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Abstract

In this article, we introduce and study local constant and our preferred

local linear nonparametric regression estimators when it is appropriate to

assess performance in terms of mean squared relative error of prediction. We

give asymptotic results for both boundary and non-boundary cases. These

are special cases of more general asymptotic results that we provide concern-

ing the estimation of the ratio of conditional expectations of two functions of

the response variable. We also provide a good bandwidth selection method

for our estimator. Examples of application and discussion of related problems

and approaches are also given.
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1. Introduction

Suppose that Y is a response variable and Ỹ is a predictor of Y that is a

function of a single predictor variable X. In ordinary predictions, we obtain

Ỹ by estimating the conditional mean of a response given predictor value,

E(Y |X), because it minimises the expected squared loss, E{(Y − Ỹ )2|X},

which is Mean Squared Error (MSE). However, when Y > 0, it will often be

that the ratio of prediction error to the response level, (Y −Ỹ )/Y , is of prime

interest: the expected squared relative loss, E[{(Y − Ỹ )/Y }2|X], which is

Mean Squared Relative Error (MSRE), is to be minimised. Relative error

is considered in many disciplines (Narula and Wellington, 1977, Farnum,

1990, Khoshgoftaar, Bhattacharyya, and Richardson, 1992a, Khoshgoftaar,

Munson, Bhattacharyya, and Richardson, 1992b, Park and Shin, 2006), par-

ticularly those connected with engineering.

Park and Stefanski (1998) showed that we need to estimate

E (Y −1|X)

E (Y −2|X)
, (1.1)

to minimise MSRE, provided the first two conditional inverse moments of

Y given X are finite. They also noted that this Mean Squared Relative

Error Predictor (MSREP) is always smaller than the Mean Squared Error

Predictor (MSEP), E(Y |X). By way of notation, write rℓ(x) = E(Y −ℓ|X =

x) so that if we denote (1.1), when conditioned on X = x, by g(x) then

g(x) = r1(x)/r2(x).

Park and Stefanski went on to consider parametric approaches to the

estimation of g which centred on parametric estimators of the mean and

variance functions of the inverse response. In this paper, we do not make any

such parametric assumptions, but just assume smoothness. Therefore, we



introduce appropriate kernel–based smoothers to estimate g. For background

in the case of MSE see, for example, Wand and Jones (1995), Fan and Gijbels

(1996) or Simonoff (1996).

The general idea of local polynomial mean squared relative error predic-

tion is described in Section 2, with particular emphasis on its local constant

and local linear special cases. Asymptotic MSRE properties of the local con-

stant and local linear MSREPs are given and discussed in Section 3 for both

boundary and interior regions of the support of X. In Section 4, we develop

a bandwidth selector that seems to work well; it is basically a ‘rule-of-thumb’

bandwidth selector but we found that quite a sophisticated version of that

approach is necessary. Examples from the software quality literature are ex-

amined in Section 5. In Section 6, it is noted that the MSEP and MSREP can

be obtained as special cases of a slightly more general framework concerning

ratios of conditional expectations of functions of the response variable and it

is in that framework that outline proofs of the results of Section 3 are pro-

vided. A positive alternative to the local linear MSREP is briefly described

in Section 7.1 and a related problem mentioned in Section 7.2.

2. Local polynomial MSREP

Suppose we are given observations {(Xi, Yi)}
n
i=1, where Xi ∈ ℜ and

Yi ∈ ℜ+. Introduce a symmetric probability density function K as kernel

function which will act in a localising capacity. Associate with K a smooth-

ing parameter, or bandwidth, h, using the notation Kh(·) = h−1K(h−1·). Let

pm(z) =
∑m

j=0 βjz
j be a polynomial of degree m. Then, as kernel–localised

local polynomial estimators of r−1(x) = E(Y |x) are defined as β̂0 = β̂0(x)
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where β̂0, ..., β̂m minimise

n∑

i=1

Kh(Xi − x){Yi − pm(Xi − x)}2,

so kernel–localised local polynomial estimators of g(x) are defined in the same

way, except with the objective function changed to

n∑

i=1

Kh(Xi − x)Y −2
i {Yi − pm(Xi − x)}2. (2.1)

The m = 0 and m = 1 special cases of this will be of particular interest in

this paper, but it is clear that higher–order local polynomials, particularly

local quadratics and/or local cubics, could also be of value on occasion (Fan

and Gijbels, 1996).

