
Outline

Towards parallel bipartite matching
algorithms

Bora Uçar

CNRS and GRAAL, ENS Lyon, France

Scheduling for large-scale systems, 13–15 May 2009, Knoxville

Joint work with
Patrick R. Amestoy (ENSEEIHT-IRIT, Toulouse)

Iain S. Duff (CERFACS, Toulouse and RAL, Oxon)
Daniel Ruiz (ENSEEIHT-IRIT)

Supported by Agence Nationale de la Recherche through
SOLSTICE project number ANR-06-CIS6-010.

1/25 Parallel matching

Outline

Outline

1 Matchings

2 Matrix scaling

3 Matchings (cont’)
Achieving an exact solution
Obtaining a sub-optimal solution

4 Concluding remarks

2/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Matching

Definitions

Given an n × n matrix A, find a permutation M such that the diagonal
product of the permuted matrix,

∏
diag(AM), is maximum (in

magnitude) among all permutations. Assume aij ≥ 0 and there is at least
one nonzero product diagonal (full structural rank).

Alternatively, select n entries from a given matrix such that no two are in
a common row and column, and their product is maximum. Also called
transversal and bipartite matching.

Motivations

Our driving application is direct solvers (e.g., MUMPS [Amestoy, Duff,

L’Excellent, Comput. Methods in Appl. Mech. Eng., (2000)]).

Combined with scaling can avoid many numerical difficulties in factorization

and linear system solution [Duff and Pralet, SIAM SIMAX(2005)].

3/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Current state-of-the-art

Sequential

Polynomial time solvable; best known polynomial algorithm
O(n(τ + n log n)), where τ = nnz(A) [Fredman and Tarjan, J. ACM (1987)],

HSL subroutine MC64 [Duff and Koster, SIAM SIMAX(1999)] provides
algorithms for a family of bipartite matching problems,

MC64 has a higher polynomial (worst case) time complexity; but behaves
faster than that bound.

Parallel

Standard algorithms use depth-first/breadth-first search; inherently
sequential,

Some newer efforts [Riedy and Demmel, PP04]; some moderate speed-ups
(around 5 across 5–30 processors); slow downs too.
1
2
-approximation algorithm: [Manne and Bisseling, PPAM 2007]–Scales well

up to 32 processors; [Halappanavar and Pothen]–CSCAPES Seminar, 2008.

4/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Key points

Invariance

If Q and R are two matchings and∏
diag(AQ) >

∏
diag(AR)

then ∏
diag(ÂQ) >

∏
diag(ÂR)

for Â = D1AD2 with D1 and D2 being diagonal matrices.

Invariance under scaling

Q is optimal for A iff it is optimal for Â.

In other words, the matching that gives the maximum diagonal
product is invariant under row/column scaling. Also discussed in
[Olschowka and Neumaier, Linear Algebra Appl., (1996)].

5/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Key points (cont’)

Suppose we have obtained a scaled matrix Â = D1AD2 such that

âij ≤ 1.0,

all rows and columns has at least one entry equal to 1.0.

Observation

Any perfect matching Q with diag(ÂQ) consisting only entries of
magnitude 1.0 is optimal.

Algorithm starts to shape up...

1: Â← scale(A)

2: Âf ← filter(Â = 1)

3: if there exist a perfect matching in Âf then
4: return the matching
5: else
6: · · ·

6/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Matrix scaling

Definition

Given an m × n sparse matrix A, find diagonal matrices D1 > O and
D2 > O such that all rows and columns of the scaled matrix

Â = D1AD2

have equal norm.

7/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

The sequential algorithm [Ruiz 2001]

1: D1
(0) ← Im×m D2

(0) ← In×n

2: for k = 1, 2, . . . until convergence do

3: DR ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: DC ← diag
(√
‖cj

(k)‖`
)

j = 1, . . . , n

5: D1
(k+1) ← D1

(k) DR
−1

6: D2
(k+1) ← D2

(k) DC
−1

7: A(k+1) ← D1
(k+1)AD2

(k+1)

Reminder

‖x‖∞ = max{|xi |}
‖x‖1 =

∑
|xi |

Notes

`: any vector norm (usually ∞- and 1-norms)
Convergence is achieved when

max
1≤i≤m

{
|1− ‖ri (k)‖`|

}
≤ ε and max

1≤j≤n

{
|1− ‖cj

(k)‖`|
}
≤ ε

8/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Features

Some properties

Preserves symmetry; permutation independent; amenable to
parallelization [Amestoy, Duff, Ruiz, and U. (proc. VecPar’08)].

In ∞-norm, linear convergence with asymptotic rate of 1/2,

Scaling in ∞-norm is not unique,

With 1-norm, results are similar to those of the other well-known
algorithms [Sinkhorn and Knopp, Pacific J. Math (1967)]; convergence
under certain conditions.

If each entry lie in a perfect matching, there is a unique scaled
matrix,
If there exists a perfect matching but not all entries can be made to
be in a perfect matching, iteration converges; those kind of entries
must tend to zero.

