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Abstract

Rule learning is one of the most popular areas in machine learning research,

because the outcome of learning is to produce a set of rules, which not only

provides accurate predictions but also shows a transparent process of mapping

inputs to outputs. In general, rule learning approaches can be divided into

two main types, namely, ‘divide and conquer’ and ‘separate and conquer’. The

former type of rule learning is also known as Top-Down Induction of Decision

Trees, which means to learn a set of rules represented in the form of a decision

tree. This approach results in the production of a large number of complex rules

(usually due to the replicated sub-tree problem), which lowers the computational

efficiency in both the training and testing stages, and leads to the overfitting of

training data. Due to this problem, researchers have been gradually motivated

to develop ‘separate and conquer’ rule learning approaches, also known as cover-

ing approaches, by learning a set of rules on a sequential basis. In particular, a

rule is learned and the instances covered by this rule are deleted from the train-

ing set, such that the learning of the next rule is based on a smaller training set.

In this paper, we propose a new algorithm, GIBRG, which employs Gini-Index

to measure the quality of each rule being learned, in the context of ‘separate
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and conquer’ rule learning. Our experiments show that the proposed algorithm

outperforms both decision tree learning algorithms (C4.5, CART) and ‘separate

and conquer’ approaches (Prism). In addition, it also leads to a smaller number

of rules and rule terms, thus being more computationally efficient and less prone

to overfitting.

Keywords: Data Mining, Machine Learning, Decision Tree Learning, Rule

Learning, Classification, If-Then Rules

1. Introduction

Due to the vast and rapid increase in the size of data, machine learning has

been an increasingly important branch of artificial intelligence research. Rule

learning is one of the most popular types of machine learning approaches. In

general, rule learning can be achieved in two different approaches, namely, divide

and conquer, and separate and conquer. The former type of rule learning is also

known as Top-Down Induction of Decision Trees (TDIDT), which means that

the nature of learning is to generate a set of rules represented in the form of a

decision tree. Some popular algorithms include ID3 [32], C4.5 [34] and CART

[3]. Also, the latter type of rule learning is also referred to as the covering

approach, which means that the nature of the approach is to have a rule learned

with a subset of training instances covered by this rule and then delete the subset

of training instances prior to starting the learning of the next rule. Some popular

algorithms include Prism [4] and Information Entropy Based Rule Generation

(IEBRG) [20]. Due to the fact that rules learned by using the divide and

conquer approach are represented in the form of a decision tree and the separate

and conquer approach enables generating if-then rules directly from training

instances [26], we refer the divide and conquer approach to as ‘decision tree

learning’ and the separate and conquer approach to as rule learning (in a narrow

sense) in the rest of this paper.

The main difference between decision tree learning and rule learning is that

decision tree learning is aimed at attribute selection whereas rule learning is
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aimed at the selection of attribute-value pairs. For example, an attribute x has

two values 0 and 1, and x = 0 and x = 1 are two attribute-value pairs. In this

context, attribute selection means to select the attribute x with its two values

0 and 1 as two different judgement criteria, whereas the selection of attribute-

value pairs means to select either x = 0 or x = 1 as a judgement criteria. In

decision tree learning, attribute selection leads to a non-leaf node being given

and labeled the name of the selected attribute, and the node is also provided

with several branches, each of which is attached a value of the attribute. In

rule learning, the selection of an attribute-value pair leads to a rule term being

appended to the left hand side of the rule. More details on attribute selection

and the selection of attribute-value pairs are given in Section 2.

On the other hand, a decision tree learned through the divide and conquer

strategy can be directly converted into a set of rules, each of which is extracted

from a branch of the tree. However, rules learned directly from training instances

through the separate and conquer strategy may not necessarily fit in a tree

structure [4]. At each iteration of decision tree learning, attribute selection is

done through measuring the importance of an attribute towards increasing the

overall quality of a sub-tree being learned, i.e. increasing the overall quality of

some rules extracted from some branches of a decision tree. In other words,

the selected attribute would lead to the reduction of uncertainty for a tree to

determine the class to which an instance belongs. However, the amount of

uncertainty reduction is measured on average. For example, an attribute has a

number of values and some values of the selected attribute may have a stronger

ability to determine the class to which an instance belongs; other values of the

attribute, however, may have a weaker ability in the determination of the class.

The former case would lead to the reduction of uncertainty, while the latter case

could lead to the increase of uncertainty. In fact, an attribute may have some

of its values relevant to classifying instances, but the other values irrelevant [4],

especially when an attribute is highly imbalanced with some values of very low

frequency. In an extreme case, an attribute may have only one value relevant

to classifying instances. On the basis of the above argumentation, decision tree
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learning could result in some rules being of high quality but others being of low

quality. In real applications, an instance is typically classified through using a

single rule, and it is likely to give a wrong classification if the quality of this

rule is low.

Due to the above problem of decision tree learning, we focus on rule learning

methods in this paper through the separate and conquer strategy. The main

motivation is that the selection of attribute-value pairs at each iteration of

rule learning is done by measuring the importance of the attribute-value pairs

towards increasing the quality of each single rule. In other words, the selected

attribute-value pair would lead to the reduction of uncertainty for a single rule

to determine the class to which an instance belongs. The contributions of this

paper include the following:

• We propose a new algorithm, i.e. Gini-index based rule generation (GIBRG),

which uses Gini-Index in rule learning for the selection of attribute-value

pairs by measuring the amount of increase in terms of the quality of a

single rule being learned.

• We compare the accuracy of the GIBRG algorithm with existing popular

approaches. Experiments show that GIBRG leads to an improvement

in classification accuracy compared with popular decision tree learning

algorithms, such as C4.5 and CART, as well as rule-learning approaches

such as Prism.

• We analysed in depth the difference between decision tree learning and rule

learning in terms of the nature of the two types of learning approaches.

In particular, we proved through experimental studies that the nature of

rule learning can lead to the production of a fewer number of simpler

rules compared with decision tree learning. Moreover, GIBRG results in

a smaller number of simpler rules even when compared with Prism, a

popular rule learning algorithm.

The rest of this paper is organized as follows: Section 2 provides the theoret-
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ical preliminaries regarding the essence of the two types of learning approaches

and the heuristics used for decision tree learning and rule learning. In Section 3,

we review decision tree learning and rule learning, and analyse in depth why

the nature of the separate and conquer approaches addresses some of the weak-

nesses of the divide and conquer approaches. In Section 4, we describe in detail

the proposed GIBRG algorithm based on the Gini-index heuristic function in

the context of rule learning. In Section 5, we report an experimental study to

validate the Gini-index based rule generation (GIBRG) algorithm. Section 6

provides the summary of the contributions of this paper and further research

directions.

2. Theoretical Preliminaries

This section presents theoretical preliminaries related to rule based systems

in general, and to the difference between decision tree learning and rule learning

in terms of the nature of their learning strategies, in particular. Several heuristic

functions used in the learning process, such as entropy [37], information gain [15]

and Gini-index [11], are described in detail.

2.1. Rule Based Systems

A rule based system is a special type of expert systems, which consists of a

set of rules and can be learned through the divide and conquer strategy or the

separate and conquer strategy. The following rule set, which consists of four

rules, is provided below for illustrative purpose:

• Rule 1: if x1 = 0 and x2 = 0 then class = 0;

• Rule 2: if x1 = 0 and x2 = 1 then class = 0;

• Rule 3: if x1 = 1 and x2 = 0 then class = 0;

• Rule 4: if x1 = 1 and x2 = 1 then class = 1;
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In this example, each rule has its antecedent and consequent. In particular,

the left hand side (if part) of a rule is its antecedent, e.g. ‘x1 = 0 and x2 = 0’,

and the right hand side (then part) of a rule is its consequent, e.g. ‘class = 0’.

Also, each antecedent is a conjunction of rule terms, e.g. ‘x1 = 0’ and ‘x2 = 0’

are two rule terms that make up a rule antecedent. Moreover, the rules are used

to do classification so they are referred to as classification rules. In this context,

the consequent of a rule is a reflection of the class assigned to any instances that

are covered by this rule. For example, if an instance meets the two conditions

that ‘x1 = 0’ and ‘x2 = 0’, then the instance is assigned the class ‘0’. In this

case, we say that this rule (if x1 = 0 and x2 = 0 then class = 0;) is firing for

the instance.

2.2. Procedure of Decision Tree Learning

The learning of a decision tree involves a repeated process of attribute selec-

tion. In particular, an attribute is selected to label the root node of a decision

tree as a judgement criteria, and each branch starting from this node is attached

a value or an interval of the selected attribute, which represents a judgement

outcome. Each branch of a decision tree ends at an internal node leading to the

growth of the tree by learning a subtree, or at leaf node labelled with a class

leading to the termination of growing this branch. When a leaf node is given to

end a branch, it typically indicates that the rule extracted from the tree branch

has covered such a subset of training instances that belong to the same class and

that the stopping criteria is satisfied. In practice, a leaf node may be given due

to the case that the tree branch has reached its maximum length, i.e. the length

of a branch must not exceed the number of attributes given for the data set.

When a tree branch reaches its maximum length, all the attributes have been

examined for partitioning a training set towards having each subset of training

instances of the same class, but unfortunately the subset of training instances

covered by a tree branch still ends up with belonging to different classes. In

this case, the leaf node is labelled the majority class (the class to which the

majority of the covered training instances belong) and the stopping criteria is

6



Algorithm 1: Decision tree learning [13]

Input : A set of training instances, attribute Ai, where i is the index of

the attribute, value Vj , where j is the index of the value

Output: A decision tree T

1 if the stopping criterion is satisfied then

2 create a leaf that corresponds to all remaining training instances

3 end

4 else

5 choose the best (according to some heuristics) attribute Ai

6 label the current node with Ai

7 for each value vj of the attribute Ai do

8 label an outgoing edge with value vj

9 recursively build a subtree based on a subset of training instances

that meet the condition ‘Ai = vj ’

10 end

11 end

also treated as satisfied. The procedure of decision tree learning is described in

Algorithm 1.

In line 5 of Algorithm 1, ID3 and C4.5 are designed to select the best at-

tribute based on entropy as defined in Eq. 4, Section 2.4.1, or information gain

as defined in Eq. 5, Section 2.4.2. In other words, the attribute that contributes

to minimized entropy or maximized information gain would be selected at each

iteration. Also, CART, which stands for classification and regression tree, is

designed to select the best attribute based on Gini-index as defined in Eq. 9,

Section 2.4.3. In other words, the attribute that contributes to minimized Gini-

index would be selected at each iteration. More details on these popular decision

tree learning algorithms can be found in [11, 25]; details of the heuristic func-

tions mentioned above, i.e. entropy, information gain and Gini-index, are given

in Section 2.4.
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Algorithm 2: Rule learning [13]

Input : A set of training instances T

Output: An ordered set of rules RS

1 while T 6= φ do

2 generate a single rule R from the training set T

3 delete all instances covered by rule R

4 if the generated rule R is not good then

5 generate the majority rule and empty the training set T

6 end

7 end

2.3. Procedure of Rule Learning

The learning of if-then rules involves a repeated process of attribute-value

pairs. In particular, an attribute-value pair is selected to be appended to the left

hand side of a rule, i.e. a rule is specialised by adding rule terms (attribute-value

pairs) to its left hand side until the stopping criterion is satisfied. When the

learning of a rule is stopped (completed), the rule would have covered a subset

of training instances of the same class. Following the completion of learning

a single rule, all instances covered by this rule need to be deleted from the

training set prior to the start of learning the next rule. Learning of a rule set is

completed once all training instances have been covered by at least one of the

learned rules. The procedure of rule learning is described in Algorithm. 2.

In line 2 of Algorithm. 2, learning of a rule is done by heuristically selecting

an attribute-value pair on an iterative basis towards specialising the rule. Line

4 indicates that the learning of a rule is stopped in the case that the rule has

reached its maximum length, i.e. the length of a rule (the number of rule terms)

must not exceed the number of attributes. When a rule being learned reaches its

maximum length, all the attributes have been examined for specialising this rule

but the training instances covered by this rule still belong to different classes.

In this case, the majority class (the class to which the majority of the covered
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training instances belong) is assigned as the consequent of this rule. Thus, this

situation is treated in the same way as in decision tree learning.

Algorithm 3: Prism Algorithm [26]

Input : a training set T , a subset T ′ ⊆ T , an attribute set AS, an

instance t ∈ T , dimensionality d, an attribute Ax, an attribute

value vxm, class Ci, number of classes n, max-probability pmax

Output: a rule set RS, a result set of instances T” covered by a rule

R ∈ RS

1 Initialize: T ′ = T , T” = T ′, i = 0, pmax = 0;

2 for i < n do

3 while ∃t : t ∈ T ′ ∧ t ∈ Ci do

4 while ∃t : t ∈ T ′ ∧ t /∈ Ci do

5 x = 0; j = 0; pmax = 0; while x < d do

6 for each value vxm of Ax do

7 Calculate P (Ci|Ax = vxm);

8 if P (Ci|Ax = vxm) > pmax then

9 pmax = P (Ci|Ax = vxm); j = x; k = m;

10 end

11 end

12 x+ +;

13 end

14 assign Aj = vjk to R as a rule term; AS= AS - {Aj}; d= d− 1;

15 ∀t : T” = T”− {t}, if t ∈ T ′ and t does not comprise Aj = vjk;

16 end

17 RS= RS ∪ {R}; T ′= T ′ - T”;

18 end

19 T ′ = T ; i+ +;

20 end

Regarding heuristic selection of attribute-value pairs, the Prism algorithm
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is designed to select an attribute-value pair iteratively based on the conditional

probability of a class given an attribute-value pair. In particular, the attribute-

value pair, which contributes to maximizing the confidence of the rule being

learned, would be selected as a rule term to be appended to the left hand side

of this rule. The whole procedure of this algorithm is described in Algorithm. 3.

We use an example to illustrate the process of rule learning through the

Prism algorithm. In particular, the Weather data set1 is chosen for the illustra-

tive purpose – see Table 1.

As indicated in line 2 of Algorithm 3, a target class needs to selected for

each rule to be learned. The Weather data set involves only two classes: ‘Yes’

Table 1: Weather Dataset

Outlook Temperature Humidity Windy Play?

sunny hot high false No

sunny hot high true No

overcast hot high false Yes

rain mild high false Yes

rain cool normal false Yes

rain cool normal true No

overcast cool normal true Yes

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

overcast mild high true Yes

overcast hot normal false Yes

rain mild high true No

1http://storm.cis.fordham.edu/~gweiss/data-mining/weka-data/weather.nominal.

arff
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and ‘No’, so the Prism algorithm needs to learn a set of rules for each of the

two classes.

According to Table 1, we can get a frequency table for each attribute, i.e.

we have four frequency tables for the four attributes: Outlook (Table 2), Tem-

perature (Table 3), Humidity (Table 4) and Windy (Table 5).

Table 2: Frequency Table for Outlook

Class label Outlook= sunny Outlook= overcast Outlook= rain

Yes 2 4 3

No 3 0 2

Total 5 4 5

Table 3: Frequency Table for Temperature

Class label Temperature= hot Temperature= mild Temperature= cool

Yes 2 4 3

No 2 2 1

Total 4 6 4

Table 4: Frequency Table for Humidity

Class label Humidity= high Humidity= normal

Yes 3 6

No 4 1

Total 7 7

Table 5: Frequency Table for Windy

Class label Windy= true Windy= false

Yes 3 6

No 3 2

Total 6 8

Based on the frequency tables, the conditional probabilities for each attribute-
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value pair of each attribute can be calculated. We display these here for ease of

explanation – in the normal course of the algorithm the probabilities would be

calculated when needed, not in advance.

