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Appendix

A Identifiability of the affine causal model

Recall the form of the SEM that is defined by an autoregressive affine flow:

xj = esj(x<π(j))zj + tj(x<π(j)), j = 1, 2 (9)

where π is a permutation that describes the causal ordering.

The proof for additive flows (s1 = s2 = 0 in equation (9)) and general noise can be found in Hoyer et al. (2009).
Theorem 2 below summarizes the two scenarios under which the causal model defined by an affine flow is not
identifiable. In particular, if the function tj in equation (9) linking cause to effect is invertible and non-linear,
then none of these scenarios can hold. In addition, the proof of Theorem 2 only requires one of the noise variables
to be Gaussian.
Definition 1. Let (α, γ, δ, β, α0, β0, γ0, δ0) ∈ R≥0×R2

>0×R5 be a tuple such that one of the following conditions
holds:

• α > 0, α2
0 < αδ and β2 < 4αγ.

• α = β = α0 = 0 and β2
0 < δ.

We say that a density px of a continuous variable x is log-mix-rational-log if it has the form:

log px(x) = −
1

2
δx2 + δ0x+

1

2

(
α0x

2 + β0x+ γ0
)2

αx2 + βx+ γ
− 1

2
log(αx2 + βx+ γ) + const (10)

We say that px is strictly log-mix-rational-log if α > 0.

Note that the Gaussian distribution is part of the log-mix-rational-log family, for α = β = α0 = 0. If α 6= 0, then
the log-mix-rational-log family is not part of the exponential family.
Theorem 2. Assume the data follows the model

y = f(x) + v(x)n (11)

where n is a standardized Gaussian independent of x, f and v are twice-differentiable scalar functions defined on
R and v > 0.
If a backward model exists, i.e. the data also follows the same model in the other direction

x = g(y) + w(y)m (12)

where m is a standardized Gaussian independent of y and w > 0, then one of the following scenarios must hold:

1. (v, f) =
(

1
Q ,

P
Q

)
and (w, g) =

(
1
Q′ ,

P ′

Q′

)
where Q,Q′ are polynomials of degree two, Q,Q′ > 0, P, P ′ are

polynomials of degree two or less, and px, py are strictly log-mix-rational-log. In particular, lim−∞ v =
lim+∞ v = 0+, lim−∞ f = lim+∞ f <∞, lim−∞ w = lim+∞ w = 0+, lim−∞ g = lim+∞ g <∞ and f, v, g, w
are not invertible.

2. v, w are constant, f, g are linear and px, py are Gaussian densities.

Proof. The log-likelihood of (11), denoted by p1, is given by

log p1(x, y) = log px(x)−
1

2

(
y − f(x)
v(x)

)2

− log v(x)− 1

2
log 2π (13)

and log-likelihood of (12), denoted by p2, is given by

log p2(x, y) = log py(y)−
1

2

(
x− g(y)
w(y)

)2

− logw(y)− 1

2
log 2π (14)
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If the data follows both models, these are equal:

log px(x)−
1

2

(
y − f(x)
v(x)

)2

− log v(x) = log py(y)−
1

2

(
x− g(y)
w(y)

)2

− logw(y) (15)

Denote 1
v(x) by v(x) and likewise for w. Now, take the derivative of both sides with respect to x:

(log px)
′(x)− v(x)(y − f(x))(yv′(x)− (fv)′(x))− (log v)′(x) = −(x− g(y))w2(y) (16)

Take the derivative of both sides of this with respect to y:

− v(x)[2yv′(x)− (fv)′(x)− f(x)v′(x)] = −x(w2)′(y) + g′(y)w2(y) + g(y)(w2)′(y) (17)

Again, take the derivative of both sides with respect to x:

− y(v2)′′(x) + [v((fv)′ + fv′)]′(x) = −(w2)′(y) (18)

and once more, take the derivative of both sides of this with respect to y:

− (v2)′′(x) = −(w2)′′(y) (19)

which is possible only if both sides are constant, which is equivalent to v2 and w2 being second-order polynomials.
In other words,

v2(x) = αx2 + βx+ γ, v2(x) =
1

αx2 + βx+ γ
(20)

where the parameters must be such that the v is always positive. The same holds for w:

w2(y) = α′y2 + β′y + γ′, w2(y) =
1

α′y2 + β′y + γ′
(21)

Furthermore, equation (18) together with the fact that (v2)′′(x) = const implies that:

[v((fv)′ + fv′)]′(x) = [f ′v2 + 2f(v2)′)]′(x) = (fv2)′′(x) = const (22)

or
f(x)v2(x) = α0x

2 + β0x+ γ0 (23)

which means that f has the following form:

f(x) =
α0x

2 + β0x+ γ0
αx2 + βx+ γ

(24)

The same analysis yields a similar form for g:

g(y) =
α′0y

2 + β′0y + γ′0
α′x2 + β′x+ γ′

(25)

For v to be always positive, the coefficients (α, β, γ) in (20) must satisfy one of the following conditions:

1. α > 0 and 4αγ − β2 > 0.

