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Abstract

Cycle-consistent training is widely used for
jointly learning a forward and inverse map-
ping between two domains of interest with-
out the cumbersome requirement of collecting
matched pairs within each domain. In this
regard, the implicit assumption is that there
exists (at least approximately) a ground-truth
bijection such that a given input from either
domain can be accurately reconstructed from
successive application of the respective map-
pings. But in many applications no such bijec-
tion can be expected to exist and large recon-
struction errors can compromise the success
of cycle-consistent training. As one impor-
tant instance of this limitation, we consider
practically-relevant situations where there
exists a many-to-one or surjective mapping
between domains. To address this regime,
we develop a conditional variational autoen-
coder (CVAE) approach that can be viewed
as converting surjective mappings to implicit
bijections whereby reconstruction errors in
both directions can be minimized, and as a
natural byproduct, realistic output diversity
can be obtained in the one-to-many direc-
tion. As theoretical motivation, we analyze
a simplified scenario whereby minima of the
proposed CVAE-based energy function align
with the recovery of ground-truth surjective
mappings. On the empirical side, we con-
sider a synthetic image dataset with known
ground-truth, as well as a real-world appli-
cation involving natural language generation
from knowledge graphs and vice versa, a pro-
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totypical surjective case. For the latter, our
CVAE pipeline can capture such many-to-one
mappings during cycle training while promot-
ing textural diversity for graph-to-text tasksE]

1 Introduction

Given data € X from domain X and y € Y from
domain ), it is often desirable to learn bidirectional
mappings f : Y — X and g : X — ) such that for
matched pairs {x,y}, we have that x ~ & £ f(y) and
y ~ 9 = g(x). When provided with a corpus of suitably
aligned data, this amounts to a straightforward super-
vised learning problem. However, in many applications
spanning computer vision (Zhu et al., 2017al), natural
language processing (Lample et al.,[2018; Artetxe et al.,
2018) and speech recognition (Hori et al., [2019), we
may only have access to individual samples from X
and ) but limited or no labeled ground-truth matches
between domains, since, for example, the labeling pro-
cess may be prohibitively expensive. To address this
commonly-encountered situation, cycle-consistent train-
ing represents an unsupervised means of jointly learn-
ing f and g by penalizing the cycle-consistency recon-
struction losses ||& — flg(x)]|| and ||y — g[f(y)]|| using
non-parallel samples from X and ) and some norm or
distance metric || - || (Zhu et al., 2017a)).

However, this process implicitly assumes that there
exists a suitable bijection between domains (imply-
ing f = ¢! and g = f!), an assumption that fre-
quently does not hold for practical applications of cycle-
consistent training. As a representative example re-
lated to natural language understanding, each & may
represent a text segment while y corresponds with
the underlying knowledge graph describing the text
content. The relationship between these domains is

'Our code is available at |[https://github.com/
QipengGuo/CycleGT. And for an extended version of this
work, please see Guo et al. (2021).
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surjective, but not bijective, in the sense that multiple
sentences with equivalent meaning but different syn-
tactic structure can be mapped to the same knowledge
graph. Hence if we follow any possible learned map-
ping  — y — &, there will often be significant error
between x and the reconstructed . In other words,
no invertible transformation exists between domains
and there will necessarily be information about x that
is lost when we map through Y space. Additionally,
deterministic mappings do not reflect the ground-truth
conditional distribution pg:(2|y), which is necessary for
the generation of diverse text consistent with a given
knowledge graph.

Despite these limitations, there has been relatively
little effort or rigorous analysis devoted to explicitly
addressing the lack of a bijection in applications of
cycle-consistent training; Section [2| on related work will
discuss this point in greater detail. As a step towards
filling this void, in Section [3] we will consider replacing
the typical deterministic cycle training pipeline with
a stochastic model reflecting p,.(x|y) and pg(y|x) for
the x - y —» & and y — & — ¢ cycles respectively.
In doing so, we apply a conditional variational autoen-
coder (CVAE) formulation (Doersch, [2016; Sohn et al.,
2015) to deal with the intractable integrals that arise.
Note that although the proposed CVAE methodology
can be generalized, we will herein restrict ourselves
to situations where there exists a many-to-one map-
ping from x to y (i.e., a surjection) as originally moti-
vated by our interest in conversions between knowledge
graphs and diverse, natural language text.

