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Abstract

Using a set of genetic logic gates (AND, OR and XOR), we
constructed a binary full-adder. The optimality analysis o
the full-adder showed that, based on the position of the reg-
ulation threshold, the system displays different optinwai-c
figurations for speed and accuracy under fixed metabolic cost
In addition, the analysis identified an optimal trade-offveu
bounded by these two optimal configurations. Any configu-
ration outside this optimal trade-off curve is sub-optirmal
both speed and accuracy. This type of analysis represents a
useful tool for synthetic biologists to engineer faster,reno
accurate and cheaper genes.

Introduction

The desire to control is a recurring theme of human nature
and the control of biological systems represents the utéma
goal for synthetic biologists. Towards achieving this goal

researchers have modelled and engineered genes in blacteria

cells that perform basic computational tasks. These tasks
mainly mimic the behaviour of simple electronic compo-
nents, such as logic gates, oscillators, toggle switchds an
counters (Gardner et al., 2000; Elowitz and Leibler, 2000;
Guet et al., 2002). However, when attempting to increase
the complexity of these engineered genetic systems, nertai
limitations of the components are likely to hamper theircon
struction. Thus, there is an urgent need for an extensile ana
ysis of the biophysical limits of the elementary components
Synthetic biologists showed that binary logic gates can be
engineered in living cells using transcriptional logic @bu
et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
Cox Il et al., 2007; Anderson et al., 2007; Sayut et al.,
2009). Transcriptional logic gates are genes which can in-
tegrate multiple signals at the level of cis-regulatoryntra
scription control using various binary logic functions (BN
OR, NAND, NOR, XOR, etc.). To implement binary logic,

Hermsen et al., 2006; Schilstra and Nehaniv, 2008; Silva-

Rocha and deLorenzo, 2008). However, what is still miss-

ing is a complete analysis of how these logic gates can be
used as building blocks for more complex logical systems

and what are the parameters which ensure optimal design in
terms of speed and accuracy under limited (constant) ener-
getic resources.

There are three properties of a genetic system that we use
in our analysis: speed, accuracy and cost. We define the
propagation timeas the time required by the output species
in a logical system to reach the new steady state after an in-
stantaneous change of the inputs. This is directly condecte
with speedin the sense that fast system are described by
short propagation times and conversely. Due to low copy
number and slow chemical reactions, genetic systems are
stochastic and, thus, they are affectedhbjse(Kaern et al.,
2005). The noise reduces the ability to distinguish between
different logical outputs of a gate and, because of thag-it r
ducesaccuracy Finally, themetabolic costs usually mea-
sured as the required number of ATP molecules. We are in-
terested in the scaling properties of this measure, ratiaer t
in the exact value. Hence, we measure cost as the maximum
synthesis rate of a gene.

Recently we investigated speed and accuracy in the case
of single binary genes (genes with two expression levels,
high and low) (Zabet and Chu, 2010). The analysis revealed
that these genes display a trade-off curve between swigchin
time and noise under fix metabolic cost, i.e., lower noise is
achieved at lower speeds and conversely. This trade-off is
controlled by the decay rate, in the sense that higher decay
rate means higher speed but also lower accuracy.

In this contribution, we extend this analysis to gene net-
works by considering a specific binary logic system, the full
adder. The full-adder is a system able to perform binary ad-
dition (to produce both the sum and the carry) for three bi-

both the input and the output of these genes needs to havenary inputs, two of which are the two operands and the third
two abundance levels corresponding to the two logical lev- allows plugging in the carry from a previous full-adder mod-
els, a high and a low abundance level. Biological mod- ule. We constructed the required logic gates by considering
ellers successfully identified and described various aessig  genes that can be regulated by two proteins in an indepen-
of these logic gates (Weiss et al., 2003; Buchler et al., 2003 dent fashion, i.e., binding of any of the inputs does not alte
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the binding of the other input. Moreover, these logic gates
need to ensurmterconnectivity Assuming that the two in-

whereq« is the basal synthesis rate,+ 5 the maximum
synthesis ratef (x, y) is the regulation function of ger@.,

puts that regulate a gene can have two possible abundanceandy: is the decay rate.

levels, high {;,) and low (L;,), then, in order to connect
an arbitrary number of logic gates, the output has to have
two possible abundance level (,; andL,,;) with at least

the same signal strengttiZ;,, — Lin) < (Hout — Lout)
(Magnasco, 1997). Usually the output levels are identical
with the input one or very close to the#,,,, > H;, and
Lo < L;,. Based on these requirements, we found the
set of parameters which ensures interconnectivity of the re
quired logic gates and then we constructed the full-adder
showing the correct functioning of the system.

Gene regulation is usually modelled by a Hill function
(Ackers et al., 1982; Bintu et al., 2005; Chu et al., 2009).
The Hill function is a sigmoid function described by two pa-
rameters: the threshold (which represents the input abun-
dance required for half activation of the gene) and the Hill
coefficient! (which determines the steepness of the func-
tion). The results show that, for step-like regulation func
tions ( — o), the system displays an optimal position of
the threshold in terms of speed and accuracy, while, for fi-
nite Hill coefficients, there is a trade-off between these tw
properties and the trade-off is controlled by the positibn o
the threshold.

Model

We selected a design for the full-adder with five logic gates:
two XOR gates, two AND gates, and one OR gate (see Fig.
1).

AO—
@,
cO

Figure 1: Full-adder. The logic gate diagram of the full
adder.

To construct this full-adder from genes, we need first to
construct transcriptional logic gates. We model a trapscri
tional logic gate as a ger@,, which synthesises protein
the output of the gate. This gene is regulated by two pro-
teinsx andy, which are considered as the inputs of gate.
Speciex is described by the following deterministic differ-
ential equation

dz

7 1)

=a+ff(z,y) — pz

Although there are many scenarios for promoter regula-
tion that mimic the behaviour of different logic gates, we
selected independent binding (binding of one TF does not
influence in any way the binding of the other TF). In this sce-
nario there are two operator sit€s, andO,, each of them
having/ binding sites. On each operator site only molecules
of a specific transcription factor can bind, and they do this i
a homo-cooperative maner. The probabilities that an opera-
tor site is full is described by a Hill function (Ackers et,al.
1982; Bintu et al., 2005; Chu et al., 2009)

7 !

I = =7, = —-— 2
pz(2) TR py(y) S K 2

whereK is the regulation threshold (the required input value
for half activation of the gene) andis the Hill coefficient
(indicates steepness of the function). We assumed that the
two operator sites(, and O,) have identical parameters
(K andi).

Assuming that the gene is turned on when any of the two
TF are present, then the regulation function will mimic the
behaviour of an OR gate. Analogously, assuming that a gene
can be turned on only when both of the transcription factors
are present, then the regulation function will mimic the be-
haviour of an AND gate. Finally, if the gene is turned on
when any of the TF is present, but when both of them are
present their effects cancels out and the gene is turned off,
then the gene will behave as an XOR gate. The correspond-
ing forms of the regulation functions are

s (zy)!
AN (wy) + (Ko)l + (Ky) + K2
p (2y) + (2K) + (yK)" @)
of (ey) + (K2)l + (Ky)l + K2
Feon (Kz)' + (Ky)!

(zy) + (Ka)! 4+ (Ky)! + K21

Fig. 2 confirms that these regulation functions display the
desired behaviour.

Using these three logic gates, the full-adder, can be con-
structed as a set of chemical reactions. Since the fullvadde
contains five logic gates, then we need five species to im-
plement this systen( f, g, sum and carry). The chemical
reactions which describe all these species are given by

aet+PBefxor(a,b)
) = e,

e
ag+Bgfanp(a,b)

—_—
Hg
as+Bsfxor(e,c)

)
s

0 as+Brfanp(c,e)

nr

=

9,

AcotBeofor(f,9)

sum 0 carry

co

wherea, b andc are three input species.
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Figure 2:Regulation functions that mimic logic gate behaviotline threshold was set f§ = 0.5 [¢M] and we considered a
Hill coefficient of h = 3.

Results Z can be defined as the maximum synthesis rate of that

First we need to identify the sets of parameters which allow 9€N€<: = a + 317, wheref " is the highest value which

interconnection of gates and then we need to identify the /() takes. Thus, by keeping the synthesis rate fixed
sub-set of parameters which allows optimal functioning of the metabolic cost is kept constant. Note that this is just
the full-adder in terms of speed and accuracy under fixed 0 @pproximation to the actual metabolic cost, and that the
metabolic cost. We will apply these two analyses for two metabolic cost of the maintenance of the entire machinery

cases: 4) step-like regulation functiond (— oc) and ) was notinclgded in it. However, this measure indicates how
the metabolic costs scales with different parameters.

