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Abstract

The emergence of cooperation in social dilemmas has been
addressed in a number of fields. In this paper, we illustrate
how robust cooperation can emerge among a population of
agents participating in a N-player dilemma when the agents
are spatially arranged on a graph exhibiting small world prop-
erties. We present a graph structure with a high level of com-
munity structure, small diameter and a variance in the node
degree distribution. We show that with simple learning rules,
robust cooperation emerges. We also show that a population
of agents whose interactions are constrained by such a graph
can adapt to dramatic environmental changes.

Introduction
Questions regarding cooperation and its emergence, partic-
ularly in environments inhabited by self interested individu-
als, have been addressed in a many domains. The include,
among many others, computer science (Chiba and Hiraishi,
1998), biology (Boyd and Richerson, 1988), robotics (Birk,
1999) and social science (Hardin, 1968).
Social dilemma games have been commonly adopted to

capture and represent the salient features of interactions in
these environments; in particular the conflict between the in-
dividually rational actions and the collectively rational group
actions and outcomes. The prisoner’s dilemma (and vari-
ations) is the most oft studied game. Most previous work
has focussed on the case involving two participants. The
extended N-player version is less studied but it has been ar-
gued by Davis et al. (1976) to have “greater generality and
applicability to real life situations”.
In N-player dilemma games defection is the rational

choice for all individuals which in turn leads to a sub-
optimal outcome for the group. Many researchers have in-
vestigated the effect of spatial constraints on agent interac-
tions in both the 2-player and N-player game (Hauert, 2006),
(Wu et al., 2005), (Santos and Pacheo, 2005). In these spa-
tially organised games, agents are more likely to interact
with a smaller subset of agents than would be expected in
simulations where are agents are not spatially organised, e.g.
randomly organised or round robin type simulations. This

factor has been shown to have a dramatic impact of the like-
lihood of cooperation emerging.
One form of spatial arrangement or topology that has gen-

erated much attention recently is that of a small world graph
(Watts, 1999). Small world graphs are typified by the fact
that most nodes are reachable from all other nodes in a short
number of steps. These graphs also tend to have a high clus-
tering coefficient with a high presence of cliques or near-
cliques. Another property often associated with small world
graphs is that the node degree distribution follows a power
law distribution.
One key property that we have explored in previous work

is that of community structure (O’Riordan and Sorensen,
2008b). This property has also been explored in recent work
(Lozano et al., 2006). A graph is said to have a commu-
nity structure if collections of nodes are joined together in
tightly knit groups between which there are only looser con-
nections. This property has been shown to exist in many
real-world social networks (Newman and Girvan, 2004).
In our previous work, we have shown that by enforc-

ing a high level of community structure robust cooperation
can emerge among agents participating in N-player social
dilemma games. The topologies explored in our previous
work, however, are quite unrealistic and do not possess the
other properties found in many naturally occurring graphs,
i.e. small world properties including a variance in node de-
gree.
This paper investigates whether it is possible to build

graphs that exhibit the properties of small world graphs
which induce the emergence of cooperation. We present
two different extensions to our previous representations and
illustrate that by constructing the small world graph while
maintaining a high level of community structure that coop-
eration can indeed still emerge.
The following sections discuss some background mate-

rial, particularly in N-player social dilemmas, graphs with
community structure and some of our previous findings. We
then discuss the particular graphmodel and agent interaction
models used in this work. The experimental set up is then
explained with our two algorithms for creating small world
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graphs explained. We present results obtained from simula-
tions with these two different topologies. Finally we present
some conclusions and briefly outline some intended future
work.

Background
N-player social dilemmas
N-player dilemmas are characterised by having many par-
ticipants, each of whom may choose to cooperate or defect.
These choices are made autonomously without any commu-
nication between participants. Any benefit or payoff is re-
ceived by all participants; any cost is borne by the coopera-
tors only. A well-known example is the Tragedy of the Com-
mons (Hardin, 1968). In this dilemma, land (the commons)
is freely available for farmers to use for grazing cattle. For
any individual farmer, it is advantageous to use this resource
rather than their own land. However, if all farmers adopt the
same reasoning, the commons will be over-used and soon
will be of no use to any of the participants, resulting in an
outcome that is sub-optimal for all farmers.
In the N-player dilemma game there are N participants.