According to Table 2, we can derive the conditional probability for each of

the three values of attribute ‘Outlook’, towards each of the two classes.

P (Class = Y es|Outlook = sunny) = 2
5

P (Class = Y es|Outlook = overcast) = 4
4 = 1

P (Class = Y es|Outlook = rain) = 3
5

P (Class = No|Outlook = sunny) = 3
5

P (Class = No|Outlook = overcast) = 0
4 = 0

P (Class = No|Outlook = rain) = 2
5

According to Table 3, we can derive the conditional probability for each of

the three values of attribute ‘Temperature’, towards each of the two classes.

P (Class = Y es|Temperature = hot) = 1
2

P (Class = Y es|Temperature = mild) = 2
3

P (Class = Y es|Temperature = cool) = 3
4

P (Class = No|Temperature = hot) = 1
2

P (Class = No|Temperature = mild) = 1
3

P (Class = No|Temperature = cool) = 1
4

According to Table 4, we can derive the conditional probability for each of

the two values of attribute ‘Humidity’, towards each of the two classes.

P (Class = Y es|Humidity = high) = 3
7

P (Class = Y es|Humidity = normal) = 6
7

P (Class = No|Humidity = high) = 4
7

P (Class = No|Humidity = normal) = 1
7

According to Table 5, we can derive the conditional probability for each of

the two values of attribute ‘Windy’, towards each of the two classes.

P (Class = Y es|Windy = true) = 1
2

P (Class = Y es|Windy = false) = 3
4
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P (Class = No|Windy = true) = 1
2

P (Class = No|Windy = false) = 1
4

When the target class is ‘Yes’, the first attribute, i.e. Outlook, is selected

(line 6 in Algorithm 3) and the attribute-value pair (Outlook = sunny or

Outlook = overcast or Outlook = rain) with the maximum conditional prob-

ability is chosen (line 13 in Algorithm 3). Of the three attribute-value pairs,

Outlook = overcast has the maximum conditional probability, i.e. P (Class =

Y es|Outlook = overcast) = 1. Since the maximum probability is reached, i.e. 1,

the learning of the first rule is complete and the first rule learned is expressed as:

if Outlook = overcast then class = yes. Following the completion of learning

the first rule, all four instances with the attribute-value pair Outlook = overcast

are deleted from the training set, and the learning of the second rule is started

on the reduced training set.

If the first target class is ‘No’, the attribute-value pair with the maxi-

mum conditional probability is P (Class = No|Outlook = sunny) = 3
5 , so

the attribute-value pair ‘Outlook= sunny’ is appended to the left hand side of

the first rule being learned. Since the P (Class = No|Outlook = sunny) = 3
5 ,

the rule confidence has not been 1 yet and thus the learning of the first rule

needs to continue. In this context, we need to filter all those training instances

that do not meet the condition ‘Outlook= sunny’ and the reduced the training

set is shown in Table 6.

Table 6: Weather data subset comprising ‘Outlook= sunny’

Outlook Temperature Humidity Windy Play?

sunny hot high false No

sunny hot high true No

sunny mild high false No

sunny cool normal false Yes

sunny mild normal true Yes

On the basis of the reduced training set shown in Table 6, we need to repeat
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Table 7: Second Frequency values for Temperature, Humidity and Windy

Temperature Humidity Windy

Class label hot mild cool high normal true false

Yes 0 1 1 0 2 1 1

No 2 1 0 3 0 1 2

Total 2 2 1 3 2 2 3

the same procedure for getting a frequency table for each attribute. Since the

attribute-value pair ‘Outlook= sunny’ has been selected and appended to the

left hand side of the first rule being learned, the selection of attribute-value

pairs is only applied to the other three attributes (Temperature, Humidity and

Windy) until the completion of learning the first rule. In other words, the same

attribute can not be selected twice towards specializing a rule by appending an

attribute-value pair to the left hand side of the rule.

According to Table 6, we can get the frequency for the three attributes as

shown in Table 7.

According to Table 7, we can derive the conditional probability for each of

the three values of attribute ‘Temperature’, towards each of the two classes.

P (Class = Y es|Temperature = hot) = 0
2 = 0

P (Class = Y es|Temperature = mild) = 1
2

P (Class = Y es|Temperature = cool) = 1
1

P (Class = No|Temperature = hot) = 2
2 = 1

P (Class = No|Temperature = mild) = 1
2

P (Class = No|Temperature = cool) = 0
1

According to Table 7, we can derive the conditional probability for each of

the two values of attribute ‘Humidity’, towards each of the two classes.

P (Class = Y es|Humidity = high) = 0
3 = 0
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P (Class = Y es|Humidity = normal) = 2
2 = 1

P (Class = No|Humidity = high) = 3
3 = 1

P (Class = No|Humidity = normal) = 0
2 = 0

According to Table 7, we can derive the conditional probability for each of

the two values of attribute ‘Windy’, towards each of the two classes.

P (Class = Y es|Windy = true) = 1
2

P (Class = Y es|Windy = false) = 1
3

P (Class = No|Windy = true) = 1
2

P (Class = No|Windy = false) = 2
3

According to the above derivation regarding the conditional probability

for each of the attribute-value pairs, the ones with the maximum includes

Temperature = hot, Temperature = cool, Humidity = high and Humidity =

normal, since the conditional probability for each of the attribute-value pairs is

1. However, only one of the attribute-value pairs can be selected at one iteration

and the attribute-value pair ‘Humidity= high’ has the highest frequency (3), so

‘Humidity= high’ is appended to the left hand side of the current rule being

learned. The reason why the attribute-value pair with the highest frequency is

selected is due to the case that the support of the rule being learned can be

increased while more instances are covered by this rule [38]. So far, the learning

of the first rule (with the target class ’No’) is complete and the rule is expressed

as: if Outlook = sunny and Humidity = high then class = No. All the three

instances which comprise both Outlook = sunny and Humidity = high, are

deleted from the training set, such that the learning of the second rule (with

the target class ’No’) is done on the basis of the reduced training set.

2.4. Heuristic Functions

The heuristics, which are popularly used in decision tree learning and rule

learning, are presented in this section for explaining in more detail the essence
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of decision tree learning and rule learning.

2.4.1. Entropy

Entropy is a measure of uncertainty, which is typically denoted as S is defined

in Eq. 1:

S = −
n∑

i=0

pi log2 pi (1)

where p is the probability that an event occurs and i is the index of the event.

In the context of classification, entropy represented in Eq. 1 can be used to

show the initial uncertainty regarding the probability distribution among differ-

ent classes. For example, in the context of binary classification, if the frequency

distribution between two classes is 50/50, then the entropy is maximal, which

means the uncertainty has been maximized. Also, if the distribution between

two classes is 0/100, then the entropy is 0, which means that there is no uncer-

tainty. We refer to it as initial entropy IS, which is defined in Eq. 2

IS = −
c∑

i=0

p(classi) log2 p(classi) (2)

where classi represents a class label and i is the index of the class label.

However, in the process of learning a classifier, the measure of uncertainty

needs to be done by checking the conditional entropy after given a particular

attribute-value pair or checking the average entropy after given a particular

attribute. The conditional entropy CS of classifying an instance is defined in

Eq. 3:

CS(Ax = vj) = −
c∑

i=0

p(classi|Ax = vj) log2 p(classi|Ax = vj) (3)

where Ax represents an attribute; x is the index of the attribute, vj is a value of

the attribute Ax and j is the index of the attribute value. Also, p(classi|Ax =

vj) is read as the conditional probability of classifying an instance to classi

given that Ax = vj .
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Based on the conditional probability defined in Eq. 3, the average entropy

AS of classifying an instance given attribute Ax is defined in Eq.4:

AS(Ax) =

n∑
j=0

w(Ax = vj)CS(Ax = vj) (4)

where w(Ax = vj) is the probability that the value of attribute Ax is vj .