Proceeding further, Section [4] provides theoretical sup-
port by analyzing a simplified scenario whereby minima
of the proposed CVAE-based energy function align with
the recovery of ground-truth surjective mappings. To
the best of our knowledge, this is the only demonstra-
tion of a cycle-consistent model with any type of per-
formance guarantee within a non-trivial, non-bijective
context. We then turn to empirical validation in Section
[] that corroborates our theory via a synthetic image
example and demonstrates real-world practicality on an
application involving the conversion between diverse
natural language and knowledge graphs taken from
the WebNLG dataset. Overall, experimental results
indicate that our proposed CVAE pipeline can approx-
imate surjective mappings during cycle training, with
performance on par with supervised alternatives, while
promoting diversity for the graph-to-text direction.

2 Related Work

General Cycle-Consistent Training The concept
of leveraging the transitivity of two functions that serve
as inverses to one another has been applied to a variety
of tasks. For example, in computer vision, forward-

backward consistency has been used extensively in com-
puter vision (Kalal et al., [2010; Sundaram et al., [2010)),
and cycle-consistent training pipelines underlie image
style transfer (Zhu et al.,|2017a} Liu et al.,|2017)), depth
estimation (Godard et al., [2017), and unsupervised
domain adaptation (Hoffman et al., 2018) pipelines.
Turning to natural language processing (NLP), back
translation (Sennrich et al., [2016} Edunov et al., 2018}
Jin et al., [2020) and dual learning (Cheng et al., 2016
He et al., |2016)) have been widely deployed for unsu-
pervised machine translation. Similar techniques have
also contributed to applications such as language style
transfer (Shen et al., [2017; Jin et al., 2019). How-
ever, the above models primarily rely on deterministic
pipelines that implicitly assume a bijection even if one
does not actually exist.

And finally, a VAE-inspired model for converting be-
tween knowledge graphs and text is considered in Tseng
et al. (2020). But again there is no explicit account-
ing for non-bijective data as a shared latent space is
assumed to contain all information from both x and
y domains, and the proposed model is designed and
tested for semi-supervised learning (not fully unsuper-
vised cycle-consistency). Moreover, for tractable infer-
ence, some terms from the variational bound on the
log-likelihood (central to all VAE models) are heuristi-
cally removed; hence the relationship with the original,
motivating probabilistic model remains unclear.

Non-Bijective Mappings Non-bijective mappings
are investigated in applications such as multi-domain
image-to-image translation (Choi et al., 2018]), voice
conversion (Kameoka et al., 2018]), multi-attribute text
style transfer (Lample et al., 2019)), music transfer
(Bitton et al., 2018)), and multi-modal generation (Shi
et al., 2019). Most of this work uses adversarial neu-
ral networks, or separate decoders (Lee et al., 2019}
Mor et al., |2018)), and one case even applies a CVAE
model (Jha et al.,2018). However, all the above assume
multiple pre-defined style domains and require data be
clearly separated a priori according to these domains to
train non-bijective mappings. In contrast, our proposed
model assumes a completely arbitrary surjective map-
ping that can be learned from the data without such
additional domain-specific side information pertaining
to styles or related (so ours can fit unknown styles
mixed within an arbitrary dataset). One exception is
Zhu et al. (2017b)), which handles general non-bijective
image mappings using a hybrid VAE-GAN model but
unlike our approach, it requires matched {x,y} pairs
for training.

3 Model Development

We will first present a stochastic alternative to deter-
ministic cycle-consistency that, while useful in princi-
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ple for handling surjective (but explicitly non-bijective)
mappings, affords us with no practically-realizable in-
ference procedure. To mitigate this shortcoming, we
then derive a tractable CVAE approximation and dis-
cuss some of its advantages. Later in Section [4] we
will analyze the local and global minima of this cycle-
consistent CVAE model in the special case where the
decoder functions are restricted to being affine.

3.1 Stochastic Cycle-Consistent Formulation

Although the proposed methodology can be generalized,
we will herein restrict ourselves to situations where
there exists a many-to-one mapping from x to y (i.e.,
a surjection) and the resulting asymmetry necessitates
that the * - ¥y — € and y — & — ¥y cycles be
handled differently. In this regard, our starting point
is to postulate an additional latent variable u € U that
contributes to a surjective matched pair {z,y} via

T =hg (y,u) and y=hg(z), (1)

where hgt : Y xU — X and h;‘t : X — Y represent
ground-truth mappings we would ultimately like to
estimate. For this purpose we adopt the approxima-
tions hy : Y x Z — X and h; : X — Y with trainable
parameters 6, noting that the second input argument
of hy is now z € Z instead of w € U. This is because
the latter is unobservable and it is sufficient to learn
a mapping that preserves the surjection between x
and y without necessarily reproducing the exact same
functional form of hy. For example, if hypothetically
u = m(z) in (1)) for some function 7, we could redefine
hgt as a function of z without actually changing the
relationship between x and y.