The propagation time Ty.,., of a gene is the time re-
quired to reach the steady state to within a fractfoof
H — L. Assuming instant change of the input, Eq. (1) can
be solved analytically and the time to reakht (H — L)0
or H — (L — H)# can be computed as

)

1/ represents the average life time of the

finite Hill coefficients.

To keep the mathematics tractable, and without losing too
much generality, we consider identical gates, i.e., allegen
are affected by the same decay raty have the same syn-
thesis ratesq{ and 3) and the same Hill parametersgnd
K). The only thing that differentiates the gates is the regu-
lation function, which, in the case case of the full-addan c

be fanp, for O fxoR.

Step Regulation Functions

We start our analysis by considering the ideal case, the sys-
tem where the regulation functions have infinite Hill coeffi-
cient.

The interconnectivity property can be met by consider-
ing the output signal strength to be kept constdht,; =
H;, = HandL,,; = L;, = L. Inthe case of the OR gate,
the system has the following steady state behaviour

L = %[awaR(L,L)],
H o= i[awaR(L,H)], ()
H = %[a%fOR(H,H)]-

For infinite Hill coefficient the solution is given by = L
andg = (H — L). Analogously, it can be shown that the
solution is the same for all gates. This synthesis ratesrensu
a correct steady-state behaviour of the full-adder (see Fig

3(a)).

System Performance We investigate two properties of a

logic system, namely speed and accuracy, under the con-

straint of fix metabolic cost. The metabolic cost of a gene

1

14 (5)

Ti:T'ln<

where 7
species.

The propagation time through a single gate can only be
reduced by reducing the average life time of the prote)n (

In the case when the two logical steady states are kept con-
stant (so the signal strength is not reduced) and the syiathes
rate is kept constant (so we do not increase the metabolic
cost) then also the decay rate is kept constant. Thus, there i
no optimization that one could attempt to perform on indi-
vidual gates under fix metabolic cost without reducing sig-
nal strength. However in the case of logic gates systems,
like the case of the full-adder, the input is not changed in-
stantaneously in all gates and the position of the threshold
influences the propagation time.

The threshold is located between the low and the high
state, K = L+ (H — L)\, (A € [0,1]). X indicates the
position of the threshold; fok < 0.5, K is closer toL and
for A > 0.5, K is closer toH. Note that by considering’
to be outside the intervdl., H] the regulation is removed,
i.e., the gene is always in the same state no matter whether
the inputisL or H. In order for a gene to change state, one
of the inputs, has to cross over or undér Using Eq. (5)
one can compute the time it takes one species to move from
low state to the threshold,(— K) and from the high state
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Figure 3: Full-adder with step-like regulation functiorfa) The output abundance based on the input abundancefolilst
regulation functions. (b) We plotted the propagation timteew switching betwee(l, L, H) to (H, L, H). The following set
of parameters have been usged= 1 min=',1 =50, L = 0.2 uM, H = 1.2 uM, K = 0.7 uM, o = 0.2 uM - min~1,

B =1.0 uM -min~—t andf = 0.9.

to the threshold — K) as

1 1

Assuming that the longest cascade in the systemrhas
gates, then a general formula for the propagation time is
given by

n—1

T=Y tix+T, @)
=1

wheret; k is equal tof ;i if speciesith was in low state be-
fore changing the input in the system, ahg is equal to
tyx if speciesith was in high state before changing the in-
put in the system. Hence, the propagation time in a cascade
equals a sum of x andty terms and a fix time repre-
senting the last gene in the cascEge

Fig. 4 confirms that based on the threshold position, the
system can be faster when switching in one direction and
slower in the opposite direction. When the switching direc-
tion is not important, the problem of optimizing propagatio
time becomes a minimax problem, i.e., minimize the max- Figure 4: The time to reach the threshold@he protein av-
imum time to switch. In the context of step-like regulation  erage life time tor = 1 [min]. The two steady states are
functions, the optimum threshold, according to Eq. (6),re- I, = 0.2 [uM] and H = 0.8 [uM], and the corresponding
sides at the midpoint between high and low states= 0.5 synthesis rates were considered. Both switching direstion
(see Fig. 4). were consider.

