
Narrowing as an Incremental Constraint Satisfaction
Algorithm

Maria Alpuente l Moreno Falaschi

1 Introduct ion

In the last few years several approaches to the integration of logic and equational programming have
been developed [3,4,8,9,11,14,20]. One relevant approach [tl] defines equational logic programs as
logic programs which are augmented by Horn equational theories. These programs admit least
model and fixpoint semantics. Interpreted function symbols can appear as arguments of relations
and existentially quantified variables can occur as arguments of functions. Function definition and
evaluation are thus embedded in a logical framework.

To properly cope with the equational theory, the conventional SLD-resolution mechanism based
on a (syntactical) unification algorithm of logic programs has to be modified. The operational se-
mantics of an equational logic language is based on some special form of equational resolution (such
as SLDE resolution [7,9,11]), where SLD-resolution is usually kept as the only inference rule but the
syntactical unification algorithm is replaced by equational (semantic) unification (E-unification
[23]). It is well known that the set of £-unifiers of a pair of terms is only semideeidable, so that
the process of semantic unification may run forever even if the equational theory is unconditional
and canonical. Moreover, there is in general no single most general £-unifier. Infinitely many
incomparable mgu's over £ of a pair of terms may exist. Three approaches are relevant to the
problem of computing the set of C-unifiers of two terms, namely fiat SLD-resolution [2], complete
sets of transformations [12] and paramodulation [5] or some special form of it, such as superposi-
tion [4] or narrowing [2,13,14,21]. In [11], a lazy resolution rule is defined in order to overcome the
problem of nontermination of the £-unificafion procedure.

Recently, the logic programming paradigm has been generalized to the framework of Contraint
Logic Programming (CLP) [15,16]. CLP is a generic logic programming language scheme which
extends pure logic programming to include constraints. Each instance CLP(X) of the scheme is
a programming language that arises by specifying a structure X of computation. The structure
defines the underlying domain of discourse and the operations and relations on this domain, thus
giving a semantic interpretation to it. The implementations of one instance of the CLP scheme
can differ for the choice of the specific constraint solvers. The existence of a canonical domain
of computation, least and greatest model semantics, the existence of a least and greatest fixpoint
semantics and the soundness and completeness results for successful derivations are inherited by
any extension which can be formalized as an instance of the scheme. Suitable models which
correspond to different observable behaviours have been developed for the CLP scheme [6]. These
results apply to each instance of the scheme.

tDepartamento de Sistema, Informgtieos y Computaeidn, Universidad Polit6enica de Valencia, Camino de Vera
s/n, Apdo. 22012, 46020 Valencia, Spain.

lDipartimento di Informatiea, Univer~itg di Pisa, Como Italia 40, 56125 Plea, Italy.

112

In this paper we are concerned with an instance of the CLP scheme specialized in solving
equations with respect to a Horn equational theory £ [11]. The intended structure is just given
by the finest partition induced by £ on the Herbrand Universe 7 /over a finite one sorted alphabet
E. = is the only predicate symbol for constraints (equational constraints) and is interpreted as
semantic equality over the domain. In the following, we will refer to such a structure as 7//E.

The advantages of this approach are that, since the language is an instance of the scheme,
all the above mentioned fundamental properties are automatically inherited by it. Besides, if an
efficient algorithm to solve the constraints is developed it can easily be embedded into a general
CLP interpreter and can cooperate with other constraint solvers.

Let us notice that for the language to be formally based on the semantics of the scheme, the
structures to be considered in CLP must be solution compact as defined in [15,16]. Informally,
solution compactness means that every element of the domain can be described by a constraint
and that the language of constraints must be precise enough to distinguish any object which does
not satisfy a given constraint from those ones which do. As pointed in [16], any structure which
has no limit elements is trivially solution compact. This includes, in particular, the structure 7/ /£.

A narrowing algorithm or some other C-unification.procedure can be considered the kernel
of the constraint solver which semidecides the solvability of the constraints in the structure 7"[/£.
Solvability has to be tested but the equations do not need to be completely solved at every com-
putation step.

This work first deals with an abstract description of an incremental constraint ~ol~cr for equa-
tional logic programming which relies on a narrowing calculus. Our constraint solver not only
checks the solvability but also simplifies the constraints. Then we describe a calculus for a nar-
rowing procedure which is heuristically guided from the discarded substitutions, while looking for
solntions to new constraints. We discuss the following issues:

How to verify the solvability of constraints in the structure 7//£ by using some sound arid
complete semantic unification procedure, such as narrowing. How to simplify constraints in a
computation sequence. How to achieve incrementality in the computation process. How to profit
from finitely failed derivations as a heuristic for optimizing the algorithms to achieve an intelligent
narrowing.

The paper is organized as follows. In Section 2 we briefly recall the basic concepts of the CLP
framework, conditional rewrite s~ t ems and universal unification. In Section 3 we define CLP(7/ /£)
logic programs and an incremental constraint solver as a kernel of an operational semantics for
them. Section 4 is devoted to the heuristic narrowing calculus. Finally Section 5 concludes.

All the proofs of the lemmata and theorems presented in this paper can be found in [1].

2 P r e l i m i n a r i e s

In this paper we refer to a language which is an instance of CLP, as defined in [15]. We assume the
reader to be familiar with logic programming [19], constraint logic programming [6,15,16], equations
and conditional rewrite systems [18] and universal unification [23]. We first recall the basic concepts
of the CLP framework. By ~, II and V (possibly subscripted) we denote denumerable collections
of function symbols, predicate symbols and variable symbols with their signatures. We assume
that each sort is non-empty. T(X~ U V) and r(X~) denote the sets of terms and ground terms built on

and V, respectively, r (~) is usually called the Herbrand Universe (7/) over ~. A (11, ~)-atom is
an dement p (t l , . . . , t ,) where p E II is n-ary and t~ E r (~ U V), i = 1, n. A (H, ~)-eonstraint
is a possibly empty or infinite ~ t of (1I, ~)-atoms. Intuitively, a constraint is a conjunction of
(II, ~)-atoms. The empty constraint will be denoted by true. The symbol " will denote a finite
sequence of symbols. A structure ~(II , ~) over II and ~ can be defined as in [15,16].