2. α = β = 0 and γ > 0.

Similarly, for w to be always positive, the coefficients (α′, β′, γ′) in (21) must satisfy one of the following conditions:

1’. α′ > 0 and 4α′γ′ − β′2 > 0.

2’. α′ = β′ = 0 and γ′ > 0.
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First case: 1. + 1’. In the first case, we conclude that v = 1
Q and f = P

Q where Q is a polynomial of degree
two, Q > 0 and P is a polynomial of degree two or less. Furthermore, lim−∞ f = lim+∞ f = α0

α , regardless
of whether α0 is zero or not. This implies that f can’t be invertible. Going back to (15) and plugging these
expressions:

log px(x) +
1

2
log(αx2 + βx+ γ)− 1

2

(
α0x

2 + β0x+ γ0
)2

αx2 + βx+ γ
− γ′0x+

1

2
γ′x2 + (α0x

2 + β0x)y −
1

2
(αx2 + βx)y2

= log py(y) +
1

2
log(α′y2 + β′y+ γ′)− 1

2

(
α′0y

2 + β′0y + γ′0
)2

α′y2 + β′y + γ′
− γ0y+

1

2
γy2 + (α′0y

2 + β′0y)x−
1

2
(α′y2 + β′y)x2

(26)

or again

A(x)−B(y)− 1

2
(α− α′)x2y2 +

(
α0 −

1

2
β′
)
x2y −

(
α′0 −

1

2
β

)
xy2 + (β0 − β′0)xy = 0 (27)

where

A(x) = log px(x) +
1

2
log(αx2 + βx+ γ)− 1

2

(
α0x

2 + β0x+ γ0
)2

αx2 + βx+ γ
− γ′0x+

1

2
γ′x2 (28)

B(y) = log py(y) +
1

2
log(α′y2 + β′y + γ′)− 1

2

(
α′0y

2 + β′0y + γ′0
)2

α′y2 + β′y + γ′
− γ0y +

1

2
γy2 (29)

By first setting x = 0 in equation (27), we find that A(x) = B(0). Similarly, by now setting y = 0, we find that
B(y) = A(0). This in particular means that A(x)−B(y) is constant, which, when plugged back in equation (27),
would imply that all the monomials are zero. Finally, this would in turn imply the following:

α = α′, α0 = −1

2
β′, α′0 = −1

2
β, β0 = β′0 (30)

log px(x) = −
1

2
γ′x2 + γ′0x+

1

2

(
α0x

2 + β0x+ γ0
)2

αx2 + βx+ γ
− 1

2
log(αx2 + βx+ γ) + C (31)

log py(y) = −
1

2
γy2 + γ0y +

1

2

(
α′0y

2 + β′0y + γ′0
)2

α′y2 + β′y + γ′
− 1

2
log(α′y2 + β′y + γ′) + C (32)

Next we need to ensure we have well-defined probability densities. From the above equations, we can check the
coefficient of the quadratic term, which dominates at infinity, is 1

2α (α
2
0−αγ′) for px. Requiring this to be negative

is exactly the condition for the density family we made in Definition 1.

For py, we get the dominant quadratic term with the coefficient 1
2α′ (α

′2
0 − α′γ), and with substitutions we find

the condition for its negativity as β2 < 4αγ which is, again, the same as a condition in the Definition.

Second, the constant C has to be such that the probability density functions integrate to one. In fact, C can
be freely chosen, but importantly, it has to be the same for both densities. As a special case, this constraint is
obviously fulfilled if the densities are the same, i.e. the parameters with and without prime are the same (α = α′

etc.). We shall show below that such parameter values can be found.