We are now prepared to define a negative conditional
log-likelihood loss for both cycle directions, averaged
over the distributions of y and x respectively. For the
simpler y — & — ¥ cycle, we define

—/<log/p9 (y|fc)p(z)dz) ph:(dy), (2)

where & = hg (y, z), po (y|@) is determined by hy and
an appropriate domain-specific distribution, and p(z)
is assumed to be fixed and known (e.g., a standardized
Gaussian). Additionally, pgt denotes the ground-truth
probability measure associated with ). Consequently,
Pyi(dy) is the measure assigned to the infinitesimal
dy, from which it obviously follows that [ p},(dy) = 1.
Note that the resulting derivations can apply even if
no ground-truth density py.(y) exists, e.g., a counting
measure over training samples or discrete domains can
be assumed within this representation.

by (0) =

Given that there should be no uncertainty in y when
conditioned on @, we would ideally like to learn parame-
ters whereby pg (y|Z), and therefore ¢, (6), degenerates

while reflecting a many-to-one mapping. By this we
mean that

y~g=hi(@)=hg (hely 2]), Vz~p(2). (3)
Hence the y — & — g cycle ounly serves to favor (near)
perfect reconstructions of y while ignoring any z that
can be drawn from p(z). The latter stipulation is
unique relative to typical deterministic cycle-consistent
training, which need not learn to ignore randomness
from an additional confounding latent factor.

In contrast, the € — y — & cycle operates somewhat
differently, with the latent z serving a more important,
non-degenerate role. Similar to before, we would ideally
like to minimize the negative conditional log-likelihood

given by
-/ (1og [ (:cl:t},z)p(z)dz> o, (dz),
(1)

where now § = h (), py (x|y, 2) depends on hy, and
Pgi represents the ground-truth probability measure
on X. Here ¢ can be viewed as an estimate of all the
information pertaining to the unknown paired y as
preserved through the mapping h;’ from x to y space.
Moreover, if cycle-consistent training is ultimately suc-
cessful, both ¢ and y should be independent of z,
and it should be the case that [ pg (z]9, z) p(z)dz =
po (19) ~ pyt (ly).

Per these definitions, it is also immediately apparent
that pg (x|y) is describing the distribution of hg (y, 2)
conditioned on y being fixed to hj (x). This can be
viewed as a stochastic version of the typical € — g — &
cycle, whereas now the latent z allows us to spread
probability mass across all & that are consistent with
a given 9. In fact, if we set z = 2’ to a fixed null value
(i.e., change p(z) to a Dirac delta function centered at
some arbitrary z’), we recover this traditional pipeline
exactly, with —log pg(x|y, 2’) simply defining the im-
plicit loss function, with limited ability to assign high
probability to multiple different values of x for any
given y.

la(0) =

3.2 CVAE Approximation

While ¢, (0) from Section can be efficiently mini-
mized using stochastic sampling from p(z) to estimate
the required integral, the ¢,(0) term is generally in-
tractable. Note that unlike ¢,(6), directly sampling z
is not a viable solution for £, () since pg(x|y, z) can be
close to zero for nearly all values of z, and therefore, a
prohibitively large number of samples would be needed
to obtain reasonable estimates of the integral. Fortu-
nately though, we can form a trainable upper bound
using a CVAE architecture that dramatically improves
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sample efficiency (Doersch, [2016; Sohn et al., 2015).
Specifically, we define

60.0) 2 [{ =z logp (alg, )] ple)d

+ KLgy(2l2)lp(2)] }otu(dz),  (5)

where in this context, pg (x|y, z) is referred to as a
decoder distribution while g4 (z|x) represents a train-
able encoder distribution parameterized by ¢. And
by design of general VAE-based models, we have that
£,(0,¢) > £,(0) for all ¢ (Kingma and Welling, [2014;
Rezende et al.,[2014). Note that we could also choose to
condition g4 (z|x) and p(z) on g, although this is not re-
quired to form a valid or maximally-tight bound. In the
case of gy (2|x), ¥ is merely a function of « and there-
fore contains no additional information beyond direct
conditioning on & (and the stated bound holds regard-
less of what we choose for g4). In contrast, p(z) defines
the assumed generative model which we are also free
to choose; however, conditioning on ¢ can be absorbed
into py (x|y, z) such that there is no change in the repre-
sentational capacity of py (z|y) = [ pe (z|y, 2) p(2)dz.