2.4.2. Information Gain

Information gain measures the amount of information gained from training

data after an attribute is selected leading to the partition of the training data.

Based on the average entropy defined in Eq.4, we can calculate the information

gain as defined in Eq. 5:

Gain(Ax) = IS −AS(Ax) (5)

According to Eq. 5, information gain reflects the amount of the reduction of

entropy following the partition of a training set on an attribute, i.e. the higher

information gain the larger the amount of reduction of uncertainty.

2.4.3. Gini-Index

Gini-index is a measure of purity, which is defined in Eq. 6:

Gini = 1−
n∑

i=0

p2i (6)

In the context of classification, if a data set contains all instances that belong

to the same class, then the data set would be considered of maximum purity.

We refer to the measure of purity regarding a data set as initial Gini-index IG,

which is defined in Eq. 7:

IG = 1−
c∑

i=0

p(classi)
2 (7)

However, in the process of learning a classifier, the measure of purity needs to

be done by checking the conditional Gini-index after given a particular attribute-
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value pair or the average Gini-index after given a particular attribute. The

conditional Gini-index CG is defined in Eq. 8:

CG(Ax = vj) = 1−
c∑

i=0

p(classi|Ax = vj)
2 (8)

Based on the defined in Eq. 8, the average Gini-index AG is defined in Eq. 9:

AG(Ax) =

n∑
j=0

w(Ax = vj)CG(Ax = vj) (9)

In the CART algorithm, the average Gini-index AG is calculated by turning

a multi-valued attribute a binary attribute. In this context, Eq. 9 needs to be

modified to Eq. 10:

AG′(Ax) = w(Ax = vj)CG(Ax = vj) + w(Ax 6= vj)CG(Ax 6= vj) (10)

As mentioned above, each multi-valued attribute needs to be transformed

into a binary attribute. Since a multi-valued attribute has n values, the bina-

rization of the attribute involves n ways. In this context, the way of binarising

a multi-valued attribute that leads to the minimum average Gini-index will be

used to partition the training set in the CART algorithm. For example, the

Temperature attribute of the Weather data set has three values: ‘hot’, ‘mild’

and ‘cool’. Therefore, the attribute can be binarised in three ways. The first

way is to have the two values ‘hot’ and ‘not hot’, while the value ‘not hot’ is

the combination of the other two values ‘mild’ and ‘cool’. Similarly, the second

way is to have the values ‘mild’ and ‘not mild’, and the third way is to have the

values ‘cool’ and ‘not cool’.

According to Eq. 8, the conditional Gini-Index for the above six values is

calculated as follows:

CG(Temperature = hot) = 1− [( 2
4 )2 + ( 2

4 )2] = 1
2

CG(Temperature = not hot) = 1− [( 7
10 )2 + ( 3

10 )2] = 29
50

CG(Temperature = mild) = 1− [( 3
4 )2 + ( 1

4 )2] = 3
8
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CG(Temperature = not mild) = 1− [( 5
8 )2 + ( 3

8 )2] = 17
32

CG(Temperature = cool) = 1− [( 3
4 )2 + ( 1

4 )2] = 3
8

CG(Temperature = not cool) = 1− [( 3
5 )2 + ( 2

5 )2] = 13
25

According to Eq. 10, the average Gini-Index for the three ways of attribute

binarisation is calculated as follows:

AG′(Hot) = 2
7×CG(Temperature = hot)+ 5

7×CG(Temperature = not hot) =

39
70 = 0.56

AG′(Mild) = 3
7×CG(Temperature = mild)+ 4

7×CG(Temperature = not mild) =

13
28 = 0.46

AG′(Cool) = 2
7×CG(Temperature = cool)+ 5

7×CG(Temperature = not cool) =

7
65 + 3

8 = 0.48

AG′(Mild) is the minimum over the three ways of attribute binarisation,

which indicates that the second way of binarising the temperature attribute (by

having the two values ‘mild’ and ‘not mild’) is used to partition the training

set into two subsets that comprise Temperature = mild and Temperature =

notmild, respectively. More details on attribute selection in the CART algo-

rithm can be found in [11].

3. Related Work

Decision tree learning has become a powerful approach of machine learning

due to the fact that the models learned with this approach are represented in a

white box manner. In other words, decision trees are transparent so people can

clearly identify how a decision is reached through mapping inputs to outputs

[22, 23]. In practice, decision tree learning has been involved in broad areas of

application, such as text classification [12], biomedicine [39], intelligent tutoring

systems [5] and transient stability assessment [36].

In terms of algorithmic development, decision tree learning has become com-
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petitive since Quinlan developed the ID3 algorithm [32] with very good perfor-

mance especially on the chess end games data set [31]. However, the ID3 algo-

rithm is unable to handle continuous attributes directly so Quinlan developed

the C4.5 algorithm as an extension of ID3 for effectively dealing with continu-

ous attributes and replacing missing values [34, 35]. Further to C4.5, Quinlan

developed a commercial version of decision tree learning algorithm referred to

as C5.0 [14].

Decision tree learning methods were extended through the use of pruning

methods and a comparison of different pruning methods was made in [8]. In

addition, decision tree learning methods have also been used in the context of

ensemble learning [28] for increasing the overall accuracy of classification. Two

popular approaches of ensemble learning include Bagging [2] and Boosting [9].

Over the past decade, decision tree learning methods have also been extended

in other different ways. One way is by adding cost functions into heuristics for

attribute selection towards minimizing the risk of incorrect classification. Some

more recent work can be found in [40, 30, 18]. Another popular way of dealing

with continuous attributes is through fuzzification towards the generation of

fuzzy decision trees. Some more recent work can be found in [17, 1, 16].

The nature of decision tree learning is to generate a set of non-overlapping

rules, which constrains that these rules must have at least one common attribute

in order to make the rules fit in a tree structure. Due to the above constraint,

decision tree learning often results in complex trees being generated and diffi-

culty for people to understand the information extracted from the trees [10]. In

order to simplify decision trees, Quinlan investigated in [33] the use of pruning

methods, such as reduced error pruning [7]. However, even if decision trees are

simplified by using pruning methods, it is still difficult to avoid the case that

decision trees are too cumbersome, complex and inscrutable to provide insight

into a domain for people to use as knowledge [34, 10]. Also, complex decision

trees are more likely to overfit training data than simple trees [10]. On the other

hand, Cendrowska pointed out in [4] that the nature of decision tree learning

may result in the replicated subtree problem due to the constraint that rules
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must have at least one common attribute in order to represent these rules in a

tree structure, i.e. rules that have no common attribute can not fit in a tree

structure. It is also mentioned in [4] that the replicated subtree problem may

result in the need to examine the whole tree for extracting rules about a single

classification in the worst case, which makes it difficult to manipulate for expert

systems.

In order to overcome the replicated subtree problem, the Prism algorithm

has been developed in [4], which has led to the motivation for developing rule

learning methods through the separate and conquer strategy. A comprehensive

review of rule learning methods can be found in [10]. As shown in Algorithm 3,

the nature of the Prism algorithm is to select a target class, and then to learn a

rule by selecting attribute-value pairs iteratively for specialising this rule, until

all the instances covered by this rule belong to the target class. However, it is

generally unknown whether the selected target class can lead to the generation

of a high quality rule. In fact, the separate and conquer strategy involves the

learning of rules on a sequential basis, i.e. the learning of a rule must not start

until the learning of the last rule is completed. In this context, the outcome of

learning one rule impacts greatly on the outcome of learning the next rule. In

the case of the Prism algorithm, the selected target class may not be suitable for

learning a high quality rule, and even leads to the generation of an inconsistent

rule, which means that the instances covered by this rule belong to different

classes [20, 26]. Also, the learning of the subsequent rules would be impacted

greatly, due to the unexpected outcome that the last rule learned is inconsistent.