Analysing the circuit diagram of the full-adder 1 one can
notice that the longest path through the circuit consists of
three gates, and this is used when computing the carry .
This path is followed, for example, when switching between
(L,L,H) and(H,L,H). Fig. 3(b) confirms that the op-
timum threshold, in the case of step-like regulation func-
tion, resides at the midpoint between high and low state

T [min]
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(A = 0.5). Also note, that Eq. (7) and Eq. (6) correctly
predict the propagation time in the full-adder in the case of
high Hill coefficients.

Next, we need to investigate the accuracy of the system.
At steady state thearianceof the outputz of a logic gate,
which has two inputs: andy, can be written as (van Kam-
pen, 2007; Elf and Ehrenberg, 2003; Paulsson, 2004)

sz
—_— T
2 —N—
o2 = : + 18 af(xay)T Tx o2
? N~~~ =0z Y| Te4T ©
intrinsic
upstream frome
e o,
—
af(xvy) 2 Ty 2
+ T, o 8
e A

upstream fromy

The intrinsic component is generated by the randomness
in the birth-death processes and it can be approximated by

a Poisson process (Bar-Even et al., 2006; Newman et al.,
2006). The upstream component is the noise transmited

functions, the system displays an optimum threshold posi-
tion (A = 0.5) which ensures optimality both for speed and
accuracy.

Finite Hill Coefficients

Due to the fact that Hill coefficients are bounded above by
the number of regulatory binding sites (Chu et al., 2009),
and genes have a small number of binding sites (Hermsen
et al., 2006), biologically realistic Hill coefficients dfiaite

and have low values.

For low Hill coefficients, Eq. (4) has only one solu-
tion, H = L. This is not a useful solution because it re-
moves the binary logic. Therefore, we search for param-
eters which ensure that the signal strength is not reduced,
(Hout — Lout) > (Hin — Liy), and this can be achieved by
solving only the first two equations in Eq. (4):

aor _  Lfor(L, H) - Hfor(L, L)
7] [fOR(L,H)_fOR(LaL)] 7
Bor H-L
p [for(L,H) = for(L,L)]’ (10)

Note that not for all sets of parameteisK, u, H, L) the

from the upstream species (the species that regulate thesynthesis rates will have positive values. Interestinigly,
gene) (Pedraza and van Oudenaarden, 2005). The upstreancreasing the Hill coefficient increases the space of allowed

noise is composed of three terms: the regulation fadtor (
andI'.,), the time average factoff{, andT.,), and the
variance of the upstream specie§ @ndo?).

In this contribution, we are interested in how noise af-
fects our ability to distinguish between the two known out-
put statesH and L. To get a meaningful measure of this,
we will normalise the variance by the square of the signal
strength;, = o2/(H — L)?, rather than by the square of
the mean (which is often used as a definition of noise).

T

z
(H — L)2 + |:ﬁz7—z

of (z,y)/0y
(H-1L)

0f(z,y)/0x
(H—1L)

:| 2
For step-like regulation function the derivatives in (9)lwi

be zero, and the only contribution to the noise is the inizins
component. Thus, the noise of the output depends only on

2
T,..0;

Nz

+ [ﬁzn T.y02 ©)

the steady state abundance (high and low), but is indepen-

dent of the number of gates in the system or of the threshold
position. However, if the threshold is close enough to one
of the steady stated( or L), then small fluctuations in the

parameters, and in the limit case of a step function (o)

any values of the other parameters will generate positive
synthesis rates. For Hill coefficient less than or equal to
there is no solution for this system. Analogously one could
use the same mechanism to determine the synthesis rates for
all the other gates. For AND and XOR gates the solution is
given by

QAND Lfanp(H,H) — Hfanp(L, H)
% [fanp(H,H) — fanp(L, H)]
BAND H-L (11)
% [fanp(H,H) — fanp(L, H)]
QaXOR Lfxor(L,H) — Hfxor(H, H)
% [fxor(L,H) — fxor(H, H)]
Bxor H—-L
I ~ [fxor(L,H) — fxor(H, H)|
(12)

Fig. 5(a) confirms that the signal is not decreased and
shows that in two cases the actual output low statg () is
lower than the desired oné).

System Performance For low Hill coefficients the op-

input generates high fluctuations in the output and the an- timum threshold in terms of speed in not positioned any
alytical method is not accurate any-more. Assuming that more at the midpoint between high state and low state (see
the threshold is positioned at the midpoint (optimum posi- Fig. 5(b)). This is a consequence of the fact that for
tion for speed) and the two steady states are far enough from low Hill coefficient the Hill function loses the symmetry
each other, then the noise will be determined only by the in- around the threshold. Hence, when designing a specific
trinsic component. Hence, in the case of step-like reqadati  system, one could use numerical solutions to determine the
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Figure 5:Full adder with low Hill coefficients(a) The output abundance based on the input abundancefétiliccoefficients.
(b) We plotted the propagation time when switching betwgenl., H) to (H, L, H) for low Hill coefficient. The following
set of parameters have been used: 1 min=',1 =6, L =0.2 uM, H = 1.2 uM, K = 0.7 pM andd = 0.5.

optimal threshold position for any specific set of parame- graphically represents the trade-off between noise anel tim
ters. Also, one can notice that decreasing the Hill coeffi- based on the threshold position. We identified the optimal
cient increases the propagation time due to the fact that a trade-off curve determined by, < A < Ar. Any threshold
gene is not instantly turned on/off when an input species in this interval can optimize the system either in speed or in
crosses over/under the threshold (compare Fig. 3(b) and Fig accuracy, but never in both. However, for threshold posgtio
5(b)). Increasing the Hill coefficient asymptotically rets outside this interval the system display sub-optimal trafie

the propagation time to the one of the step-like regulation curves; forA < X, or A > Az both the propagation time
function and, thus, the optimal threshold asymptotically a  and the noise are worst compared to the ones in the optimal
proaches the midpoink; = 0.5 (data not shown). trade-off curve.

Next, we investigated the accuracy of the full-adder. The
output sum for the inputH, L, L) produces the highest Discussion
noise levels independent of the threshold position. Camsid
ing this case we determined the dependence of noise on the
threshold position. The mathematical formula of the noise
is too complicated to give any information about the sys-
tem, but we can use it to generate numerical solutions. Fig.
6(a) shows that there is an optimal position of the thresh-
old in terms of noise which differs from the optimal position
in terms of speed),, # Ar. However, around the optimal

In this contribution, we presented a general method for con-
structing arbitrarily large logical systems based on hjinar
genes. For exemplification purpose, we designed a full-
adder system formed of five genes. The approach modelled
logic gates constructed using two cis-regulatory trapscri
tion control regions. This type of logic gates has been al-
ready synthetically engineered by synthetic biologistsdG
o ) . et al., 2002; Kramer et al., 2004; Yokobayashi et al., 2002;
thresh_old_ p05|t|0n n terms of noisa,) the noise does not Cox Il et al., 2007; Anderson et al., 2007; Sayut et al.,
vary S|gn|f|cantI¥ (see Fig. 6(a)?. - 2009). We propose the tuning of the synthesis/decay rates
The system displays two optimal threshold positions, one i such a way that will permit interconnectivity of differen
for speed §7) and one for noiseX;). If these two positions  gates/genes. This tuning represents basic requiremeat for
coincide v = A,) then the system has on optimal set of grrect functioning of the logic system.
parameters and the engineer needs to set up the threshold to Recently we showed that leak free systems are optimal

this position.. . _ ~interms of speed and noise (Zabet and Chu, 2010). How-
However, it is most likely, that these two threshold posi- ever, Eq. (10) and Eq. (11) indicate that basal vanishing

tions will differ, as it is the case with our full-adder. Inish leak rates are very difficult to obtain. This suggests thak le

case, there is an optimal trade-off curve when the threshold free systems, although optimal in speed and noise are not al-

resides between these two optimal positiois &nd),). In ways desirable, because they are likely to reduce the signal

addition any other trade-off curve is suboptimal comparing strength when thinking about interconnecting genes.

to this one. We also presented here an approach for selecting the set
In our example of the fulladdéx5 < A, < Ar. Fig. 6(b) of parameters which optimizes the system in terms of speed
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Figure 6:OptimumK for noise (a) The noise dependence on the threshold. The followinhgfggrameters have been used:
V=8x10"%, u=1min ", 1=6,L=02uM, H=12uM,K =0.7uM and) = 0.5. We assumed a Poisson noise
of the three input species.

and accuracy under constant metabolic cost. Increasing the can be achieved by considering logic gates built from more
Hill coefficient will optimize both the speed and the accu- than one genes that form a network motif. Nevertheless, the
racy, but this is not usually at the direct reach of synthetic details of this analysis need to be left for further research
biologists. However, the threshold can be altered by muta-
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