Given (5)) as a surrogate for £,(0) and suitable distri-
butional assumptions, the combined cycle-consistent
loss

Ecyclc(ga ¢) = ‘6:6 (9, ¢) + gy (0) (6)

can be minimized over {6, ¢} using stochastic gradient
descent and the reparameterization trick from Kingma
and Welling (2014]) and Rezende et al. (2014). We
henceforth refer to this formulation as CycleCVAE.
And as will be discussed in more detail later, additional
constraints, regularization factors, or inductive biases
can also be included to help ensure identifiability of
ground-truth mappings. For example, we may consider
penalizing or constraining the divergence between the
distributions of y and § = hg' (x), both of which can
be estimated from unpaired samples from pgt and pg,
respectively. This is useful for disambiguating the
contributions of y and z to  and will be equal to zero
(or nearly so) if hy ~ h/, (more on this in Section
below).

3.3 CycleCVAE Inference

Once trained and we have obtained some optimal Cy-
cleVAE parameters {6*,¢*} ~ argming ¢ leycie(6, ¢),
we can compute matches for test data in either the
Tiest — Yiest OF Ypest — Tiest direction. For the for-
mer, we need only compute §,.,; = hi. (Ttest) and
there is no randomness involved. In contrast, for the
other direction (one-to-many) we can effectively draw
approximate samples from the posterior distribution
Do* (Z|Yyes) by first drawing samples z ~ p(z) and
then computing &iest = hox (Yposts 2)-

3.4 CycleCVAE Advantages in Converting
Surjections to Implicit Bijections

Before proceeding to a detailed theoretical analysis
of CycleCVAE, it is worth examining a critical yet
subtle distinction between CycleCVAE and analogous,
deterministic baselines. In particular, given that the
x — gy — & cycle will normally introduce reconstruc-
tion errors because of the lack of a bijection as discussed
previously, we could simply augment traditional deter-
ministic pipelines with a z such that * — {y,2} —» &
forms a bijection. But there remain (at least) two unre-
solved problems. First, it is unclear how to choose the
dimensionality and distribution of z € Z such that we
can actually obtain a bijection. For example, if dim[Z]
is less than the unknown dim[¢{], then the reconstruc-
tion error ||@ — &|| can still be large, while conversely,
if dim[Z] > dim[i/] there can now exist a many-to-one
mapping from {y, z} to x, in which case the superflu-
ous degrees of freedom can interfere with our ability to
disambiguate the role y plays in predicting «. This is-
sue, combined with the fact that we have no mechanism
for choosing a suitable p(z), implies that deterministic
cycle-consistent training is difficult to instantiate.

In contrast, CycleCVAE can -effectively circum-
vent these issues via two key mechanisms that
underpin VAE-based models. First, assume that
dim[X] > dim[Y], meaning that X" represents a higher-
dimensional space or manifold relative to ), consis-
tent with our aforementioned surjective assumption.
Then provided we choose dim[Z] sufficiently large, e.g.,
dim[Z] > dim[/], we would ideally prefer that CVAE
regularization somehow prune away the superfluous
dimensions of z that are not required to produce good
reconstructions of :1:E| For example, VAE pruning could
potentially be instantiated by setting the posterior dis-
tribution of unneeded dimensions of the vector z to
the prior. By this we mean that if dimension j is not
needed, then g4(zj|x) = p(z;), uninformative noise
that plays no role in improving reconstructions of .
This capability has been noted in traditional VAE mod-
els (Dai et al., [2018; Dai and Wipf, [2019), but never
rigorously analyzed in the context of CVAE extensions
or cycle-consistent training. In this regard, the anal-
ysis in Section [4] will elucidate special cases whereby
CycleCVAE can provably lead to optimal pruning, the
first such analysis of CVAE models, cycle-consistent
or otherwise. This serves to motivate the proposed
pipeline as a vehicle for learning an implicit bijection
even without knowing the dimensionality or distribu-
tion of data from U, a particularly relevant notion given
the difficulty in directly estimating dim[¢{] in practice.

2Note that dim[X] refers to the intrinsic dimensionality
of X, which could be a low-dimensional manifold embedded
in a higher-dimensional ambient space; same for dim[}].
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Secondly, because the CycleCVAE model is explicitly
predicated upon a known prior p(z) (as opposed to the
unknown distribution of u), other model components
are calibrated accordingly such that there is no need
to provide an empirical estimate of an unknown prior.
Consequently, there is no barrier to cycle-consistent
training or the generation of new @ conditioned on y.

4 Formal Analysis of Special Cases

To the best of our knowledge, there is essentially no
existing analysis of cycle-consistent training in the chal-
lenging yet realistic scenarios where a bijection between
x and y cannot be assumed to holdEI In this section we
present a simplified case whereby the proposed CycleC-
VAE objective (with added distributional constraints)
is guaranteed to have no bad local minimum in a spe-
cific sense to be described shortly. The forthcoming
analysis relies on the assumption of a Gaussian CVAE
with an affine model for the functions {hg, hj }; how-
ever, the conclusions we draw are likely to be loosely
emblematic of behavior in broader regimes of interest.
While admittedly simplistic, the resulting CVAE objec-
tive remains non-convex, with a combinatorial number
of distinct local minima. Hence it is still non-trivial to
provide any sort of guarantees in terms of associating
local minima with ‘good’ solutions, e.g., solutions that
recover the desired latent factors, etc. In fact, prior
work has adopted similar affine VAE decoder assump-
tions, but only in the much simpler case of vanilla VAE
models (Dai et al., [2018} Lucas et al., |2019)), i.e., no
cycle training or conditioning as is our focus herein.

4.1 Affine CycleCVAE Model

For analysis purposes, we consider a CVAE model of
continuous data x € R™, y € R™, and z € R"#, where
Tz, Ty, and 7, are the respective sizes of x, y, and z.
We assume p(z) = N(z]|0,I) and a typical Gaussian
decoder py (x]y, z) = N(x|p,,X:), where the mean
network satisfies the affine parameterizations

Py = ho (ya Z) =W,y +Vyz+ by,
with § = hJ (z) = W,z +b,. (7)

In this expression, {W,, W,, V., b;, by} represents
the set of all weight matrices and bias vectors which de-
fine the decoder mean p,. And as is often assumed in
practical VAE models, we set 3, = I, where v > 0 is
a scalar parameter within the parameter set 6. Despite
these affine assumptions, the CVAE energy function
can still have a combinatorial number of distinct local
minima as mentioned previously. However, we will

3Note that Grover et al. (2020) address identifiability
issues that arise during cycle training, but only in the
context of strictly bijective scenarios.

closely examine conditions whereby all these local min-
ima are actually global minima that correspond with
the optimal inversion of a non-trivial generative model.

Although we could proceed by allowing the encoder to
be arbitrarily complex, when the decoder mean function
is forced to be affine and X, = I, a Gaussian encoder
with affine moments is sufficient to achieve the optimal
CVAE cost. Specifically, without any loss of representa-
tional capacity, we may choose gy (z|x) = N (2|p,,X.)
with g, = W_x + b, and a diagonal ¥, = diag[s]?,
where s is an arbitrary parameter vector independent
of wE| Collectively, these specifications lead to the
complete parameterization § = {W,, W, V., b,, v},
¢ = {W,,b,,s}, and the CVAE energy given by

[ {Buz [H10-Wow )z - vz b))

Tz
+dlogy + Y (st —logsp) + [|[W.a + b.||3 }pﬁt(dw),
k=1

noting that, without loss of generality, we have ab-
sorbed a W, b, factor into b,.

And finally, for the corresponding ¢,(6) model we
specify pg (y|Z) = N (y|p,, ;) using a shared, cycle-
consistent parameterization borrowed from . For
this purpose, we adopt

p, = hy (&) = Wya+b,, with &= me—&—sz—l—l()gE),
9

and ¥, = vI. Given these assumptions, we have

(,(0) = / (725 ey +108 [, |) pluldy)  (10)

. . A
excluding irrelevant constants, where €, =

(I-W,W,)y—b,, =, 241+W,V,V]W, and
again, analogous to before we have absorbed Wb,
into b, without loss of generality.

4.2 Properties of Global/Local Minima

As a preliminary thought experiment, we can consider
the minimization of leycio(0, @), where £,(60, ¢) is de-
fined via and £, (6) via , but no assumptions are
placed on the distributions py, and PZt- In this situa-
tion, it is obvious that even CycleCVAE global minima,
were they obtainable, will not generally recover the
ground-truth mappings between paired & ~ pg, and
Y ~ PZt; there simply will not be sufficient capacity in
most situations.