The Prism algorithm introduced in [4] is designed to simply keep selecting the

same class as the target class towards learning a set of rules, all of which are

assigned this class as the rule consequent, and then repeat the same procedure

by having another class as the target class for learning a different set of rules.

The above description indicates that the Prism algorithm has a bias on the

selection of the target class for a rule to be learned, i.e. ineffective selection of

the target class would result in a low quality rule being learned.

In the next section, we will address the above issues of decision tree learning
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algorithms and the Prism algorithm by proposing a new algorithm based on

Gini-index through the separate and conquer strategy. In particular, we will

employ the conditional Gini-index defined in Eq. 8 for the selection of attribute-

value pairs to overcome the limitations of attribute selection in decision tree

learning algorithms. Also, the proposed rule learning algorithm, which is based

on Gini-index, is aimed to overcome the limitations of the Prism algorithm in

terms of the bias on the target class selection.

4. Gini-Index Based Rule Generation

In this section, we describe the Gini-Index Based Rule Generation (GIBRG)

algorithm and illustrate its procedure on the weather dataset introduces in Sec-

tion 2. We also argue why Gini-index is more suitable for rule learning than

decision tree learning, through analysing the main difference between these two

types of approaches in terms of their nature of learning.

4.1. Key Features

The GIBRG algorithm is designed to select an attribute-value pair iteratively

based on the conditional Gini-index defined in Eq. 8. In particular, the attribute-

value pair, which contributes to maximizing the ability of the rule being learned

to discriminate between classes, would be selected. In other words, when the

conditional Gini-index given an attribute-value pair is zero, the rule can totally

discriminate one class from all the other classes and all the instances covered by

this rule belong to the class assigned to the rule. The procedure of the GIBRG

algorithm is described in Algorithm 4.

To illustrate the GIBRG algorithm we use the weather dataset displayed in

Table 1, and the frequency Tables 2, 3, 4 and 5 from Section 2.

According to Table 2, we can derive the Gini-index for each of the three

values of attribute ‘Outlook’ according to Eq. 8:

CG(Outlook = sunny) = 1− [( 2
5 )2 + ( 3

5 )2] = 12
25

CG(Outlook = overcast) = 1− [( 4
4 )2 + 0] = 0
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Algorithm 4: GIBRG Algorithm

Input : a training set T , a subset T ′ ⊆ T , an attribute set AS, an

instance t ∈ T , dimensionality d, an attribute Ax, an attribute

value vxn, Gini-index G, class Ci

Output: a rule set RS, a result set of instances T” covered by a rule

R ∈ RS

1 Initialize: T ′ = T , T” = T , G = 1;

2 while T ′ 6= φ do

3 while G 6= 0 do

4 x = 0; j = 0; G = 1; while x < d do

5 k = 0;

6 for each value vxn of Ax do

7 Calculate G(Ax = vxn)

8 if G(Ax = vxn) < G) then

9 G = G(Ax = vxn); j = x; k = n;

10 end

11 end

12 x+ +;

13 end

14 assign Aj = vjk to R as a rule term, when G(Aj = vjk) is

minimal; AS= AS - {Aj};

15 d= d− 1; ∀t : T” = T”− {t}, if t ∈ T” and t comprise Aj = vjk;

16 end

17 RS= RS ∪ {R}; T ′= T ′ - T”;

18 end

CG(Outlook = rain) = 1− [( 3
5 )2 + ( 2

5 )2] = 12
25

According to Table 3, we can derive the Gini-index for each of the three

values of attribute ‘Temperature’ according to Eq. 8:
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CG(Temperature = hot) = 1− [( 2
4 )2 + ( 2

4 )2] = 1
2

CG(Temperature = mild) = 1− [( 4
6 )2 + ( 2

6 )2] = 4
9

CG(Temperature = cool) = 1− [( 3
4 )2 + ( 1

4 )2] = 3
8

According to Table 4, we can derive the Gini-index for each of the two values

of attribute ‘Humidity’ according to Eq. 8:

CG(Humidity = high) = 1− [( 3
7 )2 + ( 4

7 )2] = 24
49

CG(Humidity = normal) = 1− [( 6
7 )2 + ( 1

7 )2] = 12
49

According to Table 5, we can derive the Gini-index for each of the two values

of attribute ‘Humidity’ according to Eq. 8:

CG(Windy = true) = 1− [( 3
6 )2 + ( 3

6 )2] = 1
2

CG(Windy = false) = 1− [( 6
8 )2 + ( 2

8 )2] = 3
8

According to the above derivation regarding the Gini-index for each of the

attribute-value pairs, the one with the minimum is Outlook = overcast and

the attribute-value pair is appended to the left hand side of the first rule being

learned. Since the Gini-index for the attribute-value pair Outlook = overcast

is 0, the learning of the first rule is complete. The first rule learned is expressed

as: if Outlook = overcast then class = yes, as all the four instances, which

meet the condition Outlook = overcast, are assigned the class ‘yes’ regarding

whether to play or not.

Following the completion of learning the first rule, all the four instances,

which comprise the attribute-value pair Outlook = overcast, need to be deleted

from the training set and then the second rule will be learned on the basis of the

rest of the training instances. In particular, after the four instances are deleted

from the training set, the reduced training set is shown in Table 8.

In order to learn the second rule, we need to create the following frequency
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Table 8: Weather data subset comprising ‘Outlook 6= overcast’

Outlook Temperature Humidity Windy Play?

sunny hot high false No

sunny hot high true No

rain mild high false Yes

rain cool normal false Yes

rain cool normal true No

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

rain mild high true No

tables for all of the four attributes:

Table 9: Frequency Table for Outlook in iteration 2 by GIBRG

Class label Outlook= sunny Outlook= overcast Outlook= rain

Yes 2 0 3

No 3 0 2

Total 5 0 5

Table 10: Frequency Table for Temperature in iteration 2 by GIBRG

Class label Temperature= hot Temperature= mild Temperature= cool

Yes 0 3 2

No 2 2 1

Total 2 5 3
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Table 11: Frequency Table for Humidity in iteration 2 by GIBRG

Class label Humidity= high Humidity= normal

Yes 1 4

No 4 1

Total 5 5

Table 12: Frequency Table for Windy in iteration 2 by GIBRG

Class label Windy= true Windy= false

Yes 1 4

No 3 2

Total 4 6

According to Table 9, we can derive the Gini-index for each of the three

values of attribute ‘Outlook’ according to Eq. 8:

CG(Outlook = sunny) = 1− [( 2
5 )2 + ( 3

5 )2] = 12
25

CG(Outlook = overcast) = N/A

CG(Outlook = rain) = 1− [( 3
5 )2 + ( 2

5 )2] = 12
25

According to Table 10, we can derive the Gini-index for each of the three

values of attribute ‘Temperature’ according to Eq. 8:

CG(Temperature = hot) = 1− [( 0
2 )2 + ( 2

2 )2] = 0

CG(Temperature = mild) = 1− [( 3
5 )2 + ( 2

5 )2] = 12
25

CG(Temperature = cool) = 1− [( 2
3 )2 + ( 1

3 )2] = 4
9

According to Table 11, we can derive the Gini-index for each of the two

values of attribute ‘Humidity’ according to Eq. 8:

CG(Humidity = high) = 1− [( 1
5 )2 + ( 4

5 )2] = 8
25
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CG(Humidity = normal) = 1− [( 4
5 )2 + ( 1

5 )2] = 8
25

According to Table 12, we can derive the Gini-index for each of the two

values of attribute ‘Humidity’ according to Eq. 8:

CG(Windy = true) = 1− [( 1
4 )2 + ( 3

4 )2] = 3
8

CG(Windy = false) = 1− [( 4
6 )2 + ( 2

6 )2] = 4
9

According to the above derivation regarding the Gini-index for each of the

attribute-value pairs, the one with the minimum is Temperature = hot and

the attribute-value pair is appended to the left hand side of the first rule being

learned. Since the Gini-index for the attribute-value pair Temperature = hot

is 0, the learning of the second rule is complete. The second rule learned is

expressed as: if Temperature = hot then class = No.