In fact, we can see how the parameters of the inverse model are determined from the parameters of the true
model as follows. Define

δ := γ′, δ0 := γ′0 (33)

So we can write the above as

log px(x) = −
1

2
δx2 + δ0x+

1

2

(
α0x

2 + β0x+ γ0
)2

αx2 + βx+ γ
− 1

2
log(αx2 + βx+ γ) + C (34)

log py(y) = −
1

2
γy2 + γ0y +

1

2

(
−βy2/2 + β0y + δ0

)2
αy2 − 2α0y + δ

− 1

2
log(αy2 − 2α0y + δ) + C (35)

where all the parameters defining py are now obtained from the parameters defining px, f, v (which are here
denoted by the parameters without prime for this specific purpose). Likewise, we see that we also get g and w
using those same parameters.
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Now, we show that in spite of the different constraints, a solution in this family does exist. Let us consider the
case where px = py, which would ensure that we can normalize the densities with a common C. This can be
achieved by equating corresponding constants above which only requires

β = −2α0 (36)
δ = γ (37)
δ0 = γ0 (38)

which is still perfectly possible, even considering the constraints on the parameters in the Definition, which can be
satisfied by simply taking non-negative α, γ, γ′, and then fixing α0 to be small enough in absolute value (which
implies the same for β). Thus, a solution for the inverse direction does exist. (But note we didn’t prove that it
exists for data coming from any px, f, v in our family; we have proven unidentifiability only for some parameter
values.)

Second case: 2. + 2’. In the second case, we have that v is constant. Going back to (15), multiplying by −2,
plugging the solutions just obtained:

− 2 log px(x) + γ

(
y − α0

γ
x2 − β0

γ
x− γ0

γ

)2

− log γ = −2 log py(y) + γ′
(
x− α′0

γ′
y2 − β′0

γ′
y − γ′0

γ′

)2

− log γ′ (39)

which can be expanded into, after grouping together monomials:

− 2 log px(x) +
α2
0

γ
x4 + 2

α0β0
γ

x3 +

(
β2
0 + α0γ0

γ
− γ′

)
x2 + 2

(
β0γ0
γ

+ γ′0

)
x− 2α0x

2y − 2β0xy + const

= −2 log py(y) +
α′0

2

γ′
y4 + 2

α′0β
′
0

γ′
y3 +

(
β′0

2
+ α′0γ

′
0

γ′
− γ

)
y2 + 2

(
β′0γ
′
0

γ′
+ γ0

)
y − 2α′0y

2x− 2β′0xy (40)

or again
A(x)−B(y)− 2α0x

2y + 2α′0y
2x+ 2(β′0 − β0)xy = const (41)

where

A(x) = −2 log px(x) +
α2
0

γ
x4 + 2

α0β0
γ

x3 +

(
β2
0 + α0γ0

γ
− γ′

)
x2 + 2

(
β0γ0
γ

+ γ′0

)
x (42)

B(y) = −2 log py(y) +
α′0

2

γ′
y4 + 2

α′0β
′
0

γ′
y3 +

(
β′0

2
+ α′0γ

′
0

γ′
− γ

)
y2 + 2

(
β′0γ
′
0

γ′
+ γ0

)
y (43)

By setting y = 0 in (41), we have that A(x) = const for all x. Similarly, by setting x = 0, we get B(y) = const
for all y. We conclude that the remaining monomials must be zero. In particular, this implies that α0 = α′0 = 0
and β0 = β′0. This in turn means that f and g are linear.

Finally, by plugging this into (42) and (43), we get:

log px(x) =
1

2

(
β2
0

γ
− γ′

)
x2 +

(
β0γ0
γ

+ γ′0

)
x+ const (44)

log py(y) =
1

2

(
β′0

2

γ′
− γ

)
y2 +

(
β′0γ
′
0

γ′
+ γ0

)
y + const′ (45)

We deduce that x and y must be Gaussian. We don’t prove the normalizability of the probability density functions
in detail here since it is well-known that such Gaussian, unidentifiable models exist.