“Note also that because § = W, + b, is an affine func-
tion of @, including this factor in the encoder representation
is redundant, i.e., it can be absorbed into u, = W.x + b,
without loss of generality.
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Hence we now present a narrower scenario with con-
straints on the ground-truth data to better align with
the affine simplification described in Section This
will allow us to formulate conditions whereby all local
minima are actually global minima capable of accu-
rately modeling the ground-truth surjection. To this
end, we define the following affine ground-truth model:

Definition 1 (Affine Surjective Model) We de-
fine an affine surjective model whereby all matched

{z,y} pairs satisfy
z=Ay+Bu+c and y= Dz +e, (11)

with B € null[D], DA = I, Dc = —e, rank[A] =
ry < 1y and rank[B] < r, —r,. Furthermore, we
assume that y ~ pgt and w ~ pg, are uncorrelated,
and the measure assigned to the transformed random
variable Wy + Vu is equivalent to pgt ifw =1
and V. = 0. We also enforce that y and uw have zero
mean and identity covariance, noting that any nonzero
mean components can be absorbed into c. Among other
things, the stated conditions of the affine surjective
model collectively ensure that the mappings y — x and
x — y can be mutually satisfied.

Additionally, for later convenience, we also define r, £

rank (IE,,;t [mmT]) < r,. We then have the following:

Proposition 2 Assume that matched pairs {x,y} fol-
low the affine surjective model from Definition[1l Then
subject to the constraint p}), = pj, where pj defines
the 0-dependent distribution of 4, all local minima of
the CycleVAE objective leycie(0, @), with £,(6, @) taken
from (@ and £,(0) from (@, will be global minima in
the limit v — 0 assuming v, > r. — ry. Moreover, the
globally optimal parameters {0*, ¢*} will satisfy

W:i=A, V= [13’70} P, b =c

W; =D, b, =-Dec, (12)

where B has rank[B] columns, span|B] = span[B], P
is a permutation matriz, and D satisfies DA = I and
B € nulllD].

Note that in practice, we are free to choose r, as large
as we want, so the requirement that r, > r. —r, is not
significant. Additionally, the constraint pgt = pg can
be instantiated (at least approximately) by including a
penalty on the divergence between these two distribu-
tions. This is feasible using only unpaired samples of
y (for estimating p},) and x (for estimating pp), and
most cycle-consistent training pipelines contain some
analogous form of penalty on distributional differences
between cycles (Lample et al., |[2018).

And finally, if r, 4+ rank[B] = r,, then the dual re-
quirements that DA = I and B € null[D] will ensure
that D = D and b, = e. However, even if D +#D it
is inconsequential for effective recovery of the ground-
truth model since any @ produced by Definition [I] will
nonetheless still map to the correct y when applying
D instead of D.

Corollary 3 Given the same setup as Proposition |3,
let {W7, b} denote the CVAE encoder parameters of

any minimum. Then W, = P[ V‘(;Z ] and b, =

~%

P [ % ], where ﬁv/’z has rank[B] rows, BZ € ]R“mk[B],

and there exists a bijection between x and {y, i, }, with
—~ % ~%
I, =W _x+b, (ie., the nonzero elements of w, ).

We will now discuss various take-home messages related
to these results.

4.3 Practical Implications

As alluded to in Section [3.4] we will generally not know
in advance p(u) or even dim|l/], which reduces to r.—r,
in the simplified affine case. Hence inducing a bijec-
tion may seem problematic on the surface. Fortunately
though, Proposition [2] and Corollary [3] indicate that
as long as we choose r, > dim[U] in our CVAE model,
we can nonetheless still learn an implicit bijection be-
tween x and {y,p,}, where i, are the informative
(nonzero) dimensions of g, that actually contribute to
the reconstruction of . In the affine case, these are the
dimensions of z aligned with nonzero columns of B, but
in general these dimensions could more loosely refer to
the degrees-of-freedom in z that, when altered, lead to
changes in . The remaining superfluous dimensions of
z are set to the uninformative prior p(z) = N (2|0, 1)
and subsequently filtered out by the CVAE decoder
module parameterized by hg(y, z). In this diminutive
role, they have no capacity for interfering with any
attempts to learn a bijection.

Even so, in non-affine cases it is impossible to guarantee
that all local minima correspond with the recovery of
hgt and h;‘t, or that these functions are even identifiable.
Indeed it is not difficult to produce counterexamples
whereby recovery is formally impossible. However, if
hg and h; are chosen with inductive biases reasonably
well-aligned with their ground-truth counterparts, up
to unidentifiable latent transformations of the unobserv-
able u, we may expect that an approximate bijection
between the true x and {y, 1,} can nonetheless be
inferred via cycle-consistent training, at least provided
we can avoid suboptimal local minimizers that can be
introduced by more complex nonlinear decoder models.
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CycleCVAE (Sampled)

Dataset Example Base Model

Figure 1: Left: example image from dataset. Middle: image produced
by baseline cycle training with y = 4. Right: a sample image generated
by CycleCVAE conditioned on y = 4. For the latter, the position of
yellow border is random. In contrast, the base model fails to learn the

random border distribution.