2.1. Local constant MSREP

When m = 0, the solution to (2.1) is the local constant estimator

ĝ0(x) =

∑n
i=1 Kh(Xi − x)Y −1

i∑n
i=1 Kh(Xi − x)Y −2

i

. (2.2)

This is, of course, the direct analogue of the well known Nadaraya–Watson

estimator in the MSE case. It is also perhaps the most obvious ‘naive’ kernel

smoothing estimator of g(x).

2.2. Local linear MSREP

Although the Nadaraya–Watson–type estimator is appealing in its sim-

plicity, it will prove better to increase the polynomial order from m = 0 to

m = 1. Define

tℓ(x) = n−1
n∑

i=1

(Xi − x)ℓKh(Xi − x)Y −1
i (2.3)
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and

sℓ(x) = n−1
n∑

i=1

(Xi − x)ℓKh(Xi − x)Y −2
i , (2.4)

ℓ = 0, 1, 2. The local linear estimator can then be written as

ĝ1(x) =
t0(x)s2(x) − t1(x)s1(x)

s0(x)s2(x) − s2
1(x)

. (2.5)

Note also that ĝ0(x) = t0(x)/s0(x). The advantages of ĝ1(x) over ĝ0(x), which

are parallel to those in the MSE case, are clarified in the case of MSRE by

the asymptotic results of the following section.

3. MSRE of ĝ0 and ĝ1

3.1. MSRE in general

As essentially in Park and Stefanski (1998), it is easy to show that, for

any estimator g̃ of g,

MSRE(g̃(X)) = E




{

Y − g̃(X)

Y

}2

| X



 =

{
1 −

r2
1(X)

r2(X)

}
+r2(X)E{g̃(X)−g(X)}2.

(3.1)

By analogy with MSE prediction, the first term on the right–hand side of

(3.1) is due to the extra uncertainty in a future value of Y over and above

that accounted for by estimating its location, and the second term is due to

uncertainty in estimation of the location; we can affect only the second term.

In the MSRE case, this second term turns out to be a weighting function

times the usual MSE. It is this second term, called MSRE− for short, that

will be the sole focus of our investigations from here on.

3.2. Asymptotic MSE, MSRE

In Section 6, we note a general formulation that covers asymptotic per-

formance of the local constant and local linear versions of both the MSEP
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and MSREP, and we also provide the manipulations that lead to the results.

The special cases of the results of Section 6 that pertain to the MSREP are

given here.

Suppose that X1, ..., Xn is a random sample from a density f on [0,1] and

that f ′ is continuous. We will consider biases and variances conditional on

X1, ..., Xn. The following assumptions will be made:

(i) K is symmetric about zero with finite support which we take to be [−1, 1];

other kernels such as the normal can also readily be dealt with.

(ii) bℓ(K) ≡
∫ 1
−1 zℓK(z)dz and R(K) ≡

∫ 1
−1 K2(z)dz are finite.

(iii) rℓ(x) exists for ℓ = 1, ..., 4 and r′′1(x), r′′2(x), r3(x) and r4(x) are contin-

uous on x ∈ [0, 1].

(iv) h = h(n) → 0 as n → ∞ in such a way that nh → ∞.

The n–dependent interior and boundary of the support of X are delin-

eated by the points x = h and x = 1−h. The first result concerns properties

of ĝ0(x) and ĝ1(x) in the interior, under assumptions (i) to (iv).

Result 1. (a) For h ≤ x ≤ 1 − h,

E{ĝ0(x)} ≃ g(x) +
1

2
h2b2(K)

(
r′′1
r2

−
r1r

′′

2

r2
2

+ 2
f ′g′

f

)
(x),

V {ĝ0(x)} ≃
R(K)Vg(x)

f(x)nh

and hence

MSRE−{ĝ0(x)} ≃
1

4
h4b2

2(K)r2(x)

(
r′′1
r2

−
r1r

′′

2

r2
2

+ 2
f ′g′

f

)2

(x)+
r2(x)R(K)Vg(x)

f(x)nh
.

(b) For h ≤ x ≤ 1 − h,

E{ĝ1(x)} ≃ g(x) +
1

2
h2b2(K)g′′(x),
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V {ĝ1(x)} ≃
R(K)Vg(x)

f(x)nh

and hence

MSRE−{ĝ1(x)} ≃
1

4
h4b2

2(K)r2(x){g′′(x)}2 +
r2(x)R(K)Vg(x)

f(x)nh
.

Above,

Vg(x) =
(r3

2 − 2r1r2r3 + r2
1r4)(x)

r4
2(x)

.

These results parallel those for the MSE case (Wand and Jones, 1995,

p.125). In particular, the leading asymptotic bias of ĝ0(x) is a complicated

function of derivatives of r1 and r2 and is also a function of the design density

f . The equivalent term for ĝ1(x), however, is the much simpler, and perhaps

more expected, second derivative of g(x). The asymptotic variances of ĝ0

and ĝ1 are the same as is the order, h2, of the bias term. Further parallelling

the MSE case, the bandwidth h optimising the asymptotic MSRE is of order

n−1/5 and the resulting optimised asymptotic MSRE is of order n−4/5.

The asymptotic performance of ĝ0(x) and ĝ1(x) near the boundary at

0, under assumptions (i) to (iv), is covered by Result 2; a similar result

applies near the boundary at 1. For 0 ≤ x < h, write x = ch. Define

aℓ(K; c) =
∫ c
−1 zℓK(z)dz and R(K; c) =

∫ c
−1 K2(z)dz.

Result 2. (a) For x = ch,

E{ĝ0(x)} ≃ g(x) − ha1(K; c)g′(x),

V {ĝ0(x)} ≃
R(K; c)Vg(x)

f(x)nh

and hence

MSRE−{ĝ0(x)} = O(h2 + (nh)−1).
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(b) For x = ch,

E{ĝ1(x)} ≃ g(x) +
1

2
h2b2(K4; c)g

′′(x),

V {ĝ1(x)} ≃
R(K4; c)Vg(x)

f(x)nh

and hence

MSRE−{ĝ1(x)} ≃
1

4
h4b2

2(K4; c)r2(x){g′′(x)}2 +
r2(x)R(K4)Vg(x)

f(x)nh
.

In Result 2(b),

K4(z) =
a2(K; c) − a1(K; c)z

a2(K; c)a0(K; c) − a2
1(K; c)

K(z),

the usual fourth order kernel associated with local linear estimation (Wand

and Jones, 1995, Section 5.6.1).

Notice that the local constant estimator has an order–of–magnitude in-

crease in bias near the boundary, while the local linear estimator does not.

It is this boundary behaviour that is perhaps the most important advantage

of local linear over local constant estimation in practice. Note also that al-

though the local linear boundary behaviour retains the interior’s asymptotic

rates for bias and variance, the variance is inflated somewhat as reflected in

the constant term in the variance in Result 2(b).

4. Bandwidth selection

Our bandwidth selector, developed for the specific case of the local linear

estimator, is, at once, pragmatic yet non-trivial. It is a form of ‘rule-of-

thumb’ bandwidth selector, but one based on quite a complex pilot estimator.

A number of unsuccessful attempts at simpler or ‘more standard’ approaches
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to bandwidth selection based on the asymptotics of Section 3.2 preceded our

development of the following.

To obtain a global bandwidth, we consider the asymptotic formula for
∫

MSRE−{ĝ1(x)}f(x)dx obtained from Result 1(b). This yields the asymp-

totically optimal bandwidth

h0 =

[
R(K)

∫
Vg(x)dx

b2
2(K)

∫
{g′′(x)}2f(x)dx n

]1/5

. (4.1)

Now, purely for the purposes of rule-of-thumb bandwidth selection but in

the general spirit of the problem at hand, take Zi = log(Yi) and consider the

model Zi = µ(Xi) + ǫi where the ǫ’s are i.i.d. normal errors with variance

σ2 and µ(x) is fitted as a ‘blocked quartic’ function, µ̂(x). After taking logs,

this follows precisely the recipe given for their pilot estimator by Ruppert,

Sheather and Wand (1995, pp.1261-1262) including the use of Mallows’ Cp

for selection of the number of blocks and an estimate, σ̂, of σ; the idea

originates from Härdle and Marron (1995). Then, utilise n−1∑n
i=1{ĝ

′′(Xi)}
2

as estimator of
∫
{g′′(x)}2f(x)dx where ĝ′′(x) = [µ′′(x)+{µ′(x)2}] exp{µ(x)}.

Also, a simple formula for rℓ(x), ℓ = 1, ..., 4, follows immediately from the log–

normal nature of the temporary model: rℓ(x) = exp[−(ℓ/2){2µ(x) − ℓσ2}].

In combination, this affords an estimate of Vg(x) which is averaged over a

uniformly spaced grid of values to provide an estimate of
∫

Vg(x)dx.

We have tried this bandwidth selector out with satisfactory consequences

in a variety of simulated situations, not shown. However, we do not present

a simulation study because we would have to operate under certain specific

assumptions for the error structure, and we have eschewed such assumptions

throughout this paper. We do, however, present estimates produced for data

examples in the next section.
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5. Examples

In this section, we consider two datasets on software quality for which

relative error regression was considered appropriate by the investigators. The

data, from Kitchenham and Pickard (1987), are as analysed by Khoshgoftaar

et al. (1992b). The datasets refer to components of a computer operating

system, referred to as “Subsystems 1 and 2”, each made up of a number of

software modules which take the role of experimental units. In each case, the

response variable is the number of changes made to a module, both to mend

faults and to extend functionality, after the subsystem was placed “under

formal configuration control”. Note that the response is, therefore, a count.

The explanatory variables were measures of software complexity, specifically

“Halstead’s operator count η1” for Subsystem 1 and “Halstead’s operand

count η2” for Subsystem 2. The sample sizes are 27 and 40, respectively.

* * * Figs 1 and 2 about here * * *

The solid lines in Figs 1 and 2 show the local linear estimates ĝ1(x) with

values of h chosen by the method of Section 4 as 10.27 in Fig. 1 and 17.55

in Fig. 2, respectively. They can be compared extremely favourably with

the preferred straight line fits of Khosgoftaar et al., produced by a minimum

absolute value of relative error procedure (dot-dashed lines). The nonpara-

metric fits suggest a simple increasing but clearly non-linear form for g. The

local constant estimates ĝ0(x) (dashed lines), admittedly using the same val-

ues of h which are not ‘optimised’ for them, also compare unfavourably with

the local linear fits, with what appears to be domination by adverse bound-

ary effects towards the right-hand sides of the figures. The fourth, dotted,

lines on Figs 1 and 2 will be explained in Section 7.1. In each example we
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used the normal density as the kernel function, K.

6. Generalisation and outline proof

Consider estimation of a ratio, γ(x), of two functions which are each

conditional expectations of some function of Y : γ(x) = p(x)/q(x), where

p(x) = E{P (Y )|x} and q(x) = E{Q(Y )|x}, minimises

∫
Q(y){S(y)− θ}2f(y|x)dy (6.1)

where S(y) = P (y)/Q(y) and f(y|x) is the conditional density of Y given x.

The natural data-based estimate of (6.1) is

n−1
n∑

i=1

Kh(Xi − x)Q(Yi){S(Yi) − θ}2,

and for the purposes of local polynomial estimation, we can replace θ by

pm(Xi−x). It is then immediately clear that this formulation covers both the

MSEP, for which Q(y) = 1, S(y) = y and the MSREP, for which Q(y) = y−2,

S(y) = y.

The asymptotic MSE and/or MSRE− for local constant and local linear

fitting can be obtained for this general case, and look essentially like Results

1 and 2, if we identify p with r1, q with r2 and γ with g, and in addition

replace Vg(x) by its more general formulation

Vγ(x) =
Var{P (Y )q(x) − Q(Y )p(x)|X = x}

q4(x)
. (6.2)

It is also not then difficult to see that in the MSE case, the appropriate

formulae reduce to the standard ones (Wand and Jones, 1995, Section 5).

We now give, in outline, the manipulations leading to Results 1 and 2 in

this more general formulation. We will work with the boundary case, noting
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that the interior results arise from the boundary ones by setting c = 1.

Generalise (2.3) and (2.4) to

tℓ(x) = n−1
n∑

i=1

(Xi − x)ℓKh(Xi − x)P (Yi) (6.3)

and

sℓ(x) = n−1
n∑

i=1

(Xi − x)ℓKh(Xi − x)Q(Yi), (6.4)

respectively, ℓ = 0, 1, 2.

6.1. Asymptotic bias

Clearly,

E(tℓ(x)|X1, ..., Xn) = n−1
n∑

i=1

(Xi − x)ℓKh(Xi − x)p(Xi)

and this can be approximated by standard Taylor series expansions to yield

E{tℓ(x)} ≃ hℓaℓ(K; c)(pf)(x)−hℓ+1aℓ+1(K; c)(pf)′(x)+
1

2
hℓ+2aℓ+2(K; c)(pf)′′(x),

(6.5)

and likewise for sℓ in terms of q.

For the local constant estimator, since ĝ0(x) = t0(x)/s0(x) we will use

the standard approximation

ĝ0(x) ≃ g(x)+ (qf)(x)−1{t0(x)− (pf)(x)}− (q2f)(x)−1p(x){s0(x)− (qf(x)}.

(6.6)

It follows that

E{ĝ0(x)} ≃ g(x) − ha1(K; c)

{
(pf)′(x)

qf(x)
−

p(x)(qf)′(x)

q2f(x)

}

+
1

2
h2a2(K; c)

{
(pf)′′(x)

qf(x)
−

p(x)(qf)′′(x)

q2f(x)

}
.
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Noting that the multiplier of ha1(K; c) is (p/q)′(x) completes the demon-

stration of the mean of ĝ0 in the boundary case of Result 2(a); and with

a1(K; 1) = b1(K) = 0, the term of order h2 produces the term of that order

in the mean of ĝ0(x) in the interior, given in Result 1(a).

The remainder of this subsection concerns the asymptotic bias of the local

linear estimator. Now ĝ1(x) is given in terms of the more general t’s and s’s

by (2.5). Write this as (w3 − w4)
−1(w1 − w2) where

w1 = h2a0(K; c)a2(K; c)(pqf 2)(x) + h2a2(K; c)(qf)(x){t0(x) − a0(K; c)(pf)(x))}

+ a0(K; c)(pf)(x){s2(x) − h2a2(K; c)(qf)(x)}

+ {t0(x) − a0(K; c)(pf)(x)} × {s2(x) − h2a2(K; c)(qf)(x)},

w2 = h2a2
1(K; c)(pqf 2)(x) + ha1(K; c)(qf)(x){t1(x) − ha1(K; c)(pf)(x)}

+ ha1(K; c)(pf)(x){s1(x) − ha1(K; c)(qf)(x)}

+ {t1(x) − ha1(K; c)(pf)(x)} × {s1(x) − ha1(K; c)(qf)(x)},

and w3 and w4 are the same as w1 and w2, respectively, with ti set to si and

p set to q. Each wi is thus written as ci + di, where ci is the first term in wi

and di = wi − ci is the remaining, stochastic, term, so that

ĝ1(x) ≃
(c1 − c2)

(c3 − c4)

{
1 +

d1 − d2

c1 − c2

}

1 −
d3 − d4

c3 − c4
+

(
d3 − d4

c3 − c4

)2



 . (6.7)