9/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Summary of computational and communication
requirements

Computations (sequential execution) per iteration

Op. SpMxV 1-norm ∞-norm
add nnz(A) 2× nnz(A) 0

mult nnz(A) 2× nnz(A) + m + n 2× nnz(A) + m + n
comparison 0 0 2× nnz(A)

Communication

The communication operations both in the 1-norm and ∞-norm
algorithms are the same as those in the computations

y← Ax
x← ATy

when the partitions on x and y are equal to the partitions on D2 and D1.

10/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Parallelization results: Speed-up values

Seq. Number of processors
matrix Time 2 4 8 16
olesnik 46.08 1,9 3.7 6.9 12.3
c-71 51.60 1.8 3.3 5.4 7.6
boyd1 70.34 1.9 3.6 6.3 10.2
twotone 74.76 1.9 3.7 7.0 11.8
lhr71 78.25 2.0 3.8 7.3 13.5
aug3dcqp 8.30 1.7 2.9 4.1 4.5
a5esindl 15.09 1.8 3.0 4.1 4.8
a2nnsnsl 20.71 1.8 3.1 4.0 4.8
a0nsdsil 20.92 1.8 3.1 4.0 4.6
blockqp1 32.55 1.9 3.4 5.5 7.4

Averages of 10 different partitions obtained using PaToH [Çatalyürek

and Aykanat, Tech.Rep (1999)],

PC cluster with a Gigabit Ethernet switch. 16 nodes, each having
Intel Pentium IV 2.6 GHz processor, 1GB RAM,

11/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Algorithm

In the scaled matrix âij ≤ 1.0.

Algorithm: scaling (with ε tolerance) is efficiently performed

1: Â← scale(A)

2: Âf ← filter(1.0− ε ≤ Â ≤ 1.0 + ε)

3: if there exist a perfect matching in Âf then
4: return the matching
5: else
6: · · ·

What remains to be done?

Step 3 can be performed sequentially, if there is only a little number
of nonzeros in the filtered matrix Âf .

the “else” part can be addressed in two ways:

Solve the problem exactly,
Or, find a sub-optimal solution (quickly).

12/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Solving the “else” part exactly

New entries scaled to ≤ 1.0

Bring on new entries to the filtered matrix Âf by updating the scaling
factors so that we have perfect matching at the end.

Dulmage-Mendelsohn decomposition

(from [Pothen and Fan, ACM TOMS (1990)])

0 0

0

X X X

X
X

X

XR

R

V

S

HR

CH SC VC Unique Horizontal, Square, and
Vertical blocks (defined by any
maximum cardinality matching)

HRs are perfectly matched to HC s,

SRs are perfectly matched to SC s,

VC s are perfectly matched to VRs.

13/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Dulmage-Mendelsohn decomposition

0 0

0

X X X

X
X

X

XR

R

V

S

HR

CH SC VC
The entries in

(HR , SC)
(HR , VC)
(SR , VC)

cannot be in a maximum
matching.

All maximum matchings
contain entries from the three
diagonal blocks.

14/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Implications for us

0 0

0

X X X

X
X

X

XR

R

V

S

HR

CH SC VC
The filtered matrix Âf is in this
form,

Matrix A (hence Â) must have
nonzeros in the blocks shown
with 0,

Find the maximum scaled
entries (< 1.0) from each of
those blocks,

With a rule update the scaling matrices,

keep the 1s in the diagonal blocks,
keep everything else ≤ 1,
have an entry from the 0 block scaled to 1.

15/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Implications for us

Define the three max
entries

m1 =
q

max Â(VR ,HC)

m2 = max Â(SR ,HC)
m3 = max Â(VR , SC)

Set the updates

If m1 is largest then

α =
1

m1

else if m2 is the largest then α = 1
m2

...

α
CH SC VC

R

RS

HR

V

1α

<1

<1

=1 =1

=1

<1 =1

=1

=1

1α

1

1

α

⇒

1 α

1 α

=1

=1

=1

<1 <1

<1

=1

<=1

<=1

16/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Algorithm exposed

Algorithm

1: Â1 ← scale-1-norm(A)

2: Â← scale-∞-norm(Â1)

3: Âf ← filter(1.0− ε ≤ Â ≤ 1.0 + ε)

4: if there exist a perfect matching in Âf then
5: return the matching
6: else
7: Compute the dmperm of Âf

8: for k = 1, 2, . . . do
9: Scale a particular entry in Â to 1.0± ε

10: Update dm-structure and scaling matrices
11: if perfect matching exists then
12: return the matching

Reminder

In 1-norm scaling, any entry not in a perfect matching tends to zero,

1-norm scaling is unique; ∞-norm is not,

17/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)

Matrices from University of Florida sparse matrix collection,
satisfying the following properties

Square, with 1000 ≤ n < nnz ≤ 2.0e+6,
total support (no nonzeros in off diagonal blocks of the dmperm),
no explicit zeros, real, not {0, 1,−1}n×n.

A total of 276 matrices. 8 required special attention; excluding
those 268. 192 are symmetric and 76 are unsymmetric.

