login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A249911
60-gonal (hexacontagonal) numbers: a(n) = n(29n - 28).
1
0, 1, 60, 177, 352, 585, 876, 1225, 1632, 2097, 2620, 3201, 3840, 4537, 5292, 6105, 6976, 7905, 8892, 9937, 11040, 12201, 13420, 14697, 16032, 17425, 18876, 20385, 21952, 23577, 25260, 27001, 28800, 30657, 32572, 34545, 36576, 38665, 40812, 43017, 45280
OFFSET
0,3
FORMULA
G.f.: x^2*(1+57*x)/(1-x)^3. - Vincenzo Librandi, Nov 08 2014
a(n+1) = a(n) + 58*n + 1. - Jon Perry, Nov 09 2014
E.g.f.: exp(x)*(x + 29*x^2). - Nikolaos Pantelidis, Feb 12 2023
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+58 od: seq(a[n], n=0..46);
MATHEMATICA
Table[n (29 n - 28), {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 60}, 60]
CoefficientList[Series[x (1 + 57 x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
PolygonalNumber[60, Range[0, 40]] (* Harvey P. Dale, Aug 16 2024 *)
PROG
(Magma) [n*(29*n-28): n in [0..50]]; // Vincenzo Librandi, Nov 08 2014
(PARI) a(n)=n*(29*n-28) \\ Charles R Greathouse IV, Nov 08 2014
CROSSREFS
Sequence in context: A257146 A291549 A259946 * A292223 A112827 A181333
KEYWORD
nonn,easy
AUTHOR
K G Teal, Nov 08 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy