login
A002386
Primes (lower end) with record gaps to the next consecutive prime: primes p(k) where p(k+1) - p(k) exceeds p(j+1) - p(j) for all j < k.
(Formerly M0858 N0327)
124
2, 3, 7, 23, 89, 113, 523, 887, 1129, 1327, 9551, 15683, 19609, 31397, 155921, 360653, 370261, 492113, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 436273009, 1294268491
OFFSET
1,1
COMMENTS
See the links by Jens Kruse Andersen et al. for very large gaps.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 133.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.1, Table 1.
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 14.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Brian Kehrig, Table of n, a(n) for n = 1..83 (first 75 terms from M. F. Hasler and N. J. A. Sloane, terms n = 76..77 added by Charles R Greathouse IV)
Jens Kruse Andersen and Norman Luhn, Record Prime Gaps
Alexei Kourbatov, Tables of record gaps between prime constellations, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
Thomas R. Nicely, New maximal prime gaps and first occurrences, Math. Comput. 68,227 (1999) 1311-1315.
Tomás Oliveira e Silva, Gaps between consecutive primes
D. Shanks, On maximal gaps between successive primes, Math. Comp., 18 (1964), 646-651.
Eric Weisstein's World of Mathematics, Prime Gaps
Wikipedia, Prime gap
Robert G. Wilson v, Notes (no date)
J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.
FORMULA
a(n) = A000101(n) - A005250(n) = A008950(n-1) - 1. - M. F. Hasler, Dec 13 2007
A000720(a(n)) = A005669(n).
a(n) = A000040(A005669(n)). - M. F. Hasler, Apr 26 2014
MATHEMATICA
s = {2}; gm = 1; Do[p = Prime[n]; g = Prime[n + 1] - p; If[g > gm, Print[p]; AppendTo[s, p]; gm = g], {n, 2, 1000000}]; s (* Jean-François Alcover, Mar 31 2011 *)
Module[{nn=10^7, pr, df}, pr=Prime[Range[nn]]; df=Differences[pr]; DeleteDuplicates[ Thread[ {Most[ pr], df}], GreaterEqual[#1[[2]], #2[[2]]]&]][[All, 1]] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Sep 24 2022 *)
PROG
(PARI) a(n)=local(p, g); if(n<2, 2*(n>0), p=a(n-1); g=nextprime(p+1)-p; while(p=nextprime(p+1), if(nextprime(p+1)-p>g, break)); p) /* Michael Somos, Feb 07 2004 */
(PARI) p=q=2; g=0; until( g<(q=nextprime(1+p=q))-p && print1(q-g=q-p, ", "), ) \\ M. F. Hasler, Dec 13 2007
CROSSREFS
Cf. A000040, A001223, A000101 (upper ends), A005250 (record gaps), A000230, A111870, A111943.
See also A205827(n) = A000040(A214935(n)), A182514(n) = A000040(A241540(n)).
Sequence in context: A359292 A163834 A335366 * A000230 A256454 A133429
KEYWORD
nonn,nice,changed
EXTENSIONS
Definition clarified by Harvey P. Dale, Sep 24 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy