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Binomial states of the quantized radiation field
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Abstract. We introduce the binomial state of the quantized radiation field,
which is a state that yields a binomial counting probability distribution. It
reduces to the coherent state and to the number state in different limits. The
binomal state is quantum mechanical in nature, and we show that it produces light
that is antibunched, sub-poissonian, and squeezed for certain parameter ranges.
A mixed binomial state is also defined. Particular attention is devoted to the
mixed Bernoulli state which is an important special case. The properties of this
mixed state indicate that squeezing might be present in individual atomic
emissions.

1. Introduction
The number state In> and the coherent state la> are well-studied states of the

radiation field that have been dealt with extensively since the early days of quantum
optics [1]. There are many ways to generate these states. As an example, a single atom
in its first excited state, in the absence of external interactions, is generally assumed
to radiate an n = I > state. A classical charge distribution, on the other hand, radiates
a coherent state [1].

We introduce the binomial state which interpolates between the number
state and the coherent state. It partakes of the properties of both and reduces to each
in different limits. The binomial state , M> is a linear combination of the n states
10>, I1>, . . , IM> with coefficients chosen such that the photon-counting probability
distribution is binomial with mean M. This is similar to the coherent state cla> which
is a linear combination of all In> states with coefficients chosen such that the photon-
counting distribution is poissonian. Binomial photon-counting distributions have
been discussed in the literature [2]. Like the generalized coherent states for which
coefficients of its n state expansion are allowed to have additional arbitrary phases, a
generalized binomial state may be similarly defined. The binomial state may be
generated when each of M photons is emitted with probability , i.e., when an
excited molecule undergoes M level vibrational relaxation under certain conditions.
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Important special cases are the generalized and mixed Bernoulli states (M= 1).
In § 2 we discuss the properties of the binomial state. The behaviour of the mixed

Bernoulli state, and some considerations about how it might be produced, are dealt
with in §3. The discussion is contained in §4.

2. The binomial state

2.1. Mathematical properties
We define a pure state of a single mode of the electromagnetic field for which the

photon-number probability density is binomial, i.e.

M

lqm>= , fm[n>, (1)
n=O

where

p3M = [(M),In(1 _ )M-n] 1/2 (2)

In equation (1), In> is the number state of the field mode and {j, (1 -)} are the
probabilities of the two possible outcomes of a Bernoulli trial. In the present context
we see that IM12 is the probability for the production of n photons when there are
M> n independent ways to produce a photon. The binomial states defined by
equation (1) are normalized since

M

<, Mlr/, M> = E (n)r/"(-r/)~-"=l.
n=O

The mean photon number in a binomial state is given by

M

<(, Mthlr/,MM>= x nli#M12
n=0

=n> n n ( --/)
n=0 n!(M-n)! ~

= r1M, (3)

where h is the number operator obeying the relation lIn> = nln>. This is as expected
for the binomial distribution. Defining u=r//(1 -q), we obtain

Ma
<h> M = 1 + = M, (4)

Ma + 
<h2> = M7(Ma + 1)= (rM)2 + (1-r/)M,(

2 (I (A/
2

3 = _ q(12) 2

(AL2 - <Afn>2. =fi2>- M n M = Maa(l + )2 (1 - )M. (6)

The ratio of variance to mean (Fano factor) is given by

(An) 2/<h>, M= 1-, (7)

indicating the sub-poissonian nature of the binomial distribution. The bunching
parameter A = (An) 2 - <h> for the binomial state is

(8)
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The normalized second-order correlation function g(2)(0) for , M> may be
expressed as

g(2) (0)=I-I/M=l-q<>N M (2) =1- MM (9)

The quantity g(2)(0) is defined as (Ktata>/<ta>2 where a and t are the lowering
and raising operators for the field mode of interest, respectively. Since g(2)(0) < 1,
these states are antibunched, but less so than the number states. Antibunching and
sub-poissonian behaviour always accompany each other for single-mode time-
independent fields [3].

For = 0 and 1, with M finite, the binomial states reduce to the vacuum state
10> and the number state n=M> respectively. In the limit q-0, M-+oo (with
/M=constant=o;), A-0O. The binomial state then approaches a coherent state lt>.
Since the fm have been chosen to be real, the most general coherent state is not
obtained, but rather one with a real value of the amplitude parameter . Had the
coefficients in equation (1) been chosen to be complex, i.e. c = exp iOn where {0n}
is a set of arbitrary real numbers, the limit would yield the generalized coherent state
of Titulaer and Glauber [4]. In § 3 we will consider the generalized Bernoulli state
In, 0> which is a special case of the binomial state (M= 1) with complex /l.

