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1 Introduction

Adding time to the relational model has been a daunting task [1, 2, 3, 4]. More
than two dozen time-extended relational data models have been proposed over the
last fifteen years [5]. Most of these avalid-timemodels. Each fact in a valid-

time relation has associated the time when it is true in the modeled reality. Other
models supporransaction-timeelations where each fact has associated the time
when it is current in the database. A few support both valid and transaction time
[6, 7, 8, 9, 10]; such models are termigitemporal As a whole, these data models

are referred to aemporaldata models [11].

This chapter introduces the data model upon which TSQL2 is based. A data
model can be said to consist of a query language, objects manipulated by the query
language, an update language for updating the objects, and a mechanism for spec-
ifying integrity constraints. In this chapter we focus on the objects, temporal rela-
tions. Subsequent chapters will address historical selection and projection, aggre-
gates, and the other aspects necessary to define a comprehensive extension to SQL
incorporating time.

While existing data models differ on many dimensions, perhaps the most
frequently stated distinction is between tuple timestamping and first normal form
(1NF), on one hand, and attribute-value timestamping and non-1NF, on the other.
Each of the two approaches has associated difficulties. Remaining within 1NF (an
example being the timestamping of tuples with valid and transaction start and end
times [8]) may introduce redundancy because attribute values that change at differ-
ent times are repeated in multiple tuples. The non-1NF models, one being time-
stamping attribute values with sets of intervals [12], may not be capable of directly
using existing relational storage structures or query evaluation techniques that de-
pend on atomic attribute values.
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362 THE TSQL2 QUERY LANGUAGE

Today there exists a plethora of incompatible data models and query lan-
guages, with a corresponding surfeit of model- and language-specific database de-
sign and implementation strategies. It is our contention that the simultaneous focus
on datapresentatior(how temporal data is displayed to the user), on dadeage
with its requisite demands of regular structure, and on efficasty evaluations
a major reason why such a large number of very diverse data models exists. Fur-
ther, we find that these simultaneous foci have complicated existing data models
and made them less suited for the central task of capturing the time semantics of
data.

Consequently, we advocate a very simptmceptual,unifying data model
that captures the essential semantics of time-varying relations, but has no illusions
of being suitable for presentation, storage, or query evaluation. For the other tasks,
it is possible to use the existing data models. Specifically, the notienagbshot
equivalencanay be used to demonstrate equivalence mappings between the con-
ceptual model and sevenapresentationamodels [13]. Snapshot equivalence for-
malizes the notion of having the same information contents and is a natural means
of comparing rather disparate representations. Two relation instances are snapshot
equivalent if all their snapshots, taken at all times (valid and transaction), are iden-
tical.

Facts in temporal relations (valid-time, transaction-time, or bitemporal) have
associated times. Thus, in the next section, we start by examining the time domain
itself. In Section 3, we then review, in turn, how times have previously been as-
sociated with facts of valid-time, transaction-time, and bitemporal relations. This
review, and subsequent comparison, of 23 existing temporal data models provides
context for presenting the TSQL2 data model. The bitemporal conceptual relation
is presented in Section 5. We summarize the chapter in Section 6.

2 Dimensions of Time

In this section, we focus on the various dimensions of time. In the next section, we
show how previous proposals have combined time with facts to model time-varying
information.

Time is multi-dimensional [14].Valid time concerns the time when a fact
Is true in reality. The valid time of an event is the wall clock time at which the
event occurred in the modeled reality, independent of the recording of that event in
some database. Valid times can be in the future, if it is known that some fact will
become true at a specified time in the futuf@ansaction timeconcerns the time
the fact was present in the database as stored data. The transaction time (a set of
intervals) of an event identifies the transactions that inserted the information about
the event into the database and removed this information from the database. Note
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that these two time dimensions are orthogonal. A data model supporting neither is
termedsnapshatas it has no built-in support for any of these notions of time. A
data model supporting only valid time is termealid-time one that supports only
transaction time is termetansaction-timeand one that supports both valid and
transaction time is termebitemporal(temporalis a generic term implying some
kind of time support [11]).

While valid time may be bounded or unbounded (as we saw, cosmologists
feel that it is at least bounded in the past), transaction time is always bounded on
both ends. Specifically, transaction time starts when the database is created (before
which time, nothing was stored), and does not extend past now (no facts are known
to have been stored in the future). Changes to the database state are required to be
stamped with the current transaction time. As the database state evolves, transaction
times grow monotonically, and successive transactions have successive transaction
times associated. In contrast, successive transactions may mention widely varying
valid times.

The two time dimensions are not homogeneous—transaction time has a dif-
ferent semantics than valid time. Valid and transaction tanesorthogonal, though
there are generally some application-dependent correlations between the two times.
As a simple example, consider the situation where a fact is recorded as soon as it
becomes valid in reality. In suchspecializeditemporal database, termdédgener-
ate[15], the valid and transaction times of a fact are identical. As another example,
if temperature measurements in a chemical experiment are recorded at most two
minutes after they were measured, and if it takes at least five seconds from the mea-
surement time to record the measurement, then such a datallat®yisd strongly
retroactively bounded with bounds five seconds and two minutes

3 Previous Data Models

The previous section explored models for the time domain itself. In this section, we
discuss the association of facts with times. Specifically, we survey 23 existing data
models that have been proposed over the last fifteen years. We consider each model
in turn, starting with valid-time models, continuing with transaction-time models,
and ending with bitemporal models. As a foundation, we initially define underlying
concepts. Following the survey, we compare and categorize the data models with
respect to fundamental design decisions.

3.1 Underlying Concepts

It is advantageous to examine several central concepts before each of the proposed
data models are considered in turn.
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Timestamp Types

We may distinguish between three semantically different types of time values, name-
ly single chronons, sets of consecutive chronons, and arbitrary sets of chronons.
These are termeelventsintervals andtemporal elemenisespectively [11]. (We
use consensus terminology in this chapter. The TSQL2 equivalents for events and
intervals, used in the language definition degetimesand periods respectively.
“Temporal element” is defined identically by TSQL2 and the consensus glossary.)

A single event may be represented by a single, atomic, chronon-valued at-
tribute. An interval may be represented by a pair of atomic attribute values, each
of which is a chronon or a point in time. If the later representation is adopted, the
interval may be defined as open, half-closed, or closed. An interval may also be
encoded in a single, atomic, interval-valued attribute. An arbitrary set of chronons
may be represented by a non-atomic attribute value. This value may be a set of
intervals, each interval defining a set of consecutive chronons, or it may simply be
a set of chronons. Finally, sets of multiple chronons, consecutive or not, may be
represented via multiple tuples, one tuple per chronon or one per interval.

This discussion applies to both transaction time, valid time, and the combi-
nation of valid and transaction time. For exampldyi@mporal elemenis a set
of bitemporal chronon# the transaction-time/valid-time space, and can be repre-
sented simply as a set of bitemporal chronons, as a set of contiguous or overlapping
rectangles, or via multiple tuples, one tuple per bitemporal chronon or bitemporal
rectangle.

