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Abstract. For a number of elliptic curve-based cryptographic protocols,
it is useful and sometimes necessary to be able to encode a message (a bit
string) as a point on an elliptic curve in such a way that the message can
be efficiently and uniquely recovered from the point. This is for exam-
ple the case if one wants to instantiate CPA-secure ElGamal encryption
directly in the group of points of an elliptic curve. More practically rele-
vant settings include Lindell’s UC commitment scheme (EUROCRYPT
2011) or structure-preserving primitives.

It turns out that constructing such an encoding function is not easy in
general, especially if one wishes to encode points whose length is large rel-
ative to the size of the curve. There is a probabilistic, “folklore” method
for doing so, but it only provably works for messages of length less than
half the size of the curve.

In this paper, we investigate several approaches to injective encoding
to elliptic curves, and in particular, we propose a new, essentially opti-
mal geometric construction for a large class of curves, including Edwards
curves; the resulting algorithm is also quite efficient, requiring only one
exponentiation in the base field and simple arithmetic operations (how-
ever, the curves for which the map can be constructed have a point of
order two, which may be a limiting factor for possible applications). The
new approach is based on the existence of a covering curve of genus 2 for
which a bijective encoding is known.
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1 Introduction

Various cryptographic protocols based on the hardness of Diffie-Hellman-like
problems in a group G, such as ElGamal encryption [7] or Lindell’s recent
universally-composable commitment scheme [14], assume the existence of an
efficient (possibly randomized) algorithm f mapping messages m ∈ {0, 1}� to
elements of G, in such a way that m can also be recovered efficiently from f(m).

For example, ElGamal encryption is a priori defined on group elements, so
that a message needs to be mapped to an element of G before encrypting it,
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and mapped back to a bit string upon decryption. Similarly, such a function
f is an important ingredient for structure-preserving cryptography [1]: indeed,
inputs and outputs of structure-preserving primitives are all group elements;
this offers convenient composability properties, but to use e.g. commitments or
encryption on actual bit strings, a way to map strings to the group and conversely
is required.

Moreover, the size � of supported bit strings should preferably be as close as
possible to the bit size of G to optimize bandwidth. We call such an algorithm
f an injective encoding.

For certain groups G, like multiplicative groups of finite fields or some su-
persingular elliptic curves, it is not difficult to construct injective encodings
achieving the optimal value of �. On the other hand, for a general group G, it is
not obvious how to construct a function f with � even super-logarithmic in the
size of G. In §2.3, we prove that this is not possible with a deterministic generic
group algorithm.

When G is the group of points of any elliptic curve over a finite field, one can
construct a probabilistic injective encoding with � equal to about half of the size
of G, as we show in §2.4, but we do not know of provable constructions achieving
a better � in general. Works on deterministic hashing to elliptic curves, such as
[17,11], typically do not help addressing this problem, as the functions they
construct are not injective, and it is not clear how to find a convenient subset
of their domain on which they become injective. Recently, however, a solution
was proposed by Farashahi [8] in the special case of Hessian elliptic curves over
finite fields Fq with q ≡ 2 (mod 3).

In §3, we propose an essentially optimal construction for all ordinary elliptic
curves over fields Fq with q ≡ 3 (mod 4) with group order divisible by 4; this in-
cludes the well-known Edwards curves studied by Edwards and Bernstein–Lange
[2], as well as twisted Huff curves, as studied by Joye et. al. [13]. Our construc-
tion is based on the bijective encoding from [10] to certain hyperelliptic curves of
genus 2, and on the observation from [12] that those curves are quadratic covers
of elliptic curves.

2 Injective Encodings

2.1 Definition

To fix ideas, and although it is not essential for our main purpose, let us first
give a formal definition of what we mean by an “injective encoding”.

Let us say that a cyclic group family (Gk)k∈N consists in the data of a sequence
of integers nk ≥ 1 converging to infinity, a sequence of integers sk ≥ 0 that is
at most polynomial in lognk, and for each k, an efficiently computable bijection
σk between the cyclic group Z/nkZ of order nk and a set Gk ⊂ {0, 1}sk of bit
strings of length sk, as well as efficient algorithms:

⊕k : {0, 1}sk × {0, 1}sk → {0, 1}sk ∪ {⊥} 
k : {0, 1}sk → {0, 1}sk ∪ {⊥}