Each player is confronted with a choice: to either cooper-
ate or defect. We represent the payoff obtained by a strategy
which defects given i cooperators asD(i) and the payoff ob-
tained by a cooperative strategy given i cooperators as C(i).
Defection represents a dominant strategy, i.e. for any in-

dividual, moving from cooperation to defection is beneficial
for that player (they still receive a benefit without the cost):

D(i) > D(i − 1) 0 < i ≤ N − 1 (1)

C(i) > C(i − 1) 0 < i ≤ N − 1 (2)

D(i) > C(i) 0 < i ≤ N − 1 (3)

However, if all participants adopt this dominant strategy,
the resulting scenario is sub-optimal and, from a group point
of view, an irrational outcome ensues:

C(N) > D(0) (4)

If any player changes from defection to cooperation, the
performance of the society improves, i.e. a society with i +
1 cooperators attains a greater payoff than a society with i
cooperators:

(i+1)C(i+1)+(N−i−1)D(i+1) > (i)C(i)+(N−i)D(i)
(5)

Small world Graphs
As mentioned in the introduction, small world graphs are a
class of graphs or topologies such that nearly all nodes are
reachable from all other nodes in a few steps. Watts and
Strogatz (Watts, 1999) demonstrated that a regular lattice
can be transformed into a small world network by making

a small fraction of the connections random. The algorithm
involves taking a regular lattice (ring, grid) and repeatedly
removing some edge (a, b) and replacing it with an edge
(a, c). If the node c is selected with probability based on its
degree, then the notion of preferential attachment is present
which results in a graph with node degree distribution fol-
lowing a power law.
The property of community structure has been reported in

several real world networks (Newman andGirvan, 2004) and
many algorithms have been proposed to measure the level
of community structure present in the graph (Donetti and
Munoz, 2004) (Zhang et al., 2007).
Such graphs have been used to constrain agent interac-

tions in social dilemma games in interesting work (Wu et al.,
2005), (Santos and Pacheo, 2005) which show that cooper-
ation can be induced in 2-player games. Our work differs
by addressing the N-player version which has been shown
to be more challenging to induce cooperation in evolution-
ary settings (Yao and Darwen, 1994). We also show that the
maintenance of one key property, that of community struc-
ture is of importance.

N-player dilemmas and Community Structure
In previous work, we have created a range of lattices which
can be tuned to exhibit different levels of community struc-
ture (O’Riordan and Sorensen, 2008b). These graphs do not
exhibit node degree distribution according to power laws
(in fact, the degree is constant throughout the graph) and
they also do not exhibit other small world properties. In the
model previously adopted we created graphs with strongly
connected clusters of agents who were loosely connected to
neighbouring clusters. We varied the degree of community
structure by simply varying the ratio of the weights on intra-
community edges to intra-community edges. Agents were
chosen to interact based on the strength of the edge weights.
We allowed agents learn from their immediate neighbours;
agents effectively imitated their more successful neighbours.
If all immediate neighbours perform similarly, agents were
allowed to learn from neighbouring clusters. We showed
that cooperation emerged. Our initial model is discussed
more in the following section.

Model
Initial Graph Topology
In the simulations described in this paper, agents are located
on nodes of a graph. The graph is an undirected weighted
graph. The weight associated with any edge between nodes
represents the strength of the connection between the two
agents located at the nodes. This determines the likelihood
of these agents participating together in games.
The graph is static throughout the simulation: no nodes

are added or removed and the edge weights remain constant.
We use a regular graph: all nodes have the same degree. In

the initial topology, nodes have four neighbours. We use two
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different edge weight values in each graph: one (a higher
value) associated with the edges within a community and
another (a lower value) associated with the edges joining
agents in adjacent communities. All weights used in the this
work are in range [0,1].
The graph is depicted in Fig. 1, where the thicker

lines represent intra-community links (larger value as edge
weight) and the thinner lines indicate inter-community links
between neighbouring communities. The rectangles of
thicker lines represent a community; the vertices represent
agents.