Attribute Variability

Attributes are commonly categorized based on how they interact with tinieneA
invariantattribute [16] does not change over time.

The key value in atuple of a relation instance is commonly used to identify the
object, entity or relationship, in the modeled reality. If the key value changes, the
tuple represents another object. Thus, the key of a relation schema is time invariant
in such models. For example, attribute Name is a time-invariant key in relation
schemarR = (Name, Course) recording the courses taken by a student population.
Time invariance is not restricted to key attributes. The attribute “place of birth” is
an example. Note that time invariance generally is applied to valid time. The place
of birth might have been in error; in that case, the old tuple would be (logically)
deleted and a new tuple with the correct place of birth inserted.

Other models identify the objects that the tuples in a relation instance rep-
resent by means of surrogates which are system-generated, unique identifiers that
can be referenced and compared for equality, but not displayed to the user [17].
Surrogates are by definition time invariant.



THE TSQL2 DATA MODEL 365

The opposite of time invariant i8me varying Examples abound. In the
schemaR above, the courses taken by a student varies over time, and the attribute
Course is time varying.

Thevalueof an attribute may be drawn from a temporal domain. Such tem-
poral domains are termadser-defined timgl4]; other than being able to be read
in, displayed, and perhaps compared, no special semantics is associated with such
domains. Interestingly, most such attributes are time-invariant. The attribute “time
of birth” is an example.

Implicit Versus Explicit Timestamps

In some data models, the association of times with facts is implicit; in other models,
this association is represented by fully explicit timestamp attributes. We shall now
see how this distinction is relevant to three aspects of a data model: update language,
display of data, and query language.

The transaction times of facts are supplied by the system itself. Thus, update
languages of transaction-time models treat the temporal aspect of facts implicitly.
In contrast, the valid times of facts are usually supplied by the user. Thus, update
languages of valid-time and bitemporal data models generally must treat time ex-
plicitly and are forced to represent a choice as to how the valid times of facts should
be specified by the user. At best such data models can allow the the user to choose
between several formats.

If, in a data model, it is possible to display directly temporal facts, i.e., facts
with associated times, then, as for update, the data model necessarily must treat
time explicitly. At best, the model may allow a variety of display formats for tem-
poral facts. Unlike for update, the possibility exists that temporal facts cannot be
displayed. This option is especially feasible for the relatively simple transaction
time models, and thus the display of facts in these models need not reveal how time
Is associated with facts.

The query language aspect of the distinction between implicit and explicit
timestamps is by far the most complex. If the temporal aspects of facts are repre-
sented by attributes, and it is possible in the query language to directly access these
attributes then the temporal attributes are just like other attributes—they are explicit.
On the other hand, if the timestamp attributes used for associating times with facts
are not accessible directly through the query language, but are instead processed
internally by queries, then the particular scheme for associating timestamps with
facts is invisible to the user of the query language.
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Temporal Homogeneity

When several temporal facts pertain to the same object (usually the objectis a tuple),
the concept of temporal homogeneity surfaces. A tuplerrgoorally homogeneous
if each of its facts are defined over the same temporal element [12]. A temporal
relation is said to be temporally homogeneous if its tuples are temporally homoge-
neous [11]. Further, atemporally homogeneous relation schema s restricted to have
only temporally homogeneous relation instances. In addition to being specific to a
type of object, homogeneity may be applied to both the valid and the transaction
time dimension.

The motivation for homogeneity arises from the fact that the process of deriv-
ing a snapshot from of a homogeneous relation does not produce null values.

Certain data models assume temporal homogeneity. Models that employ tuple
timestamping rather than attribute value timestamping are necessarily temporally
homogeneous—only temporally homogeneous relations are possible.

Value Equivalence and Coalescing

Two tuples are termedalue equivalenif, when disregarding special timestamp
attributes, they are identical. A relation instancec@alescedf overlapping or
consecutive, value-equivalent tuples are disallowed. Here “overlapping” and “con-
secutive” are with respect to the timestamp attribute value(s) of the tuples, which
must specify a single chronon or a set of consecutive chronons.

When timestamps of tuples have temporal elements as values, the requirement
of coalescing is identical to the requirement that there be no value-equivalent tuples
present.

3.2 Overview

Over two dozen extensions to the relational model to incorporate time have been
proposed over the last 15 years. With a focus on the types of relations they provide,
we now review 23 of these temporal data models.

Table 1 lists most of the temporal data models that have been proposed to
date. If the model is not given a name, we appropriate the name given the associated
query language, where available. Many models are described in several papers; the
one referenced is generally the initial journal paper in which the model was defined.
Some models are defined only over valid time or transaction time; others are defined
over both. The last column indicates a short identifier which denotes the model; the
table is sorted on this column.

We omit a few intermediate data models, specifically Gadia’s multihomoge-
neous model [18], which was a precursor to his heterogeneous model (Gadia-2),
and Gadia’s two-dimensional temporal relational database model [19], which is a
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Data Model Citation Time Identifier
Dimension(s)

— [14] both Ahn
Temporally Oriented Data Model [27] valid Ariav
Time Relational Model [6] both Ben-2Zvi

— [21] valid Brooks
Historical Data Model [26] valid Clifford-1
Historical Relational Data Mode| [35] valid Clifford-2
Homogeneous Relational Model [12] valid Gadia-1
Heterogeneous Relational Modegl[41] valid Gadia-2
TempSQL [53] both Gadia-3
DM/T [47] transaction Jensen
LEGOL 2.0 [24] valid Jones
DATA [45] transaction Kimball
Temporal Relational Model [43] valid Lorentzos

— [50] both McKenzie
Temporal Relational Model [16] valid Navathe
HQL [29] valid Sadeghi
HSQL [32] valid Sarda
Temporal Data Model [34] valid Segev
TQuel [8] both Snodgrass
Postgres [46] transaction | Stonebraker
HQuel [37] valid Tansel
Accounting Data Model [10] both Thompson
Time Oriented Data Base Mode| [22] valid Wiederhold

Table 1: Temporal data models
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precursor to Gadia-3. We also do not include the data model used as the basis for
defining temporal relational completeness [20] because it is a generic data model
purposefully designed not to force decisions on most of the aspects to be discussed
here.

We first examine the valid-time models that timestamp tuples, then discuss
those that timestamp attribute values. We'll proceed chronologically (of course!)
We then examine the transaction-time models, and conclude with the bitemporal
models that support both valid and transaction time.

3.3 Valid-time Models

Approximately half the proposed temporal data models support only valid time.

Brooks The first academic treatment of time in databases was the dissertation
of Frederick Brooks, Jr., which proposes a three-dimensional view of a valid-time
database [21]. Subsequent proposals, notably Ahn, Ariav, Clifford-1 and McKen-
zie, have emphasized this fruitful “cubic” analogy.