Following the completion of learning the second rule, the two instances which

comprise Temperature = hot, need to be deleted from the training set and then

the third rule will be learned on the basis of the rest of the training instances,

and so on until all the training instances have been covered by at least one of

the learned rules.

4.2. Justification

As mentioned in Section 1, the nature of rule learning is at selection of

attribute-value pairs towards specialising a rule, whereas the nature of decision

tree learning is at attribute selection. In other words, decision tree learning

is attribute oriented whereas rule learning is attribute-value oriented. Due to

their difference in terms of the nature of learning, rule learning is considered to

be more suitable than decision tree learning in some specific cases. In partic-

ular, decision tree learning involves evaluation of the ability of each attribute

to determine the value of the class attribute. However, as argued in [4], an

attribute may be highly relevant to only one class but irrelevant to all the other

classes. Also, it is highly possible that only one value of an attribute is relevant
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to classifying instances to a particular class. The above two points have led to

the motivation of developing the Prism algorithm and the recommendation of

taking advantage of the separate and conquer strategy for rule learning.

As argued in Section 1, decision tree learning involves measuring the impor-

tance of an attribute towards increasing the overall quality of a sub-tree being

learned. As mentioned in Section 1, a decision tree can be converted into a set of

rules. In this context, decision tree learning can only lead to the production of

a set of rules of high quality on average, without the guarantee that each single

rule is of high quality. In other words, the case that a set of rules is of high

quality on average does not mean that each single rule is of good quality. In con-

trast, rule learning involves measuring the importance of an attribute-value pair

towards increasing the quality of each single rule being learned. For example,

as introduced in Section 2, Gini-index can be used to measure the importance

of an attribute-value pair towards increasing the ability of a rule to discrimi-

nate between classes, i.e. the degree to which a rule is biased towards one class

and against the other classes. In the CART algorithm, the use of average Gini-

index defined in Eq. 10 is to measure the importance of an attribute towards

increasing the overall ability of a sub-tree being learned to discriminate between

classes. However, as mentioned in Section 1, it is highly possible that only one

value of an attribute is of high importance towards classifying instances. In this

case, the learned decision tree may provide some rules (extracted from some tree

branches) highly capable of discriminating between classes, due to the inclusion

of the attribute-value pairs of high importance, but the tree may provide other

rules poorly capable of discriminating between classes, due to inclusion of the

attribute-value pairs of low importance. In real applications, it is critical in

rule based classification that each single rule is highly discriminative, since an

instance is typically classified by using a single rule. From this point of view,

it is more suitable to employ Gini-index in rule learning, which leads to the

motivation of proposing the GIBRG algorithm.

On the other hand, as mentioned in Section 1, the nature of decision tree

learning could result in the replicated sub-tree problem, which means that a set
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Figure 1: Cendrowska’s Replicated Subtree Problem [19]

of rules extracted from a decision tree contains a lot of redundant rule terms.

For example, as illustrated in Fig. 1, the decision tree contains 21 rules and

62 terms. However, if all the redundancy is removed from the decision tree

according to [4], the extracted rule set would just contain 2 rules and 2 terms

as follows:

• Rule 1: if a = 1 and b = 1 then class = 0;

• Rule 2: if c = 1 and d = 1 then class = 0;

Also, as reported in [24], through learning from the Contact Lenses Data

set [4], ID3 produces 3 rules and 5 rule terms as follows:

• Rule 1: if tearproductionrate = reduced then class = nolenses;

• Rule 2: if tearproductionrate = normal and Astigmatic = yes then

class = Hardlenses;

• Rule 3: if tearproductionrate = normal and Astigmatic = no then

class = Softlenses;

However, IEBRG produces 3 rules and 3 rule terms as follows:

• Rule 1: if tearproductionrate = reduced then class = nolenses;
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• Rule 2: if Astigmatic = yes then class = Hardlenses;

• Rule 3: if Astigmatic = no then class = Softlenses;

Through comparing the two rule sets produced by the two algorithms re-

spectively, it can be indicated explicitly that the nature of the ID3 algorithm

leads to a redundant term (tearproductionrate = normal) being produced,

which results in the production of a more complex model, in comparison with

IEBRG. In fact, the tearproductionrate attribute has only two values, so the

value of this attribute must be ‘normal’, if the first rule (iftearproductionrate =

reducedthenclass = nolenses) does not fire. In this case, there is no need to

examine the value of this attribute in the following rules (Rule 2 and Rule 3).

The above argumentation could indicate that the divide and conquer strategy

would usually lead to the production of a higher number of more complex rules

than the separate and conquer strategy. We will show experimental results in

Section 5.2 in terms of model complexity to support this argumentation.

As mentioned in Section 3, the Prism algorithm has a bias on the selection

of a target class for learning a rule that has the selected target class as the

consequent of this rule. The bias can lead to the generation of a low quality

rule, which also impacts negatively on the learning of all the subsequent rules.

In contrast, the GIBRG algorithm does not need to have a target class selected

for learning a rule, but it can generally lead to the outcome that the left hand

side of the rule being learned is eventually mapped to a single class, i.e. it is

an eventual outcome that all the training instances covered by the rule being

learned belong to one class only and the class is assigned to the right hand side

of the rule as the consequent.

In addition, as illustrated in Section 4.1, the Prism algorithm is aimed at

selecting each class in turn as the target class, towards learning a set of rules

of this class from the whole training set. This way of rule learning can lead to

an increase in the number of rules and terms, since the learning task could be

considered as the case that n (i.e. the number of classes) rule based classifiers are

learned from the same training set, in comparison with the GIBRG algorithm.
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Moreover, the nature of the Prism algorithm could also lead to the production

of more complex rule based classifiers than decision tree learning algorithms,

especially when the training set is larger and the number of classes is higher.

The above argumentation will be validated empirically through experimental

studies.

5. Experimental Study, Results and Discussion

In this section, we report an experimental study to validate the GIBRG

algorithm by comparing it with C4.5, CART and Prism in terms of classification

accuracy and number of rules and terms.

We choose to compare with the C4.5 algorithm as it is the most popular

one of the decision tree learning algorithms. The CART algorithm employs

Gini-index for attribute selection, so we choose to compare it with the GIBRG

algorithm in order to show that it is more suitable for Gini-index to be used

in rule learning than in decision tree learning. The Prism algorithm is the

representative of rule learning algorithms so we compare it with the GIBRG

algorithm in order to show the competitivity of the latter algorithm in the

context of separate and conquer rule learning.

In terms of classification accuracy, the experiments are conducted by parti-

tioning a data set into a training set and a test set in the ratio of 70:30. On

each data set, the experiment is repeated 100 times (in terms of data partition-

ing) and the average accuracy is taken for comparative validation. In terms

of number of rules and terms, each whole data set is used for learning a rule

based classifier towards counting rules and terms. The above procedures are

followed for 20 data sets from the UCI repository, which are used for testing the

performance of the chosen algorithms. The characteristics of the 20 data sets

are described in Table 13.