Now, (c3 − c4)
−1(c1 − c2) = (p/q)(x). Also, using (6.5) repeatedly, the

expectation of (6.7) has a term of order h which can be shown to be made

up of {a0(K; c)a2(K; c) − a2
1(K; c)}−1(qf)2(x) times

− a1(K; c)a2(K; c)(qf)(x)(pf)′(x) − a0(K; c)a3(K; c)(pf)(x)(qf)′(x)

+ a1(K; c)a2(K; c)(qf)(x)(pf)′(x) + a1(K; c)a2(K; c)(pf)(x)(qf)′(x)

− (p/q)(x){−a1(K; c)a2(K; c)(qf)(x)(qf)′(x) − a0(K; c)a3(K; c)(qf)(x)(qf)′(x)
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+ a1(K; c)a2(K; c)(qf)(x)(qf)′(x) + a1(K; c)a2(K; c)(qf)(x)(qf)′(x)}

which is zero. Likewise, the order h2 term is {a0(K; c)a2(K; c)−a2
1(K; c)}−1 1

2
(qf)2(x)

times

a2
2(K; c)(qf)(x)(pf)′′(x) + a0(K; c)a4(K; c)(pf)(x)(qf)′′(x)

+ 2a1(K; c)a3(K; c)(qf)′(x)(pf)′(x) − a1(K; c)a3(K; c)(qf)(x)(pf)′′(x)

− a1(K; c)a3(K; c)(pf)(x)(qf)′′(x) − 2a2
2(K; c)(qf)′(x)(pf)′(x)

− (p/q)(x){a2
2(K; c)(qf)(x)(qf)′′(x) + a0(K; c)a4(K; c)(qf)(x)(qf)′′(x)

+ 2a1(K; c)a3(K; c)(qf)′(x)2 − a1(K; c)a3(K; c)(qf)(x)(qf)′′(x)

− a1(K; c)a3(K; c)(qf)(x)(qf)′′(x) − 2a2
2(K; c)(qf)′(x)2}

plus other terms which come to zero in the manner above. This quantity

reduces to {a2
2(K; c) − a1(K; c)a3(K; c)} times

(qf)(x)(pf)′′(x) − 2(qf)′(x)(pf)′(x) − (qf)′′(x)(pf)(x) + 2(p/q)(x)(qf)′(x)2

which means the whole O(h2) bias term is

1

2

a2
2(K; c) − a1(K; c)a3(K; c)

a0(K; c)a2(K; c) − a2
1(K; c)

g′′(x)

as claimed in Results 1(b) and 2(b).

6.2. Asymptotic variance

Now,

V {tℓ(x)|X1, ..., Xn} = n−2
n∑

i=1

(Xi − x)2ℓK2
h(Xi − x)V {P (Yi)}

and this can be approximated by standard Taylor series expansions by

n−1h2ℓ−1R(xℓK; c)V {P (Y )|x}f(x) (6.8)
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where xℓK denotes the replacement of K(z) by zℓK(z). A similar expression

holds for the variance of sℓ in terms of the conditional variance of Q(Y ).

Likewise,

C{tk(x), sm(x)|X1, ..., Xn} = n−2
n∑

i=1

(Xi − x)k+mK2
h(Xi − x)C{P (Yi), Q(Yi)}

≃ n−1hk+m−1R(x(k+m)/2K; c)C{P (Y ), Q(Y )|x}f(x). (6.9)

Using (6.6),

V {ĝ0(x)} ≃ (qf)−2(x)V {t0(x)} − 2(q3f 2)−1(x)p(x)C{t0(x), s0(x)}

+ (q2f)−2(x)p2(x)V {s0(x)}

≃ (nh)−1R(K; c){(q2f)−1(x)V {P (Y |x)} − 2(q3f)−1(x)p(x)C{P (Y ), Q(Y )|x)}

+ (q4f)−1(x)p2(x)V {Q(Y |x)}}

which reduces to the quantity in Result 2 and thence to the quantity in

Result 1 provided Vg(x) is replaced by Vγ(x) given at (6.2).