Wiederhold The data model associated with the Time Oriented Data Base (TOD)
was developed specifically to support medical applications. In this pioneering
model, relations were sets of entity-attribute-time-value quadruples [22] or, for each
attribute, sequences of events represented as pairs of visit number and value or in-
tervals represented as sequences of pairs of visit numbers and sequences of values
[23]. Timestamping is indirect through the visit number; a separate array associates
each visit with a particular date. This was probably done because many measure-
ments are taken each visit. This structure was further elaboratedeasequences

in Segev’s model.

Example 1 For the patient whose record is shown in Figure 1 [23], John Smith’s
temperature was recorded during visit 1 (July 24, 1970, as recorded in the DATE_AR-
RAY) as 371°. He experienced two episodes of hepatitis, the first from visits 3 to
17, with a maximum of 850 International Units of SGOT during that interval of
time. a

Jones LEGOL 2.0[24]is a language designed to be used in database applications
such as legislative rules writing and high-level system specification in which the
temporal ordering of events and the valid times for objects are important. It was the
first time-oriented algebra defined; it introduced many of the features found in later
algebras.

Objects in the LEGOL 2.0 data model are relations as in the relational data
model, with one distinction. Tuples in LEGOL 2.0 are assigned two implicit time
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P327
¥

Name— “John Smith”

¥
Dates—> DATE_ARRAY

!
Temperatures— (1, 37.1)— (2, 37.3)— (3, 37.0)

\
Hepatitis— (Intervals (3, 17), (21, 26)— (Interval-Values (850, 1235))

Figure 1: A time-oriented record for a hypothetical patient

Name Course Start Stop
Bill English 1 1
Bill English 3 4
George English 1 2
George Math 5 6

Figure 2: An example relation with time

attributes, Start and Stop. The values of these two attributes are the chronons corre-
sponding to the (inclusive) end-points of the interval of existence (i.e., valid time) of
the entity or relationship in the modeled reality represented by a tuple; these values
are specified during data entry by the user.

Example 2 Let R be a relation schema in LEGOL 2.0 that records the courses
taken by a student population. The schema has the two explicit attributes, Name
and Course. An instance & is shown in Figure 2. We use 1 to represent the Fall
semester 1980, 2 to represent the Spring semester 1981, and so on. Later examples
will show the semantically equivalent representation of this instance in other data
models. Because the data models all define relations differently and, in some cases,
require implicit attributes, we show all relation examples in tabular form for both
clarity and consistency of notation. This relation shows that Bill was a student in
the English course for the Fall 1980 semester and for the Fall 1981 and Fall 1982
semesters. O

Clifford-1 In the Historical Database Modelan additional, chronon-valued at-
tribute, STATE is part of each relation schema. A boolean attribEISTS, is
also added to indicate whether the particular tuple exists for that state [25, 26].
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Ariav  In the Temporally Oriented Data Model, a valid-time relation is a sequence
of snapshot relation states, indexed by valid time, termedalte cubg27]. Asso-
ciated with this data model is a calculus-based query language, TOSQL.

Navathe The Temporal Relational Model [28] and its associated algebra were
defined primarily to support TSQL [16], a temporal extension to SQL defined in
the same paper. This valid-time model allows both non-time-varying and time-
varying attributes, but all of a relation’s attributes must be of the same type. Ob-
jects are classified as: snapshot relations, whose attributes are all non-time-varying,
and valid-time relations, whose non-key attributes are all time-varying. Each tu-
ple has associated an interval of validity which is recorded in two mandatory time
attributes, Time-start and Time-end. The structure of a valid-time relation in the
Temporal Relational Model is the same as that of a valid-time relation in LEGOL
2.0 (Figure 2), with one additional restriction: Value-equivalent tuples, although
allowed, are required to be coalesced.

Sadeghi Sadeghi's data model [29] is similar in many ways to Navathe’s. It was
designed to support the calculus-based valid-time query language HQL [30], which
in turn is based on DEAL [31]. In Sadeghi’s data model, all objects are valid-time
relations. Two implicit attributes, Start and Stop, record the end-points of each
tuple’s interval of validity. Hence, the structure of a valid-time relation in Sadeghi’s
model is also the same as that of the valid-time relation in LEGOL 2.0 (Figure 2).
Sadeghi’'s data model requires coalescing.

Sarda Sarda’s data model and associated algebra [33] were designed to support
the calculus-based query language HSQL [32]. This model associates valid time
with tuples. Objects can be either snapshot or valid-time relations. Unlike the data
models mentioned previously, Sarda’s model represents valid time in a valid-time
relation as a single, non-atomic, implicit attribute named Period. Also unlike the
previous models, a tuple in Sarda’s model is not considered valid at its right-most
boundary point, i.e., the interval is closed on the left and open on the right.

Example 3 The relation in Figure 3 is a valid-time relation instance in Sarda’s
model. The first two tuples signify that Bill was enrolled in English during the Fall
semester 1980 and the Fall semesters 1981 and 1982, but not during the Spring
semester 1981. O

The remaining data models employ distinct non-first-normal form data mod-
els, with attribute value timestamping and perhaps with multiple values per at-
tribute. The non-atomicity of attribute values is due to their time-varying nature;
any timeslice will usually be in first normal form. Hence, the data models are an
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Name Course Period
Bill English 1...2
Bill English 3...5
George English 1...3
George Math 5...7

Figure 3: The example relation in Sarda’s data model

extension of the conventional (1NF) relational model; the representation, viewed
as a normal relation, is certainly not in 1NF, but then the operators included in
the models do not operate on conventional relations—they operate on valid-time
relations, which are extensions of conventional relations.

Segev The principal structure of the Temporal Data Model is tinge sequence
which is a so-called surrogate value identifying the object along with a sequence
of time-value pairs [34]. There are a variety of time sequences, depending on the
assumptions made about the values at points of time intermediate to the points ex-
plicitly represented. For a bank account balance, step-wise constant behavior would
be assumed; for a time sequence recording the number of copies sold on a day for
a particular book, discrete behavior would be assumed; and for measurement of a
magnetic field taking at regular intervals, continuous behavior would be assumed.
A time sequence collectigiiSC) is then a set of time sequences.

Clifford-2 TheHistorical Relational Data Moddl35], a refinement of the model
associated with a valid-time algebra [36], is unique in that it associates timestamps
with both individual tuples and with individual attribute values of the tuples. The
data model allows two types of objects: a set of chronons, termif$pan and a
valid-time relation, where each attribute in the relation schema and each tuple in the
relation is assigned a lifespan. A relation schema in the Historical Relational Data
Model is an ordered four-tuple containing a set of attributes, a set of key attributes,
a function that maps attributes to their lifespans, and a function that maps attributes
to their value domains. A tuple is an ordered pair containing the tuple’s value and
its lifespan. Attributes are not atomic; rather, an attribute’s value in a given tuple
Is a partial function from a domain of chronons onto the attribute’s value domain.
The domain of chronons is defined as the the intersection of the lifespan for the
particular attribute and tuple. Relations have key attributes and no two tuples in a
relation are allowed to match on the values of the key attributes at the same chronon.

