
A Data Re-use Based Compiler Optimization for

FPGAs�

Ram Subramanian�� and Santosh Pande

1 Xilinx Inc., 2100 Logic Dr., San Jose, CA 95124,
ram@xilinx.com

2 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332,
santosh@cc.gatech.edu

1 Our Approach

The speed at which a design could be tested (executed) really determines the use
of FPGAs for rapid prototying. FPGAs provide reasonable routing resources,
and a high capacity for mapping large hardware designs. However, profitable
mapping of computations onto FPGAs is a complex task due to many trade-
offs involved. We present an approach to customize FPGA-based co-processors
to most profitably execute loops to speed-up the the execution. Our framework
specifically addresses the issues of parallelism, reducing data transfer overheads
through reuse, and optimizing the safe frequency at which design can be maxi-
mally clocked.

1.1 Motivating Example

We first illustrate our approach through an example and then present the frame-
work developed.

Consider the example of a simple matrix multiplication code as shown below.

for I = 1 to 100
for J = 1 to 100
for K = 1 to 100

C[I,J] = C[I,J] + A[I,K] * B[K,J];

As seen from the loop, we can exploit self-temporal data reuse for arrays A
and B, since for all iterations of index J, A[I,K] is a constant, and similarly for
all iterations of index I, B[K,J] is a constant. The loop thus has a self-temporal
reuse factor of 100 for both indices I and J. Moreover, only loop K carries the
dependency of C[I,J], and the variable is called a reduction variable since the
same array location is being read and written into for all iterations of loop K.
Suppose we unroll the inner loop by k and expand the reduction variable. The
transformed loop is given below:
� This research was supported in part by DARPA award # ARMY DABT63–97–C–

0029 and by NSF grant # CCR-0073512
�� Work done as a part of Masters’ thesis.

G. Brebner and R. Woods (Eds.): FPL2001, LNCS 2147, pp. 648–652, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Data Re-use Based Compiler Optimization for FPGAs 649

* * * * *

+ + +

+

+

C A2A1 B1 B2 A3 B3 A4 B4 A5 B5

C

Fig. 1. Example loop unrolled five times

for I = 1 to 100
for J = 1 to 100
for K = 1 to 100 by k

C[I,J] += A[I,K] * B[K,J]
+ ...
+ A[I,K+k-1] * B[K+k-1,J];

The computation graph for the statement inside the loop for k = 5 is given in
Figure 1. Similarly for any k, a parallel computation graph is created. This graph
has the nice property of directly translating to hardware, where the rectangular
modules are registers and the circular modules are hardware implementations of
the operator and the arrows are input and output buses connecting the operators
and registers. For any other k, the graph changes in width and depth. As the
depth increases, the maximum register to register latency also increases. As the
width increases, so does the number of operands to be brought into hardware
before the start of computations. As seen in the figure, registers A1, A2 . . . , A5
and registers B1, B2, . . . , B5 take values of array A and B as given by the it-
erations. The input register C takes the value of the previous C result, and the
output register C is stored into the memory as soon as the computation is done
in hardware.

The array variable C is a reduction variable, carried by loop K. The loop nest is
found to be a fully permutable nest, with loop K carrying a doall reduction. A fully
permutable loop nest means that the loops in the nest can be legally interchanged
without affecting the data dependencies. This means that if a reduction operation
is carried out, the loop can be parallelized. Here, loop K is partially unrolled to
carry out the reduction operation partially on hardware. Thus, the loop can be
transformed and mapped on the hardware as follows:

for I = 1 to 100
for K = 1 to 100 by k
for J = 1 to 100 by j in parallel

/* Statement S1 */
C[I,J] = C[I,J] + A[I,K] * B[K,J]

+ ...