For the local linear estimator, use is made of (6.7). In particular, we find

that

V

(
d1 − d2

c1 − c2
−

d3 − d4

c3 − c4

)
≃

V1

V 2
2

where

V1 = V
[
h2a2(K; c){(qf/p)(x)t0(x) − f(x)s0(x)} − ha1(K; c){(qf/p)(x)t1(x) − f(x)s1(x)}

]

and

V2 = h2{a0(K; c)a2(K; c) − a2
1(K; c)}qf 2(x).

Then (6.8) and (6.9) give the variance of ĝ1(x) as, approximately, (nh)−1

times

g2(x)R(K4; c)
(qf/p)2(x)V {P (Y )|x} − 2(qf 2/p)(x)C{P (Y ), Q(Y )|x} + f 2(x)V {Q(Y )|x}

(q2f 3)(x)
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which gives the expressions in Results 1(b) and 2(b) when Vγ(x) is substituted

for Vg(x).

7. Alternatives

7.1. A positive local linear MSREP

The local constant estimator (2.2) is clearly positive when Yi > 0, i =

1, ..., n, but the local linear estimator (2.5) does not respect the positivity

constraint. Although this will rarely be a problem in practice, it may be

thought desirable to provide an always positive alternative. A natural way

to do this is to model g locally by an exponentiated polynomial. Specifically,

choose a and b to minimise

n∑

i=1

Kh(Xi − x)Y −2
i [Yi − exp{a + b(Xi − x)}]2 (7.1)

and take ĝP (x) = exp(â) where â is the minimising value of a. Unfortu-

nately, this estimator loses its explicitness and is considerably more difficult

to compute. In fact, we have

ĝP (x) =

∑n
i=1 Kh(Xi − x)Y −1

i exp{b̂(Xi − x)}
∑n

i=1 Kh(Xi − x)Y −2
i exp{2b̂(Xi − x)}

(7.2)

where b̂ satisfies

∑n
i=1 Kh(Xi − x)Y −1

i exp{b̂(Xi − x)}
∑n

i=1 Kh(Xi − x)Y −2
i exp{2b̂(Xi − x)}

=

∑n
i=1(Xi − x)Kh(Xi − x)Y −1

i exp{b̂(Xi − x)}
∑n

i=1(Xi − x)Kh(Xi − x)Y −2
i exp{2b̂(Xi − x)}

.

(7.3)

It is this positive local log-linear estimator that appeared in the form of

dotted lines in Figs 1 and 2, with the same bandwidth values as for ĝ1. Its

performance is clearly comparable with that of ĝ1 and use of either can be

recommended.
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7.2. Answering a different question

It is tempting to come up with further apparent alternatives to ĝ1 such

as taking logs of the Y s and fitting a local log polynomial function to them,

prior to exponentiating the result. However, this would be answering a dif-

ferent question: using ordinary MSE for the fitting, the fitted curve would

be estimating exp{E(log Y |x)}.

The context for which MSREP is designed is where it is natural to assess

the quality of a predictor in terms of errors relative to the size of the response.

This says nothing about the model for the assumed error structure about a

regression function. The case of errors increasing with increasing response

levels, but interest remaining centred on the ordinary regression mean func-

tion is quite different. It is for that case that a variety of further alternatives

come to mind: for example, allowing a non–constant variance function in a

normal errors context, fitting using a generalised smooth model framework

(Fan, Heckman and Wand, 1995), taking logs (Eagleson and Müller, 1997).
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Fig. 1. Data (circles) on “Subsystem 1” concerning the number of changes to

software modules plotted against Halstead’s η1 measure of software complex-

ity. There are four fitted regression lines: ĝ1(x) (solid); ĝ0(x) (dashed); ĝP (x)

(dotted); and a linear fit (dot-dashed) due to Khoshgoftaar et al. (1992b).
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Fig. 2. As Fig. 1 except that the data concern “Subsystem 2” and the

software complexity measure is Halstead’s η2.
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