5 Experiments

In this section we first consider a synthetic image ex-
periment that supports the theoretical motivation for
CycleCVAE. We then turn to practical real-world eval-
uations involving the conversion between knowledge
graphs and text sequences, a core ingredient of natural
language understanding/generation and the application
that initially motivated our work. We then conclude
with an enhanced pipeline involving the recent pre-
trained T5 model (Raffel et al., [2020).

5.1 Synthetic Image Experiment

We first conduct an experiment designed such that the
surjective conditions of Definition [I| in Section are
loosely satisfied (see supplementary for reasons). As
shown in Figure [1] (left panel), each data sample has
three components: a digit, its image, and a decorative
yellow border. The digit takes value in {0,...,9} and
is represented by a 10-dim one-hot vector y. The
corresponding image x involves 3 x 3 tiles, and each
tile contains the same image of digit y. One of the
9 tiles is decorated with a 1-pixel-wide yellow border,
and which tile will have this border is determined by wu,
a 9-dim one-hot vector indicating the 9 possible tiles.

We train two models on this dataset, a base model
using standard cycle training, and our CycleCVAE
that incorporates the proposed CVAE into a baseline
cycle model (see supplementary for network descrip-
tion and details). After training, generated samples of
the two approaches when presented with the digit ‘4’
are shown in Figure [1| (middle and right panels). The
base model fails to learn the yellow border as it cannot
handle the one-to-many mapping from digits to images.
Meanwhile the random CycleCVAE sample correctly
places the border around one of the tiles (different Cy-
cleCVAE samples simply move the border to different
tiles as desired; see supplementary). Finally, consistent

—— Base
| CVAE

Reconstruction Error
o
N

20 30 40

0 20000
Epoch

40000

Figure 2: Cycle-consistent reconstruc-
tion errors of baseline and CycleC-
VAE models.

with these generation results, the training curves from
Figure [2] reveal that the reconstruction error of the
base model, which assumes a bijection, plateaus at a
significantly higher value than the CycleCVAE model.

5.2 Knowledge Graph to Text Conversion

We now turn to more challenging real-world experi-
ments involving the surjective mapping between knowl-
edge graphs and text sequences. Here the ideal goal is
to generate diverse, natural text from a fixed knowl-
edge graph, or extract the knowledge graph from a
piece of text. To this end we compare CycleCVAE
against SOTA methods on the widely-used WebNLG
graph-to-text dataset (Gardent et al., 2017)).

WebNLG Dataset and Test Setup WebNLG
data is extracted from DBPedia, where each graph
consists of 2-7 nodes and the corresponding text is de-
scriptions of these graphs collected by crowd-sourcing.
We follow the preprocessing of Moryossef et al. (2019)
and obtain 13K training, 1.6K validation, and 5K test
text-graph pairs. Please see the supplementary for de-
tails of the CycleCVAE architecture explicitly designed
for handling text and graph data. Note that we did not
include any additional penalty function on the diver-
gence between p':’]'t and pj; the architecture inductive
biases were sufficient for good performance.

Metrics We measure performance using three met-
rics: (1) text generation quality with the standard
BLEU score (Papineni et al., 2002)E| (2) graph con-
struction accuracy via the F1 score of the edge predic-
tions among given entity nodes, and (3) text diversity.
Text diversity is an increasingly important criterion for
NLP because the same meaning can be conveyed in
various expressions, and intelligent assistants should

BLEU (%) counts the 1- to 4-gram overlap between
the generated sentence and ground truth.
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master such variations. We evaluate diversity by report-
ing the number of distinct sentence variations obtained
after running the generation model 10 times.

Accuracy Results Since cycle training only requires
unsupervised data, we have to break the text-graph
pairs to evaluate unsupervised performance. In this
regard, there are two ways to process the data. First,
we can use 100% of the training data and just shuffle
the text and graphs so that the matching/supervision is
lost. This is the setting in Table [I} which allows for di-
rect head-to-head comparisons with SOTA supervised
methods (assuming no outside training data). The su-
pervised graph-to-text baselines include Melbourne (in-
troduced in Gardent et al. (2017))), StrongNeural, Best-
Plan (Moryossef et al., [2019), SegédAlign (Shen et al.,
2020), and G2T (Koncel-Kedziorski et al., [2019). Su-
pervised text-to-graph models include OnePass (Wang
et al., 2019), and T2G, a BiLSTM model we imple-
mented. Unsupervised methods include RuleBased
and GT-BT both by Schmitt et al. (2020). Finally,
CycleBase is our deterministic cycle training model
with the architectural components borrowed from Cy-
cleCVAE. Notably, from Table [I] we observe that our
model outperforms other unsupervised methods, and
it is even competitive with SOTA supervised models
in both the graph-to-text (BLEU) and text-to-graph
(F1) directions.

