 4, and 5 respectively.

As expected Async 149 did not find any high performing
rules for the density classification task. The GA did manage
to find a number of rules for Async 149 that correctly classi-
fied the CA up to about 22% of the time. These more easily
solvable cases stem from conditions where initial configura-
tions had highly biased densities. As factors in the number
of update steps K increased, one notices an almost linear in-
crease in performance at first. Evolving Async 298 gave rise
to some rules reaching a success rate nearing 45%. Async
447 provided consistent rules surpassing the 50% mark, with
a number of rules reaching rates of success of 68%, with an
average of about 63%. However this progressive linear in-
crease halted with K = 596. Evolving Async 596 indeed

Figure 4: Average fitness of SCA, in comparison to ACA
with K = 447 over 100 generations in 30 runs.

rarely gave rules with results any better than 80%, although
75% was consistently reached by at least half the rules af-
ter 100 generations. The increase to K = 745 confirmed
this sudden decrease in rate of improvement, with top rules
averaging the 86% mark. This diminishing rate of improve-
ment suggests that there exists a non linear increase in the
complexity for finding good rules that solve initial configu-
rations with highly even state densities. Figure 3 illustrates
the progression in fitness for each type of scenario over 100
generations.

In comparison the average success of rules discovered for
SCA reaches roughly 60% (Figure 4) which happens to per-
form worse than Async 447 after 100 generations. How-
ever it is important not to forget that although the average
success is relatively low, evolving SCA did give rise to the
highly performing rules discussed above with rates nearing
100% success. This indicate then that SCA is prone to a
much higher deviation than its ACA counterparts. We no-
tice form Figure 5 that the standard deviation of evolved
rules for asynchronous update increases as the number of
steps K increases. This can be explained by the increasing
specialization of a set of rules in the population. In other
words, better performing rule sets have greater opportunity
to ’prove themselves’ when given more time to accomplish
the task. We also notice from Figure 5. that the standard
deviation of each ACA begins by increasing over the first
generation quarter, but then all deviations progressively di-
minish.

The decrease in standard deviation in fitness means that
rules that are more fit are found more consistently and
provide increasingly similar performance. Hence evolving
ACA gives rise to an increasingly reliable set of rules for the

Artificial Life XI 2008 285

Figure 5: Standard deviation of rule fitness for Async 149,
Async 298, Async 447, Async 596 and Async 745, over 100
generations.

Figure 6: Standard deviation of rule fitness for SCA over
100 generations.

given task. A few hypotheses may begin to explain these
results. Perhaps the GA evolves at every run a set of rules
that are increasingly similar genetically as generations go
by. This would inevitably cause a narrowing pool of rules
that the GA always succeeds in finding. This hypothesis
however doesn’t fit the results which show that there is an
initial increase of the standard deviation. A hypothesis that
I consider more probable is that the GA manages to narrow
down the pool of successful rules only after generating first
a highly diverse pool of rules in which some perform very
well and other quite poorly, after which a sort of population
neutrality appears then to form by mutation and crossover
which allows for this increasing and reliable specialization
of the rule population after the first generation quarter.

In contrast the evolved SCA are increasingly more volatile
as generations progress. Figure 6 not only shows a much
higher deviation for SCA than for ACA but how this devi-
ation increases after each generation. As mentionned ear-
lier this high deviation is explained by the majority of rules
which get stuck in local optima by achieving the correct clas-
sification of initial configurations for one of two states only,
i.e. density preference. The few cases that find on the one
hand high performing rules or on the other hand very poor
rules will inevitably cause this strong deviation. In compari-
son ACA do not seem to suffer from this density preference
(Figure 7). From this data then it is clear that evolving ACA
provides good rules much more reliably than does the evo-
lution of SCA for this task.

Finding Good Solutions Rapidly
Synchronous update implies that all cells are updated in uni-
son, however as seen in Figure 4 SCA rules that perform
well at the density classification task are sparse. Yet for ACA
well performing rules are much easier to find for the GA.
Figure 4 even shows how Async 447 has rules performing
better than SCA on average. However Async 447 performs
single cell update at every step. Thus after 447 update steps
it has performed exactly 1 ∗ K = 447 cell updates. In com-
parison SCA perform N ∗ K = 1492 cell updates. At first
glance this appears to mean that Async 447 found on average
better solutions than SCA with about 50 times less compu-
tation. This isn’t quite exact however. I mentioned earlier
that evolved SCA rules will on average solve half of the ini-
tial configurations within half a dozen steps due to density
preference. Solving the other half of initial configurations
though will typically take at least 100 update steps. By aver-
aging for both possible initial configurations is it reasonable
to assume that on average roughly 55 steps are required to
solve the density classification task when N = 149 with the
best evolved rules. This means that most rules for SCA re-
quire about 55 ∗ 149 cell updates which still represents 18
times more computation then that required by Async 447.
Overall this suggests that ACA can in fact perform faster
than SCA at this task given that less perfect target rules are

Artificial Life XI 2008 286

Figure 7: Sample iteration of a 1D-ACA in density classifi-
cation. On the left the rule solving for a greater density of
0s; and the right the same rule for a greater density of 1s.
Although perfect decisions are not made for these more dif-
ficult initial configurations, it is easy to see how the left ACA
progressively eliminates cells in state 1. And vice versa for
the ACA to the right.

required by a system or user exploiting these dynamics.

