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Abs t rac t .  Recently, several authors studied methods based on endo- 
morphisms for localizing and computing the common zeros of systems of 
polynomial equations f i (xl , . . . ,  x,~) = 0, i = 1 . . . . .  s, in case the ideal 
generated by f l , . . . ,  f~, has dimension zero. The main idea is to consider 
the trace and the eigenvalues of the endomorphisms r : [g] ~ [g ' f], 
where [ . ] denotes equivalence classes modulo I in the polynomial ring. 
In this paper we give discuss some of these methods and combine them 
with the concept of dual bases for describing zero dimensional ideals. 

1 Introduction 

The interpretation of polynomial rings 7 ) and ideals I C 7) as k-vector spaces 
has been fruitful for getting insight into the ideal structure and for improving 
existing methods. In computer algebra, Laza.rd investigated this connection ear- 
ly [La 77],[La 81], and Buchberger never failed in his development of GrSbner 
basis techniques to stress the connection to linear algebra e.g. [Bu 88], but al- 
so many other authors mentioned this connection and investigated ideals with 
linear techniques. 

However, the multiplicative structure of 7) and 7)/g has, at least implicitely, 
always been used. This was done by considering with a coefficient vector of a 
polynomial f the "shifted" coefficient vectors for power product multiples of f .  
And, mentioned just for curiosity, starting point for the development of GrSbner 
basis techniques was GrSbner's proposal to Buchberger to develop a method for 
computing the multiplication table of 7)/I, [Bu 65]. 

In recent years, the interest in the multiplicative structure has been renewed. 
By using the endomorphisms 

qs: : 7)/Z ,79/Z, rpl([u]) := [ f .  u] 

where [u] denotes the equivalence class modulo 2- generated by u E 7), some 
new results or new interpretations of old results have been found. In this paper, 
we concentrate on zero dimensional ideals g and intend to present in a unified 
notation the method of Stetter [AS 88] for computing the set of all common zeros 
of the polynomials in I using eigenvectors of ~1, a method for computing this 
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set of zeros by using minimal polynomials [YNT 92], and a real root isolating 
method based on a trace fornmla for quadratic forms in 7)/:[, [PRS 92], [Be 91]. 
Using the concept of dual bases, [M391], [M392], we give new proofs, show the 
connection of the method by [FGLM] to the minimal polynomial computation,  
and discuss complexity aspects. 

By the first two methods, systems of polynomial equations are solved di- 
rectly; the real root isolating method can serve as preprocesor for a numerical 
calculation by Newton's method. Hence they all fit into the PoSSo project of 
solving systems of polynomial equations. An other very interesting method has 
been presented in a thesis by Cardinal (Universit@ de Rennes), in which for zero 
dimensional ideals Z generated by n polynomials the common zeros are compu- 
ted. There, the space P / Z  is equipped with an inner product  structure allowing 
an elegant description of the q~l's. The computation of the zeros is then done 
by a method known in numerical analysis as the von-Mises-iteration. This the- 
sis however became known to the author so recently, that  the result can not 
included here in deta.ils. 

2 I d e a l s  a n d  D u a l  B a s e s  

In the following, k is always a field, 7 ) : =  k [ x l , . . .  , x n ]  , and 2- C P is an ideal 
of dimension zero. Then P/27 is a finite dimensional k-vector space, i.e. ~ is a k- 
vector space of finite codimension. A basis of T)/Z can be obtained by a Grhbner 
basis ~ of Z. Consider the set B of all power products x~ 1 . . -x~  ~ which are 
not divisible by the leading power product of a g E G. Then the corresponding 
equivalence classes [x] . . . .  x~'] constitute a basis of P / Z ,  see for instance [Bu 88]. 
We will denote this basis briefly by [/3]. 

In this section, we resume some relevant parts of the concept of dual bases as 
described in [M392] or in the shorter version [M391], both based on Grhbner's 
exposition in [Gr 70]. Let L 1 , . . . ,  Ls be functionals over P ,  i.e. in H o m k ( P ,  k). 
They are linearly independent if and only if q l , . . . ,  q~ E P exist, such that  

L i ( q j ) = 0  if i • j ,  L i (q l )=  1 . (1) 

Polynomials ql,- .-, q~ satisfying (1) are called biorthogonal to L 1 , . . . ,  L~. 
Let V C P be a k-vector space of codimension s. Then there are s linearly 

independent functionals L 1 , . . . ,  L~, such that  p E V r LI(p)  = . . .  = Ls(p) = O. 
The set {L1 , . . . ,  L~ } is called a dual basis of V. Conversely, if s functionals Li 
are linearly independent, then {p E T' [ LI(p) = . . .  = L~(p) = 0} is a k-vector 
space of codimension s, i.e. every set of s linearly independent functionals is a 
dual basis. 

If { L 1 , . . . ,  L~} is a dual basis of V, then V is a zero dimensional ideal if and 
only if the functionals 

Lij : p ~ - x i  "p, Lij E Hom~(7),k) ,  i =  1 . . . , n , j =  1 . . . .  ,s  , (2) 

belong to spank{L1 . . . . .  L,  }. 