It is interesting to point out that the binomial states cannot have the minimum
uncertainty product because they contain a finite number of In> states for any given
M and the minimality condition cannot be satisfied by any such finite combination
[5]. The uncertainty product for the In, M> states will of course approach the
minimum value in the limit -*0, M-- oo since the limiting case, a coherent state, is a
minimal packet. Similarly, when = 0 the binomial state reduces to the vacuum
state, which is also a coherent state and a minimal packet. We have derived the
expansion for the coherent state in the binomial-state basis which may be of some
interest (see Appendix).

The binomial states display antibunching and sub-poissonian behaviour and yet
cannot have a minimum uncertainty product. Because of this distinctly nonclassical
behaviour, it is of interest to examine the squeezing properties of these states. To
investigate this we first examine the effects of the raising and lowering operators on
In, M>. Noting that a and at obey the boson commutation relation [a, at ] = 1, we have

M

~I~/,M)= 1 in /2n1.71q, M> = fln n i -1>. (10)
n=0

Noting the identity

nl/
2 f M

(ym)l/
2

flM-1, (11)

equation (10) yields

M

aln, M)=OiM) ~/2 ~ fi~-ln--1 (12)
n=O

The summation in equation (12) actually begins with n= 1, since the n-. 0 term
vanishes. Changing the summation index in equation (12) to l = n- 1 finally leads to

M-1

dIn, M> = (M)11 2 fIM-111>
t1=0

(13)= (M)l1 21, M- 1>.

347



D. Stoler et al.

Therefore acts as a kind of lowering operator for the 1r, M> state, since
r/M= <fi>,,M. The analagous result for at is however more complicated. It turns out
that

atll, M> = [r(M+ 1)] - 12filr, M+ I > (14)

so that at is not a raising operator for I, M>. Using equations (13) and (14), each n
times, permits us to derive the following expressions easily:

(M )! M- n, n<M, (15)

=0, n>M;

,p~, M>-= M! 1/2
atnlr/ M> =I [n(M n)!] h0(h-1) .. ( -n + 1)1r, M+ n>. (16)

The average values are then obtained quite directly by using equation (15):

<., Mlanll, M> = [M n> (17)
L(M~n ! (/Mr,-)

Taking the complex conjugate of equation (17) yields

<r/,Mla*tn1,M>=F / ! 12 "M-ni ?,M>. (18)
L(M- n)! r,-~r,)

Since fil is real, we have r / ll-n, Al>= K,3Mu, l-n>. This results in the
equality of <an>q,M and <at">~M. Equations (17) and (18) (for n=2), along with
equation (3), are used to evaluate the variances of the field quadratures to determine
the squeezing properties of the , M> states.

Defining the quadrature (position/momentum type) operators in the usual
fashion gives

£ = 2- 1/2(a + t), (19)

p =-i2- 12(a- at) (20)

Equations (17) and (18) provide

<7, MlIi, M> = 2/1 2<1, Mlal1, M>

= (2qM)1/2<, M1r/ M- 1 >, (21)

<K, Ml15, M> =0. (22)

The second moments are

<tj, Ml_21r, M> = <K, Mla2l, M> + M+, 1 (23)

<K1, MLp2, M> = - <, Ma2lt, M> + M+. (24)

Equation (17) for n=2 provides

<q, Ml2lu, M> = [ 2 M(M- 1)]l/2<1, Mir, M- 2>. (25)

Finally, we find the following expressions for the variances:

(Ax) 2 = [11
2 M(M- 1)] 1/2<r/, Mir, M-2>- 2r/Mq, Mir, M- 1>2 + rM+ ,
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(Ap)2 = <t/, Mfi2r/, M> = - [q2M(M- 1)] 1/2<q, Mj, M- 2> + CM+ 2.

349

(27)

The squeezing properties of the binominal states are therefore determined by the
matrix elements <q,Ml/,M-1> and <,M[l,M-2>, as functions of r/ and M.
These matrix elements are easily expressed as finite series which can be evaluated
numerically. The general result is

. I M 

<O1, M l1, .l>= L- /A;~/$;A,,
n =l)

(28)

where M< is the smaller of M and M'.
In the next subsection we present the results of numerical calculations

demonstrating the squeezing patterns of the 1/, M> states.

