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1 Introduct ion  

In the last few years several approaches to the integration of logic and equational programming have 
been developed [3,4,8,9,11,14,20]. One relevant approach [tl] defines equational logic programs as 
logic programs which are augmented by Horn equational theories. These programs admit least 
model and fixpoint semantics. Interpreted function symbols can appear as arguments of relations 
and existentially quantified variables can occur as arguments of functions. Function definition and 
evaluation are thus embedded in a logical framework. 

To properly cope with the equational theory, the conventional SLD-resolution mechanism based 
on a (syntactical) unification algorithm of logic programs has to be modified. The operational se- 
mantics of an equational logic language is based on some special form of equational resolution (such 
as SLDE resolution [7,9,11]), where SLD-resolution is usually kept as the only inference rule but the 
syntactical unification algorithm is replaced by equational (semantic) unification (E-unification 
[23]). It is well known that the set of £-unifiers of a pair of terms is only semideeidable, so that 
the process of semantic unification may run forever even if the equational theory is unconditional 
and canonical. Moreover, there is in general no single most general £-unifier. Infinitely many 
incomparable mgu's over £ of a pair of terms may exist. Three approaches are relevant to the 
problem of computing the set of C-unifiers of two terms, namely fiat SLD-resolution [2], complete 
sets of transformations [12] and paramodulation [5] or some special form of it, such as superposi- 
tion [4] or narrowing [2,13,14,21]. In [11], a lazy resolution rule is defined in order to overcome the 
problem of nontermination of the £-unificafion procedure. 

Recently, the logic programming paradigm has been generalized to the framework of Contraint 
Logic Programming (CLP) [15,16]. CLP is a generic logic programming language scheme which 
extends pure logic programming to include constraints. Each instance CLP(X) of the scheme is 
a programming language that arises by specifying a structure X of computation. The structure 
defines the underlying domain of discourse and the operations and relations on this domain, thus 
giving a semantic interpretation to it. The implementations of one instance of the CLP scheme 
can differ for the choice of the specific constraint solvers. The existence of a canonical domain 
of computation, least and greatest model semantics, the existence of a least and greatest fixpoint 
semantics and the soundness and completeness results for successful derivations are inherited by 
any extension which can be formalized as an instance of the scheme. Suitable models which 
correspond to different observable behaviours have been developed for the CLP scheme [6]. These 
results apply to each instance of the scheme. 
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In this paper we are concerned with an instance of the CLP scheme specialized in solving 
equations with respect to a Horn equational theory £ [11]. The intended structure is just given 
by the finest partition induced by £ on the Herbrand Universe 7 /over  a finite one sorted alphabet 
E. = is the only predicate symbol for constraints (equational constraints) and is interpreted as 
semantic equality over the domain. In the following, we will refer to such a structure as 7//E. 

The advantages of this approach are that, since the language is an instance of the scheme, 
all the above mentioned fundamental properties are automatically inherited by it. Besides, if an 
efficient algorithm to solve the constraints is developed it can easily be embedded into a general 
CLP interpreter and can cooperate with other constraint solvers. 

Let us notice that  for the language to be formally based on the semantics of the scheme, the 
structures to be considered in CLP must be solution compact as defined in [15,16]. Informally, 
solution compactness means that  every element of the domain can be described by a constraint 
and that the language of constraints must be precise enough to distinguish any object which does 
not satisfy a given constraint from those ones which do. As pointed in [16], any structure which 
has no limit elements is trivially solution compact. This includes, in particular, the structure 7/ /£.  

A narrowing algorithm or some other C-unification.procedure can be considered the kernel 
of the constraint solver which semidecides the solvability of the constraints in the structure 7"[/£. 
Solvability has to be tested but the equations do not need to be completely solved at every com- 
putation step. 

This work first deals with an abstract description of an incremental constraint ~ol~cr for equa- 
tional logic programming which relies on a narrowing calculus. Our constraint solver not only 
checks the solvability but also simplifies the constraints. Then we describe a calculus for a nar- 
rowing procedure which is heuristically guided from the discarded substitutions, while looking for 
solntions to new constraints. We discuss the following issues: 

How to verify the solvability of constraints in the structure 7//£ by using some sound arid 
complete semantic unification procedure, such as narrowing. How to simplify constraints in a 
computation sequence. How to achieve incrementality in the computation process. How to profit 
from finitely failed derivations as a heuristic for optimizing the algorithms to achieve an intelligent 
narrowing. 

The paper is organized as follows. In Section 2 we briefly recall the basic concepts of the CLP 
framework, conditional rewrite s~ t ems  and universal unification. In Section 3 we define CLP(7/ /£  ) 
logic programs and an incremental constraint solver as a kernel of an operational semantics for 
them. Section 4 is devoted to the heuristic narrowing calculus. Finally Section 5 concludes. 

All the proofs of the lemmata and theorems presented in this paper can be found in [1]. 

2 P r e l i m i n a r i e s  

In this paper we refer to a language which is an instance of CLP, as defined in [15]. We assume the 
reader to be familiar with logic programming [19], constraint logic programming [6,15,16], equations 
and conditional rewrite systems [18] and universal unification [23]. We first recall the basic concepts 
of the CLP framework. By ~, II and V (possibly subscripted) we denote denumerable collections 
of function symbols, predicate symbols and variable symbols with their signatures. We assume 
that  each sort is non-empty. T(X~ U V) and r(X~) denote the sets of terms and ground terms built on 

and V, respectively, r ( ~ )  is usually called the Herbrand Universe (7/) over ~. A (11, ~)-atom is 
an dement  p ( t l , . . . ,  t , )  where p E II is n-ary and t~ E r ( ~  U V), i = 1, . . . .  n. A (H, ~)-eonstraint 
is a possibly empty or infinite ~ t  of (1I, ~)-atoms. Intuitively, a constraint is a conjunction of 
(II, ~)-atoms. The empty constraint will be denoted by true. The symbol " will denote a finite 
sequence of symbols. A structure ~(II ,  ~)  over II and ~ can be defined as in [15,16]. 