Example 4 Figure 4 illustrates the valid-time relation instance in the Historical
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Tuple Value Tuple Lifespan
Name Course
1 — BiIll 1 — English {1, 3, 4}
3 — BiIll 3 — English
4 — BIll 4 — English
1 — George 1 — English {1, 2, 5, 6}
2 — George 2 — English
5 — George 5 — Math
6 — George 6 — Math

Figure 4: The example relation in the Clifford-2 data model

Relational Data Model, whef®lame— {1, 2, 3,4,5, 6, 7, 8, 9, 20Course— {1,
2,3,4,5,6, 7, 8,9, 10 is the function assigning lifespans to attributes, and the
attribute Name is the key.

Because tuple lifespans are sets and because both Bill and George were never
enrolled in more than one course at the same time, we are able to record each of
their enrollment histories in a single tuple. If one had been enrolled in two or more
courses at the same time, however, his total enroliment history could not have been
recorded in a single tuple as attribute values are functions from a lifespan onto a
value domain. Note also that we have chosen the most straightforward represen-
tation for an attribute whose value is a function. Because attribute values in both
Clifford’s model and Gadia’s models, which we describe later, are functions, they
have many physical representations. O

Tansel Tansel's model [36, 37] was designed to support the calculus-based query
language HQuel [38] and, later, the Time-by-Example language [52]. The model
allows only one type of object: the valid-time relation. However, four types of at-
tributes are supported: Attributes may be either non-time-varying or time-varying,
and they may be either atomic-valued or set-valued. The attributes of a relation
need not be the same type, and attribute values in a given tuple need not be ho-
mogeneous. The value of a time-varying, atomic-valued attribute is represented as
a triplet containing an element from the attribute’s value domain and the bound-
ary points of its interval of existence while the value of a time-varying, set-valued
attribute is simply a set of such triplets.

Example 5 Figure 5 shows the valid-time relation instance in Tansel’'s data model,
where Name is a non-time-varying, atomic-valued attribute and Course is a time-
varying, set-valued attribute.
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Name Course

Bill { ([1, 2), English),
([3, 5), English) }

George { ([1, 3), English),
([5, 7), Math) }

Figure 5: The example relation in Tansel's data model

Name Course

[1, 2) U [3, 5) — BiIll [1, 2) U [3, 5) — English

[1, 3) U [5, 7) — George [1, 3) — English
[5, 7) — Math

Figure 6: The example relation in the Gadia-1 data model

The enroliment history of a student can be recorded in a single tuple, even
if the student was enrolled in two or more courses at some time. Note, however,
that each interval of enrollment, even for the same course, must be recorded as a
separate element of a time-varying, set-valued attribute. O

Gadia-1 Gadia’s homogeneous model [12] allows two types of objects: valid-
time elements [39] and valid-time relations. Valid-time elements are closed under
union, difference, and complementation, unlike intervals. The model requires that
all attribute values in a given tuple be functions on the same valid-time element,
l.e., homogeneity.

Example 6 Figure 6 depicts the relation instance in Gadia’s homogeneous model.
Here the intervalr1, t2) is the set of chronong&y, ---, r» — 1}. Again, we are

able to record the enroliment histories of Bill and George in single tuples only be-
cause they were never enrolled in more than one course at the same time (otherwise
multiple tuples are required). O

Bhargava’s 2-dimensional model [40] is an extension of Gadia’s homoge-
neous model; it supports both valid and transaction time. Many of the criteria
concerning transaction time that are satisfied by the data model discussed below
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are also satisfied by Bhargava’s data model.

Gadia-2 Gadia’s multihomogeneous model [18] and Yeung’s heterogeneous mod-
els [41, 42] are all extensions of the homogeneous model. They lift the restriction
that all attribute values in a tuple be functions on the same temporal element, in
part to be able to perform Cartesian product without loss of temporal information
caused by merging two timestamps into one. We consider here only the latest [41]
of these extensions. In this data model (termed Gadia-2), temporal elements may be
multi-dimensional to model different aspects of time (e.g., valid time and transac-
tion time). Attribute values are still functions from temporal elements onto attribute
value domains, but attribute values need not be functions on the same temporal
element. As a result of the lack of temporal homogeneity, some timeslices may
produce nulls. Relations are assumed to have key attributes, with the restriction that
such attributes be single-valued over their interval of validity. Also, no two tuples
may match on the ranges of the functions assigned to the key attributes. Hence,
in the previous example, the attribute Name would qualify as a key attribute in the
heterogeneous model.

Lorentzos TheTemporal Relational Modé#t3, 44] was the first to support nested
specification of timestamps using values of different granularity and to support peri-
odic events. As with the data models discussed above, this model associates times-
tamps with individual attribute values rather than with tuples. Although a timestamp
is normally associated with each of the attribute values in a tuple, a timestamp may
be associated with any non-empty subset of attribute values in a tuple. Furthermore,
no implicit or mandatory timestamp attributes are assumed. Timestamps are simply
explicit, numeric-valued attributes, to be viewed and updated directly by the user.
They represent either the chronon during which one or more attribute values are
valid or aboundary poinbf the interval of validity for one or more attribute values.

A timestamp in the Temporal Relational Model, like one in Sarda’s model, does
not include its right-most boundary point. Several timestamp attributes of nested
granularity may also be used together in a specification of a chronon.

Example 7 Let R be a valid-time relation schema in the Temporal Relational Model
defined byR = (Name, Course, Semester-start, Semester-stop, Week-start, Week-
stop) where all four timestamp attributes are associated with both Name and Course.
Assume that the granularity for the timestamp attributes Week-start and Week-stop
is a week relative to the first week of a semester. Figure 7 shows the an instance of
this relation schema. In this example, we specify the weeks during a semester when
a student was enrolled in a course. For example, Bill was enrolled in English dur-
ing the Fall semester 1980 for only the first 8 weeks of the semester. Note that the
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Name | Course | Semester-staftSemester-stopWeek-start) Week-stop
Bill English 1 2 1 9
Bill English 3 5 1 17
George| English 1 3 1 9
George| Math 5 7 9 17

Figure 7: The example relation in Lorentzos’ data model

meaning of the Week-start and Week-stop attributes is relative to the Semester-start
and Semester-stop attributes. O

The data model thus differs from the normal relational model only in that
certain columns are given a specific interpretation as representing the period of
validity of other column(s) in the relation.

3.4 Transaction-time Models

Transaction-time data models have the valuable property that the objeajsaired-
only.

Kimball Inthe data model termed DATA [45], the association of facts with times
is fully implicit. Being a transaction-time model, update operations avoid the ex-
plicit mention of time, and do not reveal how times and facts are associated. Next,
transaction-time relations cannot be displayed—only snapshot extracted from the
transaction-time relations can be displayed. Thus, display does not reveal the par-
ticular association of facts and time, either. Finally, the association of facts and
times is implicit in the query language—the notion of an explicit timestamp at-
tribute is absent. The consequence is that a user has no way of knowing whether,
e.g., timestamps are assigned on the attribute-value level or on the tuple level. Sim-
ilarly, there is no way to see whether transaction-time event, interval, or element
stamping is used.