2.2. Parametric study of squeezing in the pure binomial state
The pure binomial state is indeed squeezed under certain conditions. This is

illustrated graphically in figure 1 where we plot (Ap) 2 versus (Ax) 2 for the state

It/, M>. The point (, -) represents a nonsqueezed minimum uncertainty state, viz.
the coherent state. The vertical and horizontal dashed lines are the squeezing
boundaries for (Ax) 2 and (Ap)2 , respectively (e.g. points to the left of the vertical
dashed line are squeezed in x). The dashed hyperbola (Ap) 2 (Ax) 2 =¼ represents the
locus of minimum uncertainty states (the r,c> states), all of which exhibit squeezing,
with the exception of the coherent state [6]. Points lying on the hyperbola away from

3.5
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(Ap) 2

2.0

1.5

1.0

0.5

0.0
0 0.5 1.0 1.5 2.0 2.5

(A x )2

Figure 1. (Ap) 2 versus (Ax)2 for the binomial state lr, M>.



D. Stoler et al.

(2, ) are both squeezed and minimum uncertainty, whereas those lying between the
hyperbola and the dashed lines are squeezed but not minimum uncertainty. The
solid curves represent explicit results for the binomial state with M= 1, 2, 4, 10, and
40. M= 1 represents the Bernoulli state. These curves all intersect (, ) for q = 0
(where the binomial state degenerates to the vacuum state), and spiral away from this
point as increases. For q sufficiently low, the binomial states exhibit squeezing as
well as almost minimum uncertainty behaviour (as we have already pointed out,
these states cannot be precisely minimal). As / increases they maintain their
squeezed properties while losing their low uncertainty properties. Finally, above a
certain threshold qijh(,'V), the curves fall to the right of the ertical dashed line
indicating nonsqueezed, non-minimal behaviour. The maximum squeezing attain-
able increases with .11 and is achieved for an intermediate value of 11. For example
when = 40, maximal squeezing is achieved for - _- 08. At this value (Ax) 2 - 0 12
and the minimum uncertainty product (Ap)2 (Ax)2 031. Of course, as -1l for
arbitrary M, the binomial state 1,M> approaches the number state In =M>,

for which (Ap) 2 = (Ax)2 =M+2 (the number-state limit is evident in figure 1 for
M= 1, 2). Since for In = 40> we have (Ax)2 = 40'5 and (Ap)2 (Ax) 2

= 1640'25, it is clear
that the loss of squeezing and low uncertainty product sets on rapidly as q increases
from 08 to 1 ). We recall that the results presented here are derived for real

coefficients f. For complex coefficients, the mean momentum <q, Ml/[l, M> #0
and p will exhibit squeezing for certain choices of the phases.

When M= 1 the pure binomial state reduces to the pure Bernoulli state which is
squeezed for < and maximally squeezed for =. Explicit results for the
squeezing have been derived for complex coefficients. The properties of the resulting
generalized Bernoulli state will be discussed in detail in § 3.

2.3. The generalized and mixed binomial state
The most general pure state whose counting distribution is binomial is obtained

by multiplying the coefficients fi' by arbitrary phase factors so that

M

,M,'O~>= cn>, (29)
n 0

C, =n exp (it),,).

The properties of such a state will be dependent on the choice of phases. If the phases
are allowed to be random, the result is a mixed state with a density operator whose
diagonal elements in an n state representation pNn are given by the binomial
distribution. Because of the presence of so many parameters in equation (29), it is
difficult to determine regions in this M dimensional parameter space where
squeezing occurs.

3. Squeezing properties of the Bernoulli state
Consider electromagnetic radiation in a mixed state whose density operator is

defined by the number-state representation matrix elements

Klpll>=n,
(o1PIO> =1 ,
<OIP1O> = 1 - 1, (30)
<1 IpIO> = R[/(1 -_ )] 2 exp (i4),

(Opl1 > = R[1(I - q) /2 exp (- i),
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with all other elements being zero. We refer to this state as the mixed Bernoulli state.
When R = 1, it becomes the generalized Bernoulli state,

I, 4> = (1 -r/)l/210> +±l
112 exp (i0)l >.

When = 0, the state becomes the Bernoulli state (which is a special case of the
binomial state discussed in detail in § 2).

It is apparent that mixed Bernoulli-state light has a Bernoulli photon-counting
distribution (which is sub-poissonian) and is therefore also antibunched. The
squeezing properties of the mixed Bernoulli state depend on the parameters /, , and
R. Expressions for the position/momentum mean and variance turn out to be

<x> = R[2i/(1 - )] 1/2 cos 0, (31 )

<fi> = R[2/(1 - )] 1/2 sin 0, (32)

(Ax) 2
= +q- - R2[2/(1 -- ) cos 2 ], (33)

(Ap) 2 = + q - R2[2q(1 - ) sin 2 4]. (34)

3.1. The pure generalized Bernoulli state
We first examine the conditions for squeezing in the special case R = 1, i.e. for the

pure state. For 0 =m7r, m=O, 1, 2, . . ., the results reduce to the ordinary Bernoulli
state (<fi> = ) presented in figure 1 (M= 1). For = 7r/2 + m7r, the roles of x and p
interchange, with p exhibiting squeezing and <x>=0. For q=7r/4+ mr/2, there is
complete symmetry between x and p such that

(Ap)2 = (Ax)
2

=1+ 12, (35)

and neither quadrature component is squeezed.
Equations (33) and (34) [with R= ] may be combined in any number of ways,

leading to several simple but useful expressions:

(Ap)
2 + (Ax)

2
= 1 + 2,

2
, (36)

(Ap) 2 - (Ax)2 = 2q(1 - /) cos 24, (37)

(Ap) 2(Ax) 2
= + 2r/3 + [(1 -_ )]2 sin 2 20. (38)

In figure 2 we plot equations (33) and (34), with R= I (solid curves) along with
equation (36) (diagonal solid lines). Parametric values for q and are given in the
figure. Also shown are the squeezing boundaries (dashed vertical and horizontal
lines) and the minimum-uncertainty hyperbola. Squeezing is maximized for 0 = 0 or
7z/2, and is altogether absent for = 7r/4. As 4 increases from 0 toward 7r/4, both the
range of over which squeezing occurs, and the maximum squeezing attainable,
decrease.

Simple analytical expressions can be derived for these quantities. The maximum
value of r below which squeezing is obtained (denoted x p) is determined from the
definition (Ax)2 <' or (Ap) 2

<, which leads to

/x = 1 -(2cos 2 4) ), (39)

351

qP=1 -(2 sin 2 0)-l (40)



352 D. Stoler et al.
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(A p)2

0
0 1 2 3

(Ax) 2

Figure 2. (Ap) 2 versus (Ax) 2 for the generalized Bernoulli state It, d>.

Of course, is lower bounded by 0 so there may be no range where p or x is squeezed
(e.g. for =0, p is never squeezed). The optimal value of / (denoted 1xo, ) for
maximal squeezing turns out to be just half the maximum, i.e.

xo =[1-(2 cos 2 ) 1], (41)

0po =[1 -(2 sin 2 (42) 1].2 ~~~~~~~~~~~(42)
There are a few special conditions that are of interest. For =0 we recover the

vacuum state 1 = >, n =0> whereas for = I we recover the number state n = >.

3.2. The mixed Bernoulli state
We now consider the situation for arbitrary R. It is of interest to determine the

range of values of R, , and for which squeezing occurs, i.e. for which either (Ax) 2

or (Ap) 2 in equations (33) and (34) are less than .

It is convenient to transform the parameters (, , R) into three new parameters
which are recognized as components of the Bloch vector for this two-level system:

r 1 = 2R[r(1 - )]12 cos = 21 /2 <,> 

r2 = 2R[tq(1 __ )] /2 sin q = 2 <Pi> (43)

r3 =2q1-1. J
We are now in a position to indicate regions of squeezing in the parameter space
(rl, r2 , r3 ). The locus of points of constant R is the ellipsoid of revolution,

(r2 + r)/R 2 + r2 = 1.
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For the pure state (R = 1) this becomes a sphere of unity radius. The north and south
poles of this sphere correspond to the number state In = 1 > and the vacuum state 10>
respectively. The phase is the angle that the projection of the vector (rl, r2 , r3 ) in
the (r1, r2 ) plane makes with the r1 axis.

In figure 3 the regions of squeezing in both x and p are schematically illustrated
by the hatched surfaces for two values of R. Squeezing can be achieved in the
following situations:

(a) when R= 1, r3 must be negative ( < ); the range of permitted values of q
increases as r3 decreases;

(b) for R < 1, the squeezing range is reduced; r3 must be more negative and the
range of permitted values of 0 is narrower;

(c) as R is reduced further, a value is reached (R = 2- 1/2) below which squeezing
cannot be attained regardless of the values of the other parameters.

3.3. Generation of Bernoulli-state light
The generalized Bernoulli state represents a normalized combination of the zero

and one photon states with the appropriate complex coefficients. Random coeffi-
cients result in the mixed Bernoulli state. The Bernoulli state should provide a
description of the field resulting from 'single-photon emission' from an atom (or a
molecule or an ion) when a route for nonradiative decay exists. An example of this
kind is discussed below.

Consider a large vessel containing an N2 molecule selectively excited to the v = 1
level, together with CO 2 gas of variable pressure. Vibrationally excited N2 cannot
decay by an electric-dipole transition since it is homonuclear; it therefore has a very
long lifetime. The molecule can de-excite nonradiativelh by collision with a CO,2
molecule; indeed this is the preferred method of excitation in CO 2/ N2 /He lasers [7].
The vessel is assumed to be sufficiently large so that wall collisions can be ignored.

x IS SQUEEZED IO> pISSQUEEZED o10>

PURE STATE MIXED STATE
(a) (b)

Figure 3. Bloch-vector diagram for the Bernoulli state. The left and right lobes of the
hatched areas in each figure represent regions of squeezing in x and p, respectively. The
sphere in (a) represents the pure generalized Bernoulli state. The ellipsoid of revolution
in (b) represents a mixed Bernoulli state; the reduced region of squeezing is evident. In
both cases, only two of the four lobes representing squeezing are visible from this
perspective

r, r2
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For a CO2 pressure that is vanishingly small the decay is exclusively by photon
emission and after a sufficiently long time q/ 1; for a large CO 2 pressure the decay is
by collision so that q<<c1. It is evident that the CO2 pressure may be adjusted to
provide any desired value of q. The radiation at 2359 cm - 1 from a single molecule of
N2 in this configuration is therefore expected to be in a Bernoulli state. Whether the
state is pure or mixed cannot be ascertained without formulating the problem in
terms of a hamiltonian.

4. Discussion
It has been shown that the binomial state is sub-poissonian, antibunched, and

squeezed for certain parameter ranges. Likewise, the mixed Bernoulli state may be
squeezed. Therefore, spontaneous photon emission from a single atom may
simultaneously exhibit all of these effects under prescribed conditions. -host
proposed methods for generating squeezed-state light involve nonlinear optical
processes [8]. They are hampered by the complexities and small magnitudes
expected from such schemes [9]. A one-photon interaction that leads to a mixed
Bernoulli state is provided by the Jaynes-Cummings hamiltonian when the two-
level atom is initially in the excited state and the field is in the vacuum state. That
state, however, is not squeezed. Meystre and Zubairy [10] have demonstrated that
this system can lead to squeezing when the initial radiation field is in a coherent state.
Resonance fluorescence radiation is also expected to simultaneously exhibit these
three nonclassical characteristics [11].

Once generated, sub-poissonian light of whatever form is subject to two
deleterious effects: Bernoulli random deletion resulting from optical loss (partition
noise) and additive independent Poisson noise from the background and the
detector. It has been demonstrated that both of these effects dilute the sub-
poissonian nature of a light beam but fortunately do not destroy it [12,13]. Under the
effects of random deletion, the binomial photon-counting distribution retains its
form but exhibits a variance that increases toward the mean as the deletion becomes
stronger. Loudon and Shepherd have similarly shown that absorption and diffrac-
tion losses reduce the squeezed nature of a light source; indeed the reduction factor
turns out to be the same as that affecting the optical intensity [14]. The antibunching
properties of light, on the other hand, are unaffected by random deletion [14].
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Appendix

Expansion of coherent state in binomial-state basis
The coherent state t> may be defined by the condition

611> = 000, (A 1)

where is an arbitrary complex number. The expansion of > in the number-state
basis is well known:

x
n

[ot>= ep (-[lal2/2) ~Y ~!n) (A2)
tl=0 nI >
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The expansion that we wish to derive is

lac>= CMI/, M. (A 3)
M=O

Multiplying equation (A3) on both sides by i, and using equation (13), gives

alo>= E (AM)i/2CMII, M-1 >
M=1

= E [r(M+ 1)]1/ 2 CM+ l1, M>
M=O

= E Cl1, M. (A 4)
M=O

The last two forms of equation (A 4) yield the recursion relation

[q(M+ 1)] 1/2 CM + 1 = OCM. (A 5)

When -0 with M finite, all lI, M> states become the vacuum state so that the
expansion of the coherent state cannot then be accomplished except for the trivial
case la = 0> = 1>

The general solution to equation (A 5) is given by

CM = k , (A 6)

where k(a, , M) is an arbitrary constant that is chosen to normalize lt>. The desired
expansion is therefore

la> = E k(a, /-, M)(M=O Ml(A 7)
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