
Exact Algorithms for Exact Satisfiability

and Number of Perfect Matchings

Andreas Björklund and Thore Husfeldt

Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
andreas.bjorklund@anoto.com, thore.husfeldt@cs.lu.se

Abstract. We present exact algorithms with exponential running times
for variants of n-element set cover problems, based on divide-and-conquer
and on inclusion–exclusion characterisations.

We show that the Exact Satisfiability problem of size l with m clauses
can be solved in time 2mlO(1) and polynomial space. The same bounds
hold for counting the number of solutions. As a special case, we can count
the number of perfect matchings in an n-vertex graph in time 2nnO(1)

and polynomial space. We also show how to count the number of perfect
matchings in time O(1.732n) and exponential space.

Using the same techniques we show how to compute Chromatic Num-
ber of an n-vertex graph in time O(2.4423n) and polynomial space, or
time O(2.3236n) and exponential space.

1 Introduction

We present exact algorithms with exponential running times using two simple
techniques for a number of related NP-hard problems, including exact satisfi-
ability, disjoint set covering, counting the number of perfect matchings, graph
colouring, and TSP.

Our algorithms run in polynomial space and have running times of the form
O(cn), where n is a natural parameter of the instance, such as ‘number of vertices’
or ‘number of clauses,’ but smaller than the instance size. For some NP problems,
this can be achieved by exhaustive search: a maximum clique can be found by
inspecting all 2|V | vertex subsets. But in general, this fails: exhaustive search
for a Hamiltonian cycle would require checking

(|V | − 1
)
! permutations. For the

problems in this paper, finding such algorithms was an open problem.

Techniques
The first idea is divide-and-conquer, where we divide the instance into an expo-
nential number of sub-instances, halving n at each step. This leads to running
times of the form

T (n) = 2nnO(1)T
(

1
2n

)
,

which is O(cn), and the space is polynomial in n.
The second idea is inclusion–exclusion, in which we express the problem in

the form ∑

S⊆{1,...,n}
(−1)|S|f(S),

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 548–559, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings 549

where f(S) is some easier-to-calculate predicate depending on the problem. The
running time is 2n times the time used to calculate f(S), and the space is
dominated by the algorithm for f(S).

Both ideas obviously give rise to polynomial-space algorithms, but we will
also consider exponential-space algorithms that reduce the running times. For
the problems studied in this paper, the inclusion–exclusion approach always gives
the better worst-case time bounds. However, the divide-and-conquer approach is
more versatile and can be applied to natural variant problems, such as weighted
versions; it may also run faster in practice.

Both ideas also turn out to be old. Gurevich and Shelah used exponential
divide-and-conquer as a building block for an expected linear time algorithm
[13], and Feige and Kilian use it to compute the bandwidth in an unpublished
manuscript [12]. The idea of using inclusion-exclusion was used by Bax [2] to
find Hamiltonian Cycles. Before that, a much older example of relevance to the
present paper is the Ryser formula for the permanent [20], which counts the
number of matchings in a bipartite graph.

Exact Satisfiability
Most of the results and techniques of this paper can be presented in terms of
the Exact Satisfiability problem. It is equivalent to a set covering problem and
generalises perfect matching in graphs, see Sec. 2 for the precise relationships.

Given a formula in disjunctive normal form with m clauses in n variables and
total size l = O(mn), the Exact Satisfiability problem asks for the existence of
an assignment that satisfies exactly one literal of each clause. This can be solved
easily in polynomial space and 2nlO(1) time by considering all assignments, and
many papers have improved the 2n factor.

Here, we analyse the problem in terms of the number m of clauses. For or-
dinary (non-exact) satisfiability, the seminal result is the DPLL procedure from
1962 [9], which gives a polynomial space algorithm with running time 2mnO(1).
Again, many papers have since improved this result.

However, for Exact Satisfiability, no such result was known; the best bounds
are exponential time and space 2mlO(1) using dynamic programming, or poly-
nomial space and time m!lO(1) [17]. Prior to the current paper, no polynomial
space algorithm with running time cmlO(1) was known for any constant c, an
open problem observed in [5,17].

Proposition 1 provides such an algorithm for many choices of m; the run-
ning time is bounded by cmlO(1) except when log n < m ≤ log n log log n. The
algorithm works for the weighted case as well. Our inclusion–exclusion based al-
gorithm in Proposition 2 is even simpler and faster in the worst case, achieving
the desired running time of 2mlO(1). Both algorithms use space polynomial in l.

Number of perfect matchings
The inclusion–exclusion based algorithm actually counts the number of exactly
satisfying assignments and therefore solves the #P -complete counting variant
of XSAT. A well-studied special case of this is perfect matching: Given a graph
G = (V, E) on n vertices, find a subset M ⊆ E of disjoint edges that cover V .