The DATA data model is implemented using a combination of event-stamped
tuples and pointers to predecessor tuples.

Stonebraker The Postgres Data Model [46] supports transaction time. As for the
previous model, the association of facts with time is implicit with respect to the
update language, the query language, and the display of facts. Unlike the previous
model, display is not restricted to snapshot states as a relation containing all tuples is
a sequence of states may be displayed as well. Such a relation is still a conventional
snapshot relation.
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Name Course Time Op
Bill English 423 Ins
Bill English 427 Mod
George English 438 Ins
Bill English 452 Ins
George Math 487 Ins
George Math 495 Del

Figure 8: The example relation in Jensen’s data model

In the Postgres system, transaction-time relations are implemented using two
timestamp attributes specifying the time when the particular tuple is current in the
relation, i.e., when it will appear in a snapshot.

Jensen As in the previous two models, the association of facts with time is invis-
ible in the data model DM/T [47].

As a compensation for the inability to display and directly access timestamped
facts, DM/T contains a special system-generated and maintained transaction-time
relation, termed a backlog, for each user-defined transaction-time relation. This
log-like backlog contains the full, timestamped change history of the associated
user-defined relation. Backlog tuples, change requests, are stamped with a single
time value and an attribute with values that indicate whether an insertion, deletion,
or modification is requested. The timeslice of a backlog is a selection of the portion
that existed at the time of the time argument. Thus, the timestamps are present as
explicit attributes even after timeslice and may be accessed like any other attribute.

Example 8 Figure 8 illustrates a backlog, timesliced at transaction time 510, for a
user-defined transaction-time relation. At transaction time 423, it was recorded that
Bill took the Math course. This entry was then “modified,” without changing any
values at time, 427. O

3.5 Bitemporal Data Models

Bitemporal data models support both valid time and transaction time.

Ben-Zvi The Time Relational Mode]6] was the first bitemporal data model.

Two types of objects are defined: snapshot relations, as defined in the snapshot
model, and bitemporal relations. Bitemporal relations are sets of tuples, with each
tuple having five implicit attribute values. The attributes Effective-time-start and
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Effective | Effective | Registration| Registration| Deletion
Name Course || time-start| time-stop| time-start | time-stop | time
Bill English 1 1 423 427 —
George| English 1 2 438 438 —
Bill English 3 4 452 452 —
George| Math 5 6 487 487 495

Figure 9: The example relation in Ben-Zvi's data model

Effective-time-stop are the end-points of the interval of validity of the real-world

phenomenon being modeled; Registration-time-start is the transaction time of the
transaction that stored the Effective-time-start value; Registration-time-stop is the
transaction time that stored the Effective-time-stop value; and Deletion-time records
the time when erroneously entered tuples are logically deleted. An erroneous at-
tribute value may be corrected by deleting that tuple and inserting a corrected one.

Example 9 The relation instance in Figure 9 is a bitemporal relation in the Time
Relational Model over a relation schema with explicit attributes Name and Course.
Note that George’s enrollment in the Math course has been (logically) deleted.

Ahn In differentiating valid and transaction time, a four-dimensional data model
was used [48, 14]. Relational instances were illustrated as a sequence, stamped
with individual transaction times, of three-dimensional volumes, where one of the
dimensions was valid time (tuples were stamped with intervals).

Snodgrass In the data model associated with TQuel, four implicit attributes were
added to each relation: the transaction time of the transaction inserting the tuple,
the transaction time of the transaction logically deleting the tuple, the time that the
tuple started being valid in reality, and the time that the tuple stopped being valid in
reality [8, 9].

Example 10 Figure 10 shows, in the TQuel data model, the bitemporal relation
given in Figure 9. O

McKenzie McKenzie’s bitemporal model [49, 50] timestamps attribute values but
retains the requirement that attributes be single valued. This was done in an ef-
fort to achieve the benefits of attribute-value timestamping (e.g., the ability to per-
form a Cartesian product) without the implementation complexities of set-valued
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Name | Course Valid Transactiorn
Begin| End| Start| Stop
Bill English|| 1 oo | 423 | 427
Bill English|| 1 1 |427| ~©
George English|| 1 2 | 438 | o~
Bill English|| 3 4 | 452 | o0
George| Math 5 6 | 487 | 495

Figure 10: The example relation in Snodgrass’ data model

Name Course
(Bill, {1, 3, 4}) (English {1, 3, 4})
(George {1, 2}) (English {1, 2})
(George {5, 6}) (Math, {5, 6})

Figure 11: The example relation in McKenzie’s data model

attributes. The two types of objects in this model are the snapshot and valid-time
relations (a transaction-time relation is a sequence of snapshot relations; a bitempo-
ral relation is a sequence of valid-time relations, both indexed by transaction time).
The value of an attribute in a valid-time relation is always an ordered pair whose
components are a value from the attribute’s domain and a set of chronons. There
IS no requirement that the timestamps of any of the attribute values in a relation be
homogeneous, but relations are not allowed to have value-equivalent tuples.

Example 11 A valid-time relation instance in McKenzie’s data model is shown in
Figure 11. In this model, Bill's enrollment in English must be recorded in a single
tuple, otherwise the value-equivalence requirementis violated. George’s enroliment
history, however, cannot be recorded in a single tuple; an attribute may be assigned
only one value from its value domain. O

Transaction time was supported by indexing a sequence of valid-time states
with transaction time [51]. This data model also allowed the schema, and even the
class of the relation (i.e., snapshot, valid-time, transaction-time, or bitemporal) to
vary.

Gadia-3 In the data model associated with the calculus-based query language
TempSQL [53], attributes are timestamped with finite unions of rectangles in valid-
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Name Course
[1, oo] x [423 427] BIll [1, o] x [423 427] English
[1, 1] x [423 NOW] BiIll [1, 1] x [423 NOW] English
[3, 4] x [452 NOW] BIll [3, 4] x [452 NOW] English
[1, 2] x [438 NOW] Georgel [1, 2] x [438 NOW] English
[5, 6] x (487,495 Georgel [5, 6] x [487, 495 Math

Figure 12: The example relation in the Gadia-3 data model

time/transaction-time space [19], i.e., effectively bitemporal elements.

Example 12 Figure 12 shows the bitemporal relation given earlier, now as an in-
stance of a relation in the TempSQL data model. O

Thompson In the Accounting Data Model, tuples have, in addition to the natural
key, the static attributes, and the time-varying attributes, four timestamp attributes:
accounting start time, accounting finish time, engineering start time, engineering
finish time, as well as a boolean time warp attribute [10]. The accounting time
roughly corresponds to valid time, and the engineering time corresponds to trans-
action time (a more detailed comparison may be found elsewhere [54]). The time
warp attribute enables attribute values to change historically.