Agents: Inter-community links: Intra-community link

Figure 1: Graph with community structure

Agent Interactions
Interaction Model Agents in this model can have a strat-
egy of either cooperation (C) or defection (D). Agents inter-
act with their neighbours in a N-player prisoner’s dilemma.
The payoffs received by the agents are calculated according
to the formula proposed by Boyd and Richerson (Boyd and
Richerson, 1988), i.e. cooperators receive Bi/N − c and
defectors receive Bi/N , where B is a constant (in this pa-
per, B is set to 5), i is the number of cooperators involved in
the game, N is the number of participants and c is another
constant (in this paper, c is set to 3).
Each agent may participate in several games. The algo-

rithm proceeds as follows: for each agent a in the popula-
tion, agents are selected from the immediate neighbourhood
of agent a to participate in the game. Neighbouring agents
are chosen to participate with a probability equal to the edge
of the weight between the nodes. This means that, for a
population with a high community structure, most games in-
volve an agent’s local community members. This allows a
high degree of insulation from agents in neighbouring com-
munities. An agent’s fitness is calculated as the average pay-

off received in the interactions during a generation.

Learning
Agents may change their behaviours by comparing their
payoff and that of neighbouring agents. We adopt a sim-
ple update rule whereby an agent updates their strategy to
those used by more successful strategies. Following each
round of games, agents are allowed to learn from their neigh-
bours. Again these neighbours are chosen stochastically; the
neighbours are chosen according to the weight of the edge
between agent and neighbour.
We incorporate a second update mechanism. The motiva-

tion for its inclusion is as follows. Following several itera-
tions of learning from local neighbours, each community is
likely to be in a state of equilibrium—either total coopera-
tion or total defection. Agents in these groups are receiving
the same reward as their immediate neighbours. However,
neighbouring communities may be receiving different pay-
offs. An agent that is equally fit as its immediate neighbours
may look further afield to identify more successful strate-
gies.
In the first update rule, agents consider other agents who

are immediate neighbours. Let s adj(x) denote the immedi-
ate neighbours of agents x chosen stochastically according
to edge weight. The probability of an agent x updating their
strategy to be that of a neighbouring agent y is given by:

w(x, y).f(y)

Σz∈s adj(x)w(x, z).f(z)
(6)

where f(y) is the fitness of an agent y and w(x, y) is the
weight of the edge between x and y.
The second update rule allows agents to look further afield

from their own location and consider the strategies and pay-
offs received by agents in this larger set, i.e. agents update
to a strategy y according to:

w(x, y).f(y)

Σz∈adj(adj(x))w(x, z).f(z)
(7)

where again f(y) is the fitness of agent y and noww(x, z)
refers to the weight of the path between x and z. We use the
product of the edge weights as the path weight. Note that in
the second rule, we don’t choose the agents in proportion to
their edge weight values; we instead consider the complete
set of potential in the extended neighbourhood. In this way
all agents in a community can be influenced by a neighbour-
ing cooperative community.

Small World version of Graph
In order to create a graph topology more reflective of nat-
urally occurring graphs, the basic graph topology must be
changed. This is achieved by adopting the approach pro-
posed by Watts (1999).
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Our first approach involves taking our existing graph
structure and re-attaching edges i.e. the following proce-
dure is repeated: edge (a, b) is randomly selected from the
set of edges present and replaced with the edge (a, c) where
node c is selected in proportion to its degree. The new edge
will have a weight equal to the deleted one. This approach,
while introducing the small world property and the desired
node degree distribution seriously damages the community
structure. We hypothesise that this should negatively impact
on the emergence of cooperation.
Our second approach begins with another regular graph

structure; we place the communities of agents on a ring (de-
picted in Fig. 2). We again re-attach edges in the graph, but
with the following constraint; only inter-community edges
are deleted and re-attached. Thus, we choose an edge (a, b)
randomly such that both a and b are on the circumference of
the ring; this edge is deleted and re-attached as (a, c) such
that c is selected randomly from those nodes positioned on
the circumference. Again, the new edge will have a weight
equal to the deleted one. This approach maintains the com-
munity structure in the graph while introducing the desired
small world graph properties.