Text(BLEU) Graph(F1) #Variations
Supervised (100%)
Melbourne 45.0 1
StrongNeural 46.5 1
BestPlan 474 - 1
Seg&Align 46.1 - 1
G2T 45.8 - 1
OnePass - 66.2 -
T2G - 60.6 -
Unsupervised (100%, Shuffled)
RuleBased 18.3 0 1
GT-BT 37.7 39.1 1
CycleBase (Ours) 46.2 61.2 1
CycleCVAE (Ours) 46.5 62.6 4.67

Table 1: Performance on the full WebNLG dataset.

Text(BLEU) Graph(F1) #Variations
Supervised (50%)
G2T 44.5 -
T2G - 59.7 -
Unsupervised (first 50% text, last 50% graph)
CycleBase (Ours) 43.1 59.8 1
CycleCVAE (Ours) 43.3 60.0 4.01

Table 2: Performance on WebNLG with 50% data.

In contrast, a second, stricter unsupervised protocol
involves splitting the dataset into two halves, extracting
text from the first half, and graphs from the second
half. This is the setting in Table [2] which avoids the
possibility of seeing any overlapping entities during

training. Although performance is slightly worse given
less training data, the basic trends are the same.

Diversity Results From Tables [I] and [2] we also
note that CycleCVAE can generate on average more
than 4 different sentence types for a given knowledge
graph; all other SOTA methods can only generate
a single sentence per graph. Additionally, we have
calculated that CycleCVAE generates more than two
textual paraphrases for 99% of test instances, and the
average edit distance between two paraphrases is 12.24
words (see supplementary). Moreover, CycleCVAE text
diversity does not harm fluency and semantic relevance
as the BLEU score is competitive with SOTA methods
as mentioned previously.

Diverse Text Output Generated by CycleCVAE
— The population density of Arlington, Texas is 1472.0.
— Arlington, Texas has a population density of 1472.0.
— Alan Bean, who was born in Wheeler, Texas, is now
“retired.”
— Alan Bean is a United States citizen who was born in
Wheeler, Texas. He is now “retired.”

Table 3: Every two variations are generated by CycleC-
VAE from the same knowledge graph.

We list text examples generated by our model in Table[3]
with more in the supplementary. The diverse generation
is a significant advantage for many real applications.
For example, it can make automated conversations less
boring and simulate different scenarios. And diversity
can push model generated samples closer to the real
data distribution because there exist different ways to
verbalize the same knowledge graph (although diversity
will not in general improve BLEU scores, and can
sometimes actually lower them).

5.3 Integrating CycleCVAE with T5

Previous graph-text results are all predicated on no out-
side training data beyond WebNLG. However, we now
consider an alternative testing scenario whereby out-
side training data can be incorporated by integrating
CycleCVAE with a large pretrained T5 sequence-to-
sequence model (Raffel et al., [2020). Such models have
revolutionized many NLP tasks and can potentially
improve the quality of the graph-to-text direction in
cycle training on WebNLG. To this end, we trained a
CycleCVAE model, with the function hy(y, z) formed
from a pretrained T5 architecture (see supplementary
for details). Results are shown in Table |4) where un-
supervised CycleCVAE+T5 produces a competitive
BLEU score relative to fully supervised T5 baselines.
It also maintains diversity of generated text sequences.
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Model BLEU  #Vars.
Supervised T5 (Kale, [2020) 57.1 1
Supervised T5 (Ribeiro et al., 2020)) 57.4 1
Supervised T5 (Our Impl.) 56.4 1
Unsupervised CycleCVAE+T5 55.7 3.84

Table 4: Text generation results with T5 on WebNLG.

6 Conclusion

We have proposed CycleCVAE for explicitly handling
non-bijective surjections commonly encountered in real-
world applications of unsupervised cycle-consistent
training. Our framework has both a solid theoreti-
cal foundation and strong empirical performance on
practical knowledge graph-to-text conversion problems.
For future work we can consider extending CycleCVAE
to handle many-to-many (non-bijective, non-surjective)
mappings, or unsolved applications such as conversions
between scene graphs and realistic images (which re-
mains extremely difficult even with supervision).
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