3.6 Summary
The following brief summary oversimplifies the data models in an effort to differ-
entiate them.

e Brookswas the first to consider time in the database (long before the relational
model was proposed!).

e Wiederhold was the first temporal model to be implemented.
e Jones was the first to define a time-oriented algebra.
¢ Clifford-1 attempted to model the semantics of natural language.

e Ariav exploited the three-dimensional analogue, where the third dimension is
valid time.

e Navathe defined his data model primarily to support his extension to SQL
called TSQL.

e Sadeghi’s data model was defined primarily to support his extension to DEAL
called HQL.
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e Sarda, Lorentzos and Tansel all incorporated operators to switch between an
interval representation and a single chronon representation. Lorentzos’ data
model, closest to the conventional relational data model, supports nested gran-
ularity timestamps and periodic time.

e Segev focussed on scientific data, collected generally at regular intervals by
multiple sensors.

e Clifford-2, Gadia-1, Gadia-2, Gadia-3, and Tansel all employ non-1NF data
models. Clifford-1 emphasizes associating timestamps with both the attribute
value and with the tuple; Clifford-2 associates timestamps with both attributes
and with tuples; Gadia-1 emphasizes the homogeneity property; Gadia-2 em-
phasizes the multi-homogeneous property; and Tansel includes four types of
attribute values.

e Kimball was the first implemented transaction-time model.

e Stonebraker has the most impressive implementation to date of a temporal
data model.

e Jensen used backlog relations to encode the changes made to transaction-time
relations.

e Ben-Zvi was the first to incorporate both transaction time and valid time.
e Ahn demonstrated that transaction time and valid time are entirely orthogonal.
e Snodgrass used a particularly simple bitemporal model to support TQuel.

e McKenzie timestamped attribute values but retains the requirement that at-
tributes have only a single value within a tuple.

o Gadia-3 effectively used bitemporal elements.
e Thompson focused on the use of temporal databases in accounting.

3.7 Comparison

The temporal data models just summarized may be compared by asking four ba-
sic questions: how is valid time represented, how is transaction time represented,
how are attribute values represented, is the mbdetogeneoysand is the model
coalesced

Valid Time

Two fairly orthogonal aspects are involved in representing valid time. First, is valid
time represented with single chronon identifiers (i.e., event timestamps), with inter-
vals (i.e., as interval timestamps), or as valid-time elements (i.e., as a set of chronon
identifiers, or equivalently as a finite set of intervals)? Second, is valid time as-
sociated with entire tuples or with individual attribute values? A third alternative,
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Event Interval Valid-time Element
Gadia-2
timestamped Lorentzos Brooks
attribute McKenzie Clifford-2
values Thompson Gadia-1
Tansel Gadia-3
Ahn
Ben-2Zvi
Jones
timestamped|, Ariav Navathe
tuples Clifford-2 Sadeghi
Segev Sarda
Snodgrass
Wiederhold

Table 2: Representation of valid time

associating valid time with sets of tuples, i.e., relations, has not been incorporated
into any of the proposed data models, primarily because it lends itself to high data
redundancy. The data models are evaluated on these two aspects in Table 2. Inter-
estingly, only one quadrant, timestamping tuples with an valid-time element, has
not been considered.

Transaction Time

The same general issues are involved in transaction time, but there are about twice
as many alternatives. Transaction time may be associated with

e a single chronon. When stamping a tuple identifying a change to a relation
state, the insertion of the tuple signifies the termination (logical deletion) of
the most recent tuple (if any) with an identical key value. An additional at-
tribute is required to indicate whether the newly inserted tuple only terminates
the previous tuple or also becomes part of the new state (e.g., the attribute Op
in Jensen). When an entire evolving state is stamped, no such attribute is ne-
cessary. One state is current from its chronon and until it is superseded by
a state with a higher chronon. Note that this alternative results in very high
redundancy when compared with the first alternative.

e an interval. A newly inserted tuple would be associated with the interval
starting at now and ending at the special vdll{e until-changed

e three chronons. Ben-Zvi's model records (1) the transaction time when the
valid start time was recorded, (2) the transaction time when the valid stop
time was recorded, and (3) the transaction time when the tuple was logically
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Single chronon Interval Three Element
(pair of chronons)| Chronons| (set of
chronons)
timestamped
attribute Gadia-3
values
timestamped Jensen Snodgrass Ben-Zvi
tuples Kimball Stonebraker
timestamped Ahn McKenzie
sets of Thompson
tuples
Table 3: Representation of transaction time
deleted.

e atransaction-time element, which is a set of not-necessarily-contiguous chro-
nons.

Another issue concerns whether transaction time is associated with individual at-
tribute values, with tuples, or with sets of tuples.

The choices made in the various data models are characterized in Table 3.
Gadia-3 is the only data model to timestamp attribute values; it is difficult to effi-
ciently implement this alternative directly. Gadia-3 also is the only data model that
uses transaction-time elements. Ben-Zvi is the only one to use three transaction-
time chronons. All of the rows and columns are represented by at least one data
model.

Homogeneity and Coalescing

Table 4 compares the models on the last two aspects. The name of the data model
is given in the first column. Whether the model is homogeneous in valid time is
indicated in the next column (c.f., Section 3.1). All the models are homogeneous
in transaction time. Tuple-timestamped data models, to be identified shortly, are
necessarily temporally homogeneous. All data models that use single chronons as
timestamps turn out to be temporally homogeneous as well. For data models that
only support transaction time, this aspect is not relevant.

The next column specifies whether the data model requires that tuples be co-
alesced in valid time (c.f., Section 3.1). No model is coalesced on transaction time.
Event-stamped data models are by necessity not valid-time coalesced.
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Data Model| Valid-time Valid-time Attribute
Homogeneous Coalesced Values
Ahn yes yes atomic
Ariav yes no atomic
Ben-Zvi yes no atomic
Brooks no ? atomic
Clifford-1 yes no atomic

Clifford-2 no no functional

Gadia-1 yes no functional

Gadia-2 no yes functional

Gadia-3 yes no functional
Jensen N/A N/A atomic
Jones yes no atomic
Kimball N/A N/A atomic
Lorentzos no no atomic

McKenzie no yes ordered pairg
Navathe yes yes atomic
Sadeghi yes yes atomic
Sarda yes no atomic
Segev yes no atomic
Snodgrass yes yes atomic
Stonebraket, N/A N/A atomic
Tansel no no atomic,
set-valued,

triplet,

set-triplet
Thompson yes no atomic
Wiederhold yes no atomic,

ordered pairg

Table 4: Comparison of temporal data models

383
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Attribute Value Structure

The final major decision to be made in designing a temporal data model is how to
represent attribute values. Six basic alternatives are present in the data models. In
some models, the timestamp appears as an explicit attribute; we do not consider
such attributes in this analysis.

e Atomic valued—values do not have any internal structure.
e Set valued-values are sets of atomic values.

e Functional, atomic valued-values are functions from the (generally valid)
time domain to the attribute domain.

e Ordered pairs—values are an ordered pair of a value and a (valid-time ele-
ment) timestamp.

e Triplet valued—values are a triple of attribute values, valid-from time, and
valid-to time. This is similar to the ordered pairs representation, except that
only one interval may be represented.

e Set-triplet valued-values are a set of triplets. This is more general than or-
dered pairs, in that more than one value can be represented, and more general
than functional valued, since more than one attribute value can exist at a single
valid time [37].

The last column of Table 4 specifies the attribute value structure associated with
each temporal data model.

In the conventional relational model, if attributes are atomic-valued, they are
considered to be ifirst normal form[55]. Hence, only the data models placed in
the first category may be considered to be strictly in first normal form. However,
in several of the other models, the non-atomicity of attribute values comes about
because time is added.

4 Context

The previously proposed data models arose from several considerations. They were
all extensions of the conventional relational model that attempted to capture the
time-varying semantics of either the reality being modeled, the state of the database,
or both. They attempted to retain the simplicity of the relational model; the tuple
timestamping models were perhaps most successful in this regard. They attempted
to present all the information concerning an object in one tuple; the attribute value
timestamped models were perhaps best at that. And they attempted to ensure ease
of implementation and query evaluation efficiency; the backlog representation may
be advantageous here.

It is clear from the number of proposed representations that meeting all of
these goals simultaneously is a difficult, if not impossible task. It is our contention
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Figure 13: Interaction of conceptual and representational data models

that focusing on datpresentatior(how temporal data is displayed to the user), on
datastorage with its requisite demands of regular structure, and on efficjaaty
evaluationhas complicated the central task of capturing the time-varying semantics
of data. The result has been, as we have seen, a plethora of incompatible data
models, with many query languages, and a corresponding surfeit of database design
and implementation strategies that may be employed across these models.

We therefore advocate a separation concerns. The time-varying semantics is
obscured in the representation schemes by other considerations of presentation and
implementation. We feel that theonceptualdata model to be discussed shortly
Is the most appropriate basis for expressing this semantics. This data model is
generally not the most appropriate way to present the stored data to users, nor is it
the best way to physically store the data. However, there are mappings to several
representationatiata models that, in many situations, may be more amenable to
presentation and storage, those representations can be employed for those purposes,
while retaining the semantics of the conceptual data model. Figure 13 shows the
placement of TSQL2's data model with respect to the tasks of logical and physical
database design, storage representation, query optimization, and display. As the
figure shows, logical database design produces the conceptual relation schemas,
which are then refined into relation schemas in some representational data model(s).
Query optimization may be performed on the logical algebra, parameterized by the
cost models of the representation(s) chosen for the stored data. Finally, display
presentation should be decoupled from the storage representation.

Note that this arrangement hinges on the semantic equivalence of the various
data models. It must be possible to map between the conceptual model and the
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various representational models, as will be discussed in Chapter 6, Section 3.

5 A New Data Model

We now present a new model, termed thitemporal conceptual data modedr
BCDM. This data model supports both valid and transaction time. It is designed
to be a conceptual data model, as opposed to a representational data model, in the
sense just described.

We begin by specifying the structural aspects of the time domain assumed by
the data model. In Section 5.2, we describe the objects (temporal relations) of the
model and consider how these objects may be updated.

5.1 The Time Domain

For both valid and transaction time domains, we assume the linear, discrete, bounded
structural model of time. We utilize chronons, as discussed in detail in [56, Chapter
25] on timestamp representation [57]. We assume that chronons have length (some
multiple or fraction of a “second”). We assume that valid and transaction time are
absolute. Relative times may be stored in relations as values of intrerval-typed at-
tributes; such user-defined times are not discussed further here. As we can number
the chronons, the domains are isomorphic to the domain of natural numbers.

5.2 Objects in the Model

Tuples in a bitemporal conceptual relation instance are associated with time val-
ues from both valid time and transaction time. For both domains, we assume
that the database system has limited precision; the smallest time unit is termed a
chronon[11]. The time domains have total orders and both are isomorphic to sub-
sets of the domain of natural numbers. The domain of valid times may be given
asDyr = {n, 12, ..., 1t} and the domain of transaction times may be given as
Drr = {t,t;, ... ,t]f} U {UC} whereUC is a distinguished value which is used
during update as will be explained later in this section. We expect that the valid
time domain is chosen so that some times are before the current time and some
times are after the current time.

We also define a set of attribute nanfes = {A1, Ao, ..., A,,} and a set of
attribute domain®p = {D1, Dy, ..., D,,}. In general, the schema of a bitem-
poral conceptual relatiorfg, consists of an arbitrary number of explicit attributes
from D4, A1, Ap, ... , A,, With domains inDp, encoding some fact (possibly
composite) and an implicit timestamp attribute, T, with dom@jry x Dy . Thus,
atuplex = (a1, az, ..., ay| tp), in abitemporal conceptual relation instancgy ),
consists of a number of attribute values associated with a timestamp value.
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An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tuplérige in the modeled realitgduring
each valid-time chronon in the subset. Each individual valid-time chronon of a
single tuple has associated a subset of the domain of transaction times, meaning
that the fact, valid during the particular chronongcigrent in the relationduring
each of the transaction time chronons in the subset. Any subset of transaction times
less than the current time and including the vali@ may be associated with a
valid time. Notice that while the definition of a bitemporal chronon is symmetric,
the explanation is asymmetric. This asymmetry is also present in the the update
operations to be defined shortly, and it reflects the different semantics of transaction
and valid time.

Thus, associated with a tuple is a bitemporal element, demgtednsisting
of bitemporal chronons (“tiny rectangles”) in the two-dimensional space spanned
by valid time and transaction time. Because no two tuples with mutually identi-
cal explicit attribute values (termadlue-equivalentare allowed in a bitemporal
relation instance, the full time history of a fact is contained in a single tuple.

In graphical representations of bitemporal space, we choosedhes as the
transaction-time dimension, and thexis as the valid-time dimension. Hence, the
ordered pair 4, v) represents the bitemporal chronon with transaction tiraad
valid timewv.

Example 13 Consider a relation recording employee/departmentinformation, such
as “Jake works for the shipping department.” We assume that the granularity of
chronons is one day for both valid time and transaction time, and the period of
interest is some given month in a given year, e.g., June 1992. Throughout, we
use integers as timestamp components. The reader may informally think of these
integers as dates, e.g., the integer 15 in a timestamp represents the date June 15th.

Figure 14 shows how the bitemporal element in an employee’s department
tuple changes. Employee Jake was hired by the company as temporary help in the
shipping department for the interval from time 10 to time 15, and this fact became
currentin the database at time 5. This is shown in Figure 14(a). The arrows pointing
to the right signify that the tuple has not been logically deleted; it continues through
to the transaction timelC(until_changejl

Figure 14(b) shows a correction. The personnel department discovers that
Jake had really been hired from time 5 to time 20, and the database is corrected be-
ginning at time 10. Later, the personnel department is informed that the correction
was itself incorrect; Jake really was hired for the original time interval, time 10 to
time 15, and the correction took effect in the database at time 15. This is shown in
Figure 14(c). Lastly, Figure 14(d) shows the result of three updates to the relation,
all of which become current starting at time 20. These three updates could have
been entered in a single transaction, or as separate transactions occurring during the
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same chronon. While the period of validity was correct, it was discovered that Jake
was not in the shipping department, but in the loading department. Consequently,
the fact (Jake, Ship) is removed from the current state and the fact (Jake, Load)
Is inserted. A new employee, Kate, is hired for the shipping department for the

interval from time 25 to time 30.

20, 20 -
VAR VAR
15 15
[:(Jake,Ship) (Jake,Ship)
10 10
5 5 Ly
0 > 0 >
0O 5 10 15 20 25 30 O 5 10 15 20 25 30
TT TT
(a) (b)
30, 30, _
VT VT (Kate,Ship)
25 25
20 20
15 _L 15 >
(Jake,Ship) (Jake,Ship) | (Jake,Load)
10 10 >
5 4’_’. 5
0 > 0 >
0O 5 10 15 20 25 30 O 5 10 15 20 25 30
TT 1T

(©) (d)

Figure 14: Bitemporal elements

We note that the number of bitemporal chronons in a given bitemporal element
is the area enclosed by the bitemporal element. The bitemporal element for (Jake,
Ship) contains 140 bitemporal chronons.

The example illustrates how transaction time and valid time are handled. As
time passes, i.e., as the computer’s internal clock advances, the bitemporal elements
associated with current facts are updated. For example, consider when the fact
(Jake, Ship) was first inserted into the database. Due to the semantics of insertion
as described in the next section, facts are inserted to the relation during the chronon
prior to when they first become current. Thus (Jake, Ship) is physically inserted
into the relation at time 4, with six valid time chronons (10 to 15) each with the
associated transaction time chrond@.



THE TSQL2 DATA MODEL 389

At this time, the fact is not yet current in the database since no bitemporal
chronons with a transaction time other tHa@ are associated with the tuple. At
time 5, the fact logically becomes current in the database, and the six new bitempo-
ral chronons(5, 10), ..., (5, 15), are appended. This continues until time 9, when
a correction to the fact’s valid time is made. Thus, starting at time 10, 16 bitemporal
chronons are added at every clock tick.

The actual bitemporal relation corresponding to the graphical representation
in Figure 14(d) is shown in Figure 15. This relation contains three facts. The
timestamp attribute T shows each transaction-time chronon associated with each
valid-time chronon as a set of ordered pairs. O

| Emp Dept || T |
Jake Ship|| {(5,10),...,(5,15,...,(9,10),...,(9,15),
(10,5),...,(10,20),...,(14,5), ..., (14 20),
(15,10),...,(1515...,(19 10),..., (19 15}
Jake Load|| {(UC, 10),..., (UC, 15}

Kate Ship || {(UC,25),..., (UC, 30}

Figure 15: Bitemporal relation instance

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time or transaction time, respectively. Thus
a valid-time tuple has associated a set of valid-time chronons (termedich
time elemenand denoted,), and a transaction-time tuple has associated a set of
transaction-time chronons (termedransaction-time elemeiind denoted,). For
clarity, we use the ternsnapshot relatiorfor a conventional relation. Snapshot
relations support neither valid time nor transaction time.

5.3 Logical Design

A confusing array of normal forms for temporal relations, includkiigt Tempo-

ral Normal Form[58], Time Normal Forn{16], andP andQ Normal Formg59],

have been proposed. None of these definitions is truly an extension of conventional
normal forms, for a variety of reasons that we detail elsewhere [60]. Also, each def-
inition is restricted to a specific data model, and inherits the peculiarities inherent
in that model. It is not satisfactory to have to define all the normal forms anew for
each of the two dozen existing temporal data models.

Elsewhere we present a consistent framework of temporal equivalents of all
the important conventional database design concepts: functional and multivalued
dependencies, primary keys, and third, Boyce-Codd, and fourth normal forms [60].
This framework is enabled by making a clear distinction between the logical con-
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cept of a temporal relation and its physical representation. As a result, the role
played by temporal normal forms during temporal database design in the BCDM
closely parallels that of normal forms during conventional database design.

5.4 Evaluation

We briefly evaluate the bitemporal conceptual data model using the same criteria
by which existing temporal data models were compared in Section 3.7.

The BCDM timestamps tuples, as does Ben-2vi, Clifford-1, Jones, Navathe,
Sadeghi, Sarda, Segev and Snodgrass. The timestamps are temporal elements, as
in Clifford-2, Gadia-1 and Gadia-3. In Table 2, the BCDM occupies the unfilled
entry corresponding to timestamping tuples with valid-time elements. In Table 3,
the BCDM occupies the unfilled entry corresponding to timestamping tuples with
transaction-time elements. Hence, the BCDM is unique in that it timestamps tuples
with bitemporal elements. The BCDM is inherently valid-time homogeneous—
about half of the temporal data models are homogeneous. The BCDM is also
inherently valid-time coalesced; Ahn, Gadia-2, McKenzie, Navathe, Sadeghi and
Snodgrass are coalesced. Attributes are atomic in the BCDM, as in most of the
temporal data models proposed to date.

6 Summary

This chapter has compared the many existing temporal data models and has dis-
cussed a new one, the bitemporal conceptual data model (BCDM), as the basis for
TSQL2.

The data model discussed in this chapter is a conceptual one, meant specif-
ically for the purpose of capturing the semantics of time-varying data. It is based
on the observation that different data models are appropriate for different tasks,
such as data presentation, storage representation, and modeling the time semantics
of data. These separate tasks pose very different requirements for a data model,
and they should be considered in isolation, utilizing different data models. It is our
contention that the large number of data models existing today is a consequence
of trying to do each of the tasks using the same data model. As a result of trying
to accommodate presentation and representation, the central task of modeling the
time semantics of data has been obscured by data models. Finally, we feel that
the BCDM is the appropriate location for database design and logical-level query
optimization.

The BCDM is a simple data model, built on the experience gained from pre-
vious proposals. A BCDM relation consists simply of a set of ordinary tuples. For
each tuple, an implicit attribute value specifies when the (composite) fact repre-
sented by the tuple is true in the modeled reality and is current in the stored re-
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lation. The implicit attribute has temporal elements (i.e., sets of chronons) as its
values. Temporal elements have been chosen because they allow relations to con-
tain one complete fact per tuple—a relation msedof tuples, and value-equivalence

and coalescing are easily ensured. Also temporal elements are generalizations of
events and intervals and are closed under union, difference, and complementation.

An important property of the conceptual model—shared with the conventional
relational model, but not held by the representational models—is that relation in-
stances are semantically unique; distinct instances model different realities and thus
have distinct semantics.

We have shown elsewhere [13] that the BCDM is a unifying model in that
conceptual instances can be mapped into instances of five existing bitemgporal
resentational data model$Ve have also shown how extensions to the conventional
relational algebraic operators can be defined in a representational data model and
then be meaningfully mapped to analogous operators in the conceptual data model.
That two temporal relations have the same information content was formalized us-
ing the notion of snapshot equivalence. The semantic uniqueness of the relations in
the BCDM implies that two BCDM relations are snapshot equivalent if and only if
they are identical.
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