Figure 2: Ring structure with communities

The following tables present some data to illustrate some
of the properties of the resulting graphs for the two different
algorithms.

Experiment Setup
A population of 800 agents is used. Strategies are assigned
to agents randomly. We allow simulations to run for 200
generations.
Following each generation, the first learning rule is ap-

plied. Following every four generations (sufficient for com-
munity to reach an equilibrium), the second learning rule

Re-attachment Rate Dev. in Node Degree Av. Diameter
0% 0 15.59
1% 0.261 12.14
5% 0.620 8.52
10% 0.835 7.49

Table 1: Properties of resulting small world graph using first
algorithm (initial lattice structure, all edges considered for
re-attachment) for different levels of re-attachment

Re-attachment Rate Dev. in Node Degree Av. Diameter
0% 0.5 132.9
1% 0.512 41.17
5% 0.532 5.655
10% 0.589 2.136

Table 2: Properties of resulting small world graph using
second algorithm (initial ring structure, inter-community
edges considered for re-attachment) for different levels of
re-attachment

is applied. This is not necessary in most cases; we merely
choose to let the local interactions stabilise prior to applying
the second rule. This eases analysis in some cases where
fluctuations can occur if community structure levels are not
sufficiently high. We include another plot in a later section
in this paper where we use the ring graph with re-attachment
and modify the rates of application of learning rules such
that they both occur every generation. The outcome is simi-
lar.
In all the simulations we initially enforce a high level

of community structure; the intra-community links are held
constant with a value of one. The value of the inter-
community are set to 0.1. The lower the value, the more
insulated clusters are and hence should promote coopera-
tion.
We vary the level of re-attachment and measure the result-

ing levels of cooperation.

Results
Emergence of Cooperation
For the first graph structure (regular lattice) with different
levels of edge re-attachment, we see that the levels of coop-
eration is dependent on the degree of re-attachment present
(see Fig. 3). For a regular graph with high community
structure and no other small world properties, we see that
the population quickly converges to cooperation. Introduc-
ing 1% re-attachment reduces the diameter of the graph and
increases the node degree deviation but also damages the
level of community structure. We see that the levels of
cooperation reached fall to roughly 700 cooperators in the
population. As the level of re-attachment increases, the ef-
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fect becomes even more pronounced with a big decrease in
the number of cooperators for re-attachment level of 5%
and a large collapse in the number of cooperators for re-
attachment levels of 10%.
It is worth commenting on the nature of the fluctuations

in the separate runs. Consider, as an example, the line in-
dicating re-attachment levels of 5% where the levels of co-
operation fluctuate considerably. This is due to the effect
of the two learning rules and the frequency with which they
are applied. Following a few generations, each community
converges to total cooperation or total defection. Follow-
ing every fourth generation, the second rule is applied with
leads to an immediate increase in the number of cooperators
as members of non-cooperating clusters imitate more suc-
cessful clusters. These new cooperators are in most cases
interacting with non-cooperators and hence are exploited by
their immediate neighbours. These immediate neighbours
are then imitated leading to emergence of defection in these
clusters.
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Figure 3: Levels of Cooperation present in population
placed on small world graph created from orginal lattice

Fig. 4 shows the levels of cooperation attained given a
graph with small world properties that also has initially a
high level of community structure created by re-attaching
inter-community edges only.
We see that for levels of re-attachment up to 10%, cooper-

ation still emerges. These results illustrate that we can have
small world properties (e.g. small diameter) and still main-
tain community structure and hence maintain high levels of
cooperation.
An interesting point to note is that cooperation reaches

the maximum possible level most quickly for re-attachment
levels of 5%. This is due to the reduction in the diameter
which causes cooperation to spread more quickly as non-

cooperative clusters are more likely to be close to coopera-
tive clusters. However, increasing the level of re-attachment
further slows down the spread of cooperation. This is be-
cause, despite the potential gain caused by the decrease in
diameter, the increased probability of having a number of
nodeswith a high degreewhich can be influencedmore read-
ily by non-cooperating strategies.
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Figure 4: Levels of Cooperation present in population
placed on small world graph created from ring; only inter-
community links re-attached.