Conclusion
From the results collected here asynchronous cellular update
in one-dimension automata may exhibit important computa-
tional qualities. Essentially these results first show that a
genetic algorithm can find high performing update rules for
ACA more reliably than for SCA. I’ve shown that rules for
independent random updating of cell states to classify initial
densities are found more consistently than when the updat-
ing is synchronous with similar success rates. This was par-
ticularly made evident by a different standard deviation be-
tween both update methods: Whereas SCA show consistent
overall increasing deviation as rule generations go by, ACA
show initial increase during the first quarter followed by sig-
nificant decrease in standard deviation of fitness. Because
the standard deviation of ACA isn’t simply lower than that
of SCA but actually decreases suggests that a quite radically
different phenomenon is taking place when finding rules for

asynchronous updating via genetic algorithms. Interestingly
the evolved rules for ACA do not appear to suffer from den-
sity preference as do SCA. It is suspected that this phenom-
ena is intimately tied to the reliability of ACA for finding
good solutions. It appears then that as a tradeoff from ex-
ploiting space to find high performing rules, synchronous
update renders the computation of a CA highly prone to in-
stability. In contrast asynchronous update policies seem to
allow for more robust activity by exploiting time, while pro-
viding sufficiently good performance.

Furthermore the results suggest that ACA can decide with
much less computation the density of an initial configura-
tion than SCA if this density is relatively biased. On average
ACA performed about 18 times faster (computing time) than
SCA with similar results. This concurs with the idea that al-
though ACA may take more time (update steps) to arrive
at a point attractor they require much less overall computa-
tion (computing time) than do SCA. This agrees with prece-
dent results found by Harvey and Bossomaier (1997) on dy-
namics of asynchronous random boolean networks. Fur-
ther work should be conducted to examine more precisely
the threshold in update steps at which ACA find high per-
forming rules for density classification. Also, a better un-
derstanding of how ACA exploit the state space should be
developed.

The choice of density classification as a nontrivial task for
the global arrangement of cell states from local interactions
is proposed here as a simple yet well defined problem for
exploring the potential of asynchronous updating in com-
plex dynamics. Because CA behaviours are fundamentally
dictated by their update policy Φ, it is reasonable and per-
haps useful to regard Φ as the underlying ’physics’ of these
systems. The spatially distributed nature of cells and their
update over time motivates the use of CA for real world
models of global dynamics from local interactions. Hence
the results obtained herein could potentially contribute to the
better understanding of complex dynamics in natural phe-
nomena. Arguably, dynamical properties of asynchronous
cell selection may give insight into temporally dissociated
interactions such as in chemical reactions, neural group ac-
tivity, population dynamics etc. The two observed advan-
tages of asynchronous random cell updating in the present
experiments (reliability and rapidity) have quite distinct im-
plications. Although both aspects may be practically ex-
ploited for engineering prospects, the reliability characteris-
tic of asynchrony in the context of natural phenomena relates
purely to the ’availability’ of the underlying physics (update
rules) which give rise to the behaviour of interest. Here, re-
sults imply that under conditions of asynchronous random
cell selection these rules are more readily available for den-
sity classification from genetic search. Although specific to
this task, such flexibility could speculatively be shared by
other natural phenomena as mentioned above. The second
aspect - which shows that density classification is obtained

Artificial Life XI 2008 287

more rapidly in ACA than SCA on average - may predict,
however, that convergence towards stable attractors in natu-
ral temporally dissociated phenomena is likely to occur with
higher frequency. This, of course, is contingent upon the fact
that the dynamics of the present task can be extrapolated to
other real world phenomena.

References
Beckers, R., Holland, O.E., Deneubourg, J.L, (1994). From local
actions to global tasks: stigmergy and collective robotics. In P.
Maes and R. Brooks, editors, Artificial Life IV, pages 181-189.
MIT Press, Cambridge, MA.

Dellaert, F., Beer, R. (1994). Towards an evolvable model
of development for autonomous agent synthesis. In P. Maes and
R. Brooks, editors, Artificial Life IV, pages 246-257. MIT Press,
Cambridge, MA.

Edelman, G. (1993). Neural darwinism: Selection and reen-
trant signaling in higher brain function. Neuron, 10:115-125.

Gaks, P., Kudryumov, G.L., Levin, L.A. (1978). One-dimentional
uniform arrays that wash out finite islands. Probl. Peredachi
Inform., 14:92-98.

Grassé, P.P. (1959). La reconstruction du nid et les coordi-
nations inter-individuelles chez Bellicositermes natalensis et
Cubitermes sp. La theorie de la stigmergie: Essai d’interpretation
des termites constructeurs. Ins. Soc., 6:41-83.

Harvey, I., Bossomaier, T. (1997). Time out of joint: At-
tractors in asynchronous random boolean networks. ECAL97.

Kanada, Y. (1997). Asynchronous 1D cellular automata and
the effects of fluctuation and randomness. Extended paper from
the Artificial Life IV Poster.

Kelso, J.A.S. (1995). Dymanic Patterns, pages 37-43. MIT
Press, Cambridge, MA.

Mitchell, M. (1998). An Introduction to Genetic Algorithms,
pages 44-55. MIT Press, Cambridge, MA.

Mitchell, M., Hraber, P.T., Crutchfield, J.P. (1993). Revisit-
ing the edge of chaos: Evolving cellular automata to perform
computations. Complex Systems 7:89-130.

Mitchell M., Crutchfield, J.P., Das, R. (1996). Evolving cel-
lular automata with genetic algorithms: a review of recent work. In
Proceedings of the First International Conference on Evolutionary
Computation and Its Applications EvCA’96. Moscow, Russia:
Russian Academy of Sciences.

Land, M., Belew, R.K. (1995). No perfect two-state cellular
automata for density classification exists. Phys. Rev. Lett. 74:
5148-5150.

Lee, J., Adachi, S., Peper, F. (2007). Reliable self-replicating
machines in asynchronous cellular automata. Artificial Life,
13:397-413

Schonfisch, B., de Roos, A. (1999). Synchronous and asyn-
chronous updating in cellular automata. BioSystems, 51:123-143.

Artificial Life XI 2008 288