Furthermore, we report an extended study on rule pruning to show how

effectively overfitting can be avoided in the case of noisy data. In particular,

we conducted experiments using 3 out of the 20 UCI data sets shown in Ta-

31



Table 13: Data sets

Dataset Attribute Types #Attributes #Instances #Classes

anneal discrete, continuous 38 798 6

balance-scale discrete 4 625 3

breast-cancer discrete 9 286 2

breast-w continuous 10 699 2

credit-a discrete, continuous 15 690 2

credit-g discrete, continuous 20 1000 2

cylinder-bands discrete, continuous 40 540 2

dermatology discrete, continuous 35 366 6

diabetes discrete, continuous 20 768 2

hepatitis discrete, continuous 20 155 2

ionosphere continuous 34 351 2

iris continuous 4 150 3

kr-vs-kp discrete 36 3196 2

labor discrete, continuous 17 57 2

lymph discrete, continuous 19 148 4

mushroom discrete 22 8124 2

tae discrete, continuous 6 151 3

vote discrete 16 435 2

wine continuous 13 178 3

zoo discrete, continuous 18 101 7

ble 13, i.e. ‘breast-cancer’, ‘hepatitis’ and ‘vote’, as well as the ‘heart-stalog’ and

‘car’ data sets. The heart-stalog data set contains 13 (discrete or continuous)

attributes, 270 instances and 3 classes, whereas the car data set contains 6 dis-

crete attributes, 1728 instances and 4 classes. The experiments are conducted

in the same way as above, i.e. 70:30 data partitioning with 100 repetitions on

each data set.
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5.1. Accuracy comparison

The experimental results are presented in Table 14 in terms of the classi-

fication accuracy performed by the chosen algorithms mentioned above. The

accuracy results are also displayed in Figure 2 for easy visual comparison.

The GIBRG algorithm outperforms the other three algorithms, namely, C4.5,

CART and Prism, in 12 out of 20 cases. Also, there are three other cases

(i.e. on the three data sets ‘kr-vs-kp’, ‘mushroom’ and ‘vote’) that GIBRG per-

forms the same as C4.5 or CART. Regarding the performance on the two data

sets ’balance-scale’ and ‘dermatology’, the GIBRG algorithm just shows to be

marginally worse than C4.5, CART or Prism.

Figure 2: Accuracy comparison

To further investigate the performance of the GIBRG algorithm, we apply

the Wilcoxon sign rank test to investigate if the average performance of GIBRG

classification accuracy is higher than the average classification accuracy of C4.5,

CART and Prism, respectively. The Wilcoxon sign rank test is used, as it

33



Table 14: Classification Accuracy

Dataset C4.5 CART Prism GIBRG

anneal 98% 98% 98% 99%

balance-scale 78% 79% 83% 81%

breast-cancer 67% 66% 67% 66%

breast-w 94% 94% 93% 95%

credit-a 83% 83% 80% 72%

credit-g 68% 70% 74% 66%

cylinder-bands 58% 59% 69% 71%

dermatology 94% 94% 84% 92%

diabetes 72% 72% 70% 69%

hepatitis 76% 77% 76% 82%

ionosphere 89% 89% 90% 92%

iris 94% 94% 88% 96%

kr-vs-kp 99% 99% 98% 99%

labor 80% 82% 88% 90%

lymph 76% 77% 78% 80%

mushroom 100% 99% 98% 100%

tae 53% 52% 49% 60%

vote 95% 95% 93% 95%

wine 91% 90% 84% 96%

zoo 92% 26% 61% 93%

has been shown to be more appropriate than the use of the paired t-test as

documented in [6].

The Wilcoxon sign rank test [6] allows the comparison between 2 classifiers

across several datasets. The null hypothesis is that the performance of the two

classifiers is not significantly different. The differences in performance between

classifiers are calculated and ranked. Two sums of ranks are then calculated

– one for the positive differences and one for the negative differences. The
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smaller of the sums is compared with the critical value from the table of exact

critical values for the Wilcoxons test, for a particular significance level (e.g.

α < 0.05 or α < 0.01) and the number of datasets (N), which in our case is 20.

Table 15 displays details of the Wilcoxon’s test for each pair of classifiers in our

experiments; we used α < 0.05 (one-tailed test) and N = 20.

Table 15: Wilcoxon sign rank tests

Compared classifiers Smaller sum Critical value Null hypothesis accept/reject

GIBRG - C4.5 49.5 60 Reject

GIBRG - CART 47.5 60 Reject

GIBRG - Prism 38.5 60 Reject

The Wilcoxon rank test results indicate that the null hypothesis should be

rejected, meaning that the average GIBRG performance is higher than each of

the other three algorithms and that this difference is unlikely to occur by chance.

In other words, the GIBRG algorithm performs significantly better than C4.5,

CART and Prism algorithms in term of accuracy.

Through comparing the performance of GIBRG with Prism, the results in-

dicate that the bias resulting from the selection of a target class for a rule to be

learned by using Prism can result in the generation of a low quality rule. Also,

ineffective selection of target classes can also result in the learned rules being

inconsistent. Moreover, the above learning outcomes would also impact greatly

on the learning of any subsequent rules, as mentioned in Section 4.2. However,

the GIBRG algorithm does not have the bias on the selection of target classes

and outperforms the Prism algorithm in 16 out of 20 cases shown in Table 14.

Therefore, in the context of rule learning through the separate and conquer

strategy, it is more suitable to involve the selection of attribute-value pairs for

learning a rule without the need to ensure that the rule must be assigned a

particular class as the rule consequent.

The results shown in Table 14 and the Wilcoxon rank test support the ar-

gument that the Gini-index is more suitable for rule learning than decision tree
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learning. As mentioned in Section 4.2, Gini-index can be used to measure the

importance of an attribute-value pair towards increasing the discriminability

(the ability to discriminate between classes) of a rule being learned. The CART

algorithm employs Gini-index for measuring the average importance of the val-

ues of an attribute, towards increasing on average the discriminability of rules

extracted from different branches of a tree. This way of using Gini-index would

lead to the outcome that the learned decision tree provides some rules of higher

quality but the others of lower quality. However, as mentioned in Section 1, an

unseen instance is typically classified by using a single rule that fires. In this

context, if the rule used to classify an instance is of low quality, then it would

be very likely to give a wrong classification. Therefore, it is critical to ensure

that each single rule learned is of high quality, which indicates that the nature

of the GIBRG algorithm has led to a better way of using Gini-index than the

nature of the CART algorithm towards increasing the discriminability of each

single rule.

On the other hand, through comparing GIBRG with C4.5, the results indi-

cate that the nature of rule learning can lead to a more effective measure than

the nature of decision tree learning, towards increasing the quality of each single

rule for providing accurate classification of unseen instances. As mentioned in

Section 4.2, an attribute may not necessarily have all its values relevant to be

used for classifying instances. In other words, it is highly possible that only some

(but not all) values of an attribute can result in high discrimination between

different classes, especially when an attribute is highly imbalanced by means of

some values of this attribute of high frequency but the others of low frequency.

In this context, the nature of decision tree learning, which is aimed at the se-

lection of a whole attribute on a recursive basis, would result in a decision tree

having irrelevant branches due to the selection of irrelevant attribute values.

5.2. Rules and terms comparison

The above case of having irrelevant branches in a decision tree can also lead
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Figure 3: Rules and terms comparison

to the outcome that decision tree learning algorithms produce more complex

rule based classifiers than rule learning algorithms. For example, as mentioned

in Section 4.2, the contact lenses data set contains only 4 attributes and 24

instances. ID3 (a decision tree learning algorithm) produced 3 rules and 5 terms,

whereas IEBRG (a rule learning algorithm) produced 3 rules and 3 terms.

Table 16 displays the number of rules and terms for each of the 4 algorithms

on all 20 datasets. Figure 3 display graphs comparing GIBRG with C4.5, CART

and Prism, respectively, with regards to the number of rules and terms.