Robustness
In many scenarios that we may wish to model, it is possi-
ble for uncertainty or noise to exist—agents may perform
their acts incorrectly or imperfectly, their acts may be mis-
interpreted, agents may learn or imitate others and change
their behaviour accordingly, and agents may exit or join the
group thereby changing the environment or others. Alterna-
tively, the environment may change dramatically thereby re-
quiring agents to explore and learn new suitable behaviours.
In previous work O’Riordan and Sorensen (2008a), we

showed that these graph structures allowed populations to be
robust to noise and to dramatically changing environments
for a population of generalised tit-for-tat strategies. In this
experiment we explore again if the population of agents can
survive and track dramatic environmental change. We intro-
duced 1% noise to ensure some exploration of the strategy
space. At every generation, each agent has a 1% probability
of changing strategy. We also introduce dramatic environ-
mental change during the simulation. This involves revers-
ing the payoffs of the game which causes ‘cooperation’ now
to be viewed as individually rational and collectively subop-
timal and renders ‘defection’ the new socially beneficial and
cooperative act.

Artificial Life XI 2008  440 



In our simulation, we count and plot the number of agents
choosing the socially beneficial action. We see that follow-
ing the change in environment at generation 350, the popu-
lation recovers to high levels of cooperation (Fig. 5).
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Figure 5: Levels of cooperation present on ring with re-
attachment probability 5%. Noise is set to 1%. Dramatic
environment reversal occurs at generation 350

Conclusions
In this paper, we wished to explore if cooperation can
emerge among self-interested agents participating in N-
player social dilemmas where the agents are placed on a
small world network exhibiting community structure. Our
previous work illustrated the emergence of cooperation
given a community structure on regular lattices. In this pa-
per, we showed that by converting the graph to a small world
network by re-attaching edges in such a manner that dam-
aged the community structure, cooperation collapses and de-
fection emerges as the norm. We also showed that by con-
verting a regular graph to a small work graph while taking
care to preserve the community structure, cooperation can
emerge as the norm. The speed of the emergence can also
be improved by having small world properties (e.g. reduced
diameter).
We have shown that the notion of community structure is a

key feature in the emergence of cooperation. In order for co-
operative clusters to survive, the agents must be able to pro-
tect themselves from non-cooperative agents by insulating
themselves and playing mainly among themselves. How-
ever, communities or clusters cannot be totally isolated; they
must have some link to other communities so as to provide
an opportunity to learn more beneficial strategies if possible.
A balance must be struck between the risk of exploitation
and the potential to learn a better strategy if one exists.

Discussion
In the experiments in this paper, we utilise two learning
rules—one involving an agent’s immediate neighbours, the
other involving an extended neighbourhood. We allow the
agents to learn from the immediate neighbours first and then
upon reaching an equilibrium we allow them to learn from
the neighbouring communities. We achieve this by allow-
ing the first learning rule every generation and the second
learning rule every four generations.
The motivations were primarily to allow local commu-

nities reach an equilibrium prior to learning from others as
otherwise, in some cases, this causes fluctuations in levels of
cooperation and convergence is never reached. This occurs
when there are insufficient levels of community structure. In
these cases, a local community may be heading towards to
defection and then learn from neighbours and heads towards
cooperation again etc. We wished to ease the complexity of
the interactions for these specific cases.
However, it should be noted for the results presented for

the main graph of interest (the ring transformed into a small
world graph while maintaining the level of community struc-
ture), the rates of application of the learning rules does not
dramatically interfere with the results. The same trends are
noticed (Fig. 6) where we apply both learning rules every
generation. The agents reached the state of total coopera-
tion much more quickly due to the application of the second
learning rule every generation.

Future Work
There are several directions for future work. One future di-
rection would be to explore the generalizability of these re-
sults. We wish to explore different updating schemes and
other social dilemma games to explore if the same effects
are detected. We also wish to explore these graph structures
in uncertain environments. Another track which we will pur-
sue is to investigate under which conditions these graphs can
emerge based on agent interactions. In this paper, agent in-
teractions are constrained by the graph properties. It would
be interesting to show that such graphs can emerge based on
interactions between agents.
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