Fast solutions

In 180 matrices, no iterations after the initial 1-norm (at most 40
iterations) and ∞-norm (at most 20 iterations) scaling steps with
ε = 1.0e-3 (126/192 symmetric; 54/76 unsymmetric).

18/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)–Cont’

Algorithm: first few steps

1: Â1 ← scale-1-norm(A)

2: Â← scale-∞-norm(Â1)

3: Âf ← filter(1.0− ε ≤ Â ≤ 1.0 + ε)

4: if there exist a perfect matching in Âf then
5: return the matching
6: else
7: · · ·

Details of the fast solutions (among 180 matrices)

in 155, nnz(Âf) = n; in the rest maximum three of nnz(Âf)/n are
{5.87, 5.74, 1.03}

Memory requirements: Âf vs A (of the 180 instances)

min avg max
nnz(A)/n 2.25 22.05 132.36

nnz(Âf)/n 1.00 1.06 5.87

19/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)–Cont’

Others (88/268 matrices, select and re-scale loop executed)

averaging 8294 iterations after the initial 1-norm (at most 40
iterations) and ∞-norm (at most 20 iterations) scalings, mostly
belonging to the matrix families Schenk IBMNA (27 matrices),
GHS indef (25 matrices), and Nemeth (13 matrices).

considerable savings in memory requirements

min avg max
nnz(A)/n 3.22 24.97 159.03

nnz(Âf)/n 1.00 1.53 2.60

However, we do not want to do iterations.

although very sparse, the dmperm update requires DFS/BFS-like
algorithms—inherently sequential.
we can reduce to a single processor and solve the problem there—too
much iterations.

Sub-optimal alternatives may be acceptable.

20/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

A sub-optimal solution

Algorithm

1: Â1 ← scale-1-norm(A)

2: Â← scale-∞-norm(Â1)

3: Âf ← filter(1.0− ε ≤ Â ≤ 1.0 + ε)

4: if there exist a perfect matching in Âf then
5: return the matching
6: else
7: Compute a maximum matching using only the entries in Âf

8: Âw ← Âf

9: L← sort the entries of Â− Âf

10: for k = 1, 2, . . . do
11: add entries from L in decreasing order to Âw such that all

unmatched rows and columns get at most one more entry
12: if not possible, add at most one more entry per each row

and column
13: Augment the matching (weighted)
14: if a perfect matching obtained then
15: return the matching

21/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Achieving an exact solution
Obtaining a sub-optimal solution

Experiments (sub-optimal solution)

On 88/268 matrices (solution is not obtained after the first scaling steps)

Quality of the matching

Compare V =
∑

log diag(AM) and V ? =
∑

log diag(AM?)

(V ? − V)/V ?

min 0.00
avg 0.17
max 12.15

Largest 5 values: 12.15 0.54 0.28 0.21 0.17

Iterations and memory requirements

min avg max
nnz(A)/n 3.22 24.97 159.03

nnz(Âw)/n 2.00 2.52 3.84
iters 1 3.05 38

On 13 instances, number
of augmentation iterations is
greater than 3.

22/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Summary and plans

Summary

On 155/268 matrices, at most 40 iterations of 1-norm scaling and
then at most 20 iterations of ∞-norm scaling suffices to compute a
maximum product matching.

On another 25 matrices, with a little sequential overhead an
optimum matching is obtained.

On the others (88/268): Sub-optimal solutions can be found with
fairly small additional, sequential work.

On going and future work

The effects on factorization (already done a few experiments and
observed that sub-optimal solutions are not worse than the optimal
ones in terms of some factorization metrics)

Sub-optimal solutions with approximation guarantee,

Matrices with support but without total support.

23/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Summary and plans

So a new algorithm for an old problem?

Not really _̈

Follows very closely Hungarian algorithm [Kuhn, Nav. Res. Log.
(1955)] for the weighted bipartite matching problem.

Anything that forms a barrier for the efficient parallelization of the
standard algorithms for the bipartite matching problems apply to our
case too.

Probably some good news too ¨̂

Reap the developments on Hungarian algorithm.

Our algorithms can be used to warm-start Hungarian algorithm for
the serial execution case.

24/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Further information

Thank you for your attention.

http://graal.ens-lyon.fr/~bucar/

bora.ucar@ens-lyon.fr

25/25 Parallel matching

Matchings
Matrix scaling

Matchings (cont’)
Concluding remarks

Number of iterations with error rate of ε = 1.0e-6

∞-norm: Always converges very fast. Average 11.

1- and 2-norms: Did not converge on 10 and 17 matrices in 5000
iterations, respectively.

Average number of iterations in converged cases are 206 and 257,
Matrices from two groups (GHS indef and Schenk IBMNA) cause
problems (larger number of iterations as well). 60 matrices from
these groups.
Excluding those matrices, the averages are 26 and 29.

26/25 Parallel matching

	Outline
	Main Talk
	Matchings
	Matrix scaling
	Matchings (cont')
	Achieving an exact solution
	Obtaining a sub-optimal solution

	Concluding remarks