The results shown in Table 16 and Figure 3 indicate that the nature of

the GIBRG algorithm leads to the reduction of the complexity of rule based

classifiers in comparison with the other algorithms in most cases.
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Table 16: Number of rules and terms

Dataset C4.5 CART Prism GIBRG

#rules #terms #rules #terms #rules #terms #rules #terms

anneal 53 390 14 68 48 81 32 32

balance-scale 60 419 105 763 109 359 141 338

breast-cancer 152 645 35 257 110 329 107 256

breast-w 23 124 28 159 36 87 36 42

credit-a 101 546 51 342 148 392 202 217

credit-g 359 2262 96 863 310 882 308 386

cylinder-bands 430 432 7 21 310 312 152 152

dermatology 33 141 10 44 48 95 36 36

diabetes 22 120 80 604 223 680 243 263

hepatitis 16 81 25 142 30 51 29 29

ionosphere 18 121 14 63 39 92 16 16

iris 5 16 6 18 16 35 11 11

kr-vs-kp 43 379 47 392 101 387 73 123

labor 13 44 10 36 12 15 8 8

lymph 23 93 14 61 32 74 31 37

mushroom 25 67 7 26 27 34 17 17

tae 35 242 34 213 44 115 67 109

vote 19 97 51 304 27 88 28 86

wine 5 12 10 35 16 21 7 7

zoo 9 38 7 26 35 35 16 16

In particular, GIBRG is capable of producing simpler rule based classifiers,

when compared with the Prism algorithm – the results in Table 16 and Figure 3

indicate that GIBRG produces a smaller number of rules and terms than Prism

in 15 out of 20 cases. In fact, the complexity of a rule based classifier is de-

termined directly from the number of rule terms, since it is needed to examine

each single rule term towards classifying an unseen instance. From this point of
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view, GIBRG produces a simpler rule based classifier (a smaller number of rule

terms) than Prism in all of the 20 cases. In comparison with C4.5 and CART,

the GIBRG produces simpler rule based classifiers in terms of number of rule

terms in 18 out of 20 cases.

In addition, the results also show that GIBRG produce a larger number of

rules than CART in most cases. This could be explained partially by the nature

of CART algorithm in terms of attribute selection. As mentioned in Section 2.4,

the CART algorithm is aimed at production of a binary tree. In particular,

each attribute needs to be binarized by having one value of the attribute as

the positive value and having all the other values merged as the negative value.

The binarization of attributes can greatly impact on the number of rules. As

analyzed in [24], the number of rules could be affected by both the number of

attributes and attribute complexity. From this point of view, the binarization of

attributes can lead to reduction of the number of rules learned from a data set.

For the CART algorithm, when an attribute is selected, it has been binarized,

i.e. it contains only two values leading to two branches from a node of a decision

tree, so the number of rules could be reduced accordingly. However, the number

of terms is more influential than the number of rules in terms of the complexity

of a classifier, as mentioned above.

5.3. Pruning Comparison

In this study, we compare the four learning algorithms (C4.5, CART, Prism

and GIBRG) both with and without pruning, in terms of classification accuracy.

For C4.5 and CART, the Reduced Error Pruning (REP) and the Cost Complex-

ity Pruning (CCP) algorithms are adopted, due to the fact that REP and CCP

have been popularly used respectively for pruning decision trees produced by

C4.5 and CART [33]. For Prism and GIBRG, the Jmid-pruning algorithm is

adopted, since this algorithm has been used successfully for pruning rules pro-

duced by Prism [21, 27], and GIBRG is a similar rule learning algorithm that

follows the separate and conquer strategy.

The three data sets ‘breast-cancer’, ‘heart-stalog’ and ‘hepatitis’ are chosen,
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since they are all bio-medical ones and are known to be noisy. The ‘vote’ data

set contains missing values, and we replaced them with the most frequently oc-

curring (majority) values of the corresponding attributes, which could naturally

introduce noise into the data set, i.e. the most frequently occurring value is not

guaranteed to be correct. The ‘Car’ data set is not very noisy but was also used

to show how pruning algorithms can impact the classification accuracy [21, 29].

The results are shown in Table 17, both with and without pruning for each

learning algorithm on each data set. The results indicate that the classification

performance of GIBRG is either improved or remains unchanged in all the 5

cases, after the Jmid-pruning algorithm is used.

Table 17: Pruning Results

Dataset C4.5 CART Prism GIBRG

unpruned pruned unpruned pruned unpruned pruned unpruned pruned

car 92% 88% 97% 97% 90% 89% 96% 96%

breast-cancer 67% 71% 66% 70% 67% 72% 66% 69%

heart-stalog 77% 77% 76% 77% 75% 74% 62% 65%

hepatitis 76% 79% 77% 79% 76% 78% 82% 84%

vote 95% 96% 95% 96% 93% 95% 95% 95%

On the ‘car’ data set, the adoption of pruning leads to decrease in the classi-

fication performance of C4.5 and Prism, which generally indicates that pruning

could result in underfitting when a data set is not very noisy. In this situation,

GIBRG (with the adoption of pruning) still holds without loss of classification

accuracy, which could be seen as a really encouraging phenomenon.

On the three bio-medical data sets (‘breast-cancer’, ‘heart-stalog’ and ‘hep-

atitis’), the adoption of pruning helps effectively all of the four learning al-

gorithms produce rules of higher quality, leading to advances in classification

accuracy, except for Prism with Jmid-pruning on the ‘heart-stalog’ data set,

where the classification accuracy is slightly decreased. Since all the three data

sets are really noisy, the above phenomenon indicates that Jmid-pruning can re-
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ally help the GIBRG algorithm avoid overfitting and improve the classification

performance.

On the ‘vote’ data set, the performance of GIBRG remains unchanged after

the adoption of pruning, whereas the performance of the other three algorithms

is slightly improved. Since noise is introduced naturally through replacement of

missing values with the most frequently occurring values of the corresponding

discrete attributes, the above phenomenon could indicate that the rule based

classifiers produced by C4.5, CART and Prism overfit a little bit. In contrast,

the rule based classifier produced by GIBRG does not seem to overfit and the

adoption of pruning does not result in underfitting either, which could be seen

as a really encouraging phenomenon.

Furthermore, the results also show that the adoption of pruning does not

lead to decrease in the classification performance of CART and GIBRG in all of

the 5 cases, which really encourages the use of Gini-index as a heuristic for rule

learning. In other words, when Gini-index based learning algorithms (on their

own) happen to produce rules that do not overfit, it would be highly expected

that the adoption of pruning algorithms does not result in underfitting.

6. Conclusions

In this paper, we proposed a Gini-index based rule learning algorithm,

which outperforms the most popular decision tree learning algorithms (C4.5

and CART) and the representative of rule learning algorithms (Prism) in most

cases of the experimental study reported in Section 5.

We proved through the experimental studies that Gini-index is more suitable

to be used in rule learning than in decision tree learning, due to the difference

between the two types of approaches in terms of their nature of learning. In

particular, decision tree learning is attribute oriented, which indicates that at-

tribute selection is aimed at recursively maximizing the discriminability of rules

on average without the guarantee that the discriminability of each single rule is

increased. In contrast, rule learning is attribute-value oriented, which indicates
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that the selection of attribute-value pairs is aimed at continuously maximizing

the discriminability of each single rule being learned. In fact, it is critical in

real applications that each single rule is of as higher discriminability as pos-

sible towards classifying instances covered by this rule to a single class. The

experimental results indicated that the proposed algorithm (GIBRG) not only

led to improvement in classification accuracy but also to the reduction of the

complexity of the learned rule based classifiers, in comparison with decision tree

learning algorithms.

On the other hand, we identified the limitation of the Prism algorithm, which

is the bias on the target class selection. The bias could result in the production

of inconsistent rules of low quality, which are likely to provide unseen instances

with incorrect classifications. Also, the need to select each class in turn as

the target class for learning a rule set could lead to production of more complex

rule based classifiers. We argued that the nature of the GIBRG algorithm would

lead to the reduction of the bias, and the experimental results indicated that

the GIBRG algorithm led to an improvement in terms of classification accuracy,

in comparison with the Prism algorithm. In addition, the nature of the GIBRG

algorithm also led to the reduction of the complexity of the learned rule based

classifiers.

In future, we will investigate the strategies of rule learning in more depth.

For example, the selection of attribute-value pairs will be based on multiple

heuristics towards increasing the quality of each single rule. We will also inves-

tigate how to select the target class for a rule to be learned towards advancing

the Prism algorithm. In addition, we will investigate in more depth the use of

pruning algorithms towards advancing the performance of GIBRG.
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