Third (and fourth) case: 1. + 2’. or 2. + 1’. Since these two cases are symmetric, we will suppose that v
is constant (2.) and w is a polynomial of second degree (1’.). Going back to (15) and plugging the expressions for
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f, v, g, w:

log py(y) +
1

2
log(α′y2 + β′y + γ′)− 1

2

(
α′0y

2 + β′0y + γ′0
)2

α′y2 + β′y + γ′
− γ0y +

1

2
γy2 + (α′0y

2 + β′0y)x−
1

2
(α′y2 + β′y)x2

= log px(x) +
1

2
log(γ)− 1

2

(
α0x

2 + β0x+ γ0
)2

γ
− γ′0x+

1

2
γ′x2 + (α0x

2 + β0x)y (46)

or again

A(x)−B(y) +
1

2
α′x2y2 +

(
α0 −

1

2
β′
)
x2y − α′0xy2 + (β0 − β′0)xy = 0 (47)

where

A(x) = log px(x) +
1

2
log(γ)− 1

2

(
α0x

2 + β0x+ γ0
)2

γ
− γ′0x+

1

2
γ′x2 (48)

B(y) = log py(y) +
1

2
log(α′y2 + β′y + γ′)− 1

2

(
α′0y

2 + β′0y + γ′0
)2

α′y2 + β′y + γ′
− γ0y +

1

2
γy2 (49)

Proceeding like above, we can deduce that A(x)−B(y) is a constant, and that all the monomials in (47) are zero.
In particular, α′ = 0, which contradicts 1’.: this third case is thus not possible. �

B Affine flows are not universal density approximators

Proposition 1. Let T : Rd → Rd be an affine autoregressive transformation. Let z be a standard Gaussian, and
let x = T(z). Then there is no parameterization of T such that x has an isotropic Gumbel distribution.

Proof. It is enough to prove this Theorem for d = 2. Let x = T(z). Then

log px(x) = log pz(T
−1(x)) + log |det JT−1(x)| (50)

and

x1 = es1z1 + t1 (51)

x2 = es2(x1)z2 + ti(x1) (52)

The Jacobian log-determinant of T−1 is simply log |det JT−1(z)| = −s1 − s2(x1). Note that this determinant
is only a function of x1. This is the main reason why affine autoregressive flows are not universal density
approximators.

To see this, suppose that x1 and x2 are independent, and that each has a Gumbel distribution. Plugging this into
equation (50), we get

−
(
x1 + e−x1

)
−
(
x2 + e−x2

)
= −s1 − s2(x1)− (x1 − t1)2 e−2s1 − (x2 − t2(x1))2 e−2s2(x1) (53)

This equation is valid for all (x1, x2) ∈ R2. In particular, let x1 = 0. Then for any x2, after rearranging and
grouping terms, we get

e−x2 = αx22 + βx2 + γ (54)

This can’t hold for all values of x2, which results in a contradiction. Thus, we conclude that an affine autoregressive
flow can’t represent any distribution, unlike general unconstrained autoregressive flows. �

C Affine autoregressive flows are transitive

Proposition 2. Consider 2 autoregressive transformations f and g with the same ordering π. Then their
composition h = g ◦ f is also an autoregressive with the same ordering π.
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Proof. Without loss of generality, assume that π is the identity. Let (x,y, z) be such that

y = f(z) (55)
x = g(y) = g ◦ f(z) (56)

Since f and g are autoregressive, we can rewrite this system using equation (4) as

yi = τ(zi,y<i) (57)
xj = τ ′(yj ,x<j) (58)

The transformers τ and τ ′ are invertible with respect to their first argument. Denoting those inverses as α and
α′. Then

zi = α(yi, y<i) (59)
yj = α′(xj , x<j) (60)

And thus
zi = α(α′(xi, x<i), β(x<i)) (61)

for some function β (not necessarily invertible). Since α and α′ are invertible with respect to their first argument,
this means that the mapping xi 7→ zi in equation (61) is also invertible, and we can write:

xi = τ ′′(zi, x<i) (62)

where τ ′′ is invertible wrt to its first argument. This proves that h = g ◦ f is also an autoregressive flow. �

Proposition 3. Consider k affine autoregressive flows T1, . . . ,Tk of the form (6) with the same ordering π.
Then their composition T = T1 ◦ · · · ◦ Tk is also an affine autoregressive flow of the form (6) with the same
ordering π.

Proof. We will suppose that d = 2. The proof for d > 2 is very similar but requires more complex notations. We
will denote by zjl the j-th (j = 1, 2) output of the l-th sub-flow. Not that we can parameterize T or T−1 to be an
affine transformation. In these notations, if T follows (6), then zk = z and z0 = x. If instead, T−1 follows (6),
then z0 = z and zk = x. Each flow l ≥ 1 has the expression:

zl1 =
(
zl−11 − tl1

)
e−s

l
1 (63)

zl2 =
(
zl−12 − tl2(zl1)

)
e−s

l
2(z

l
1) (64)

First, define

sl,k1 =

k∑
j=l+1

sj1 (65)

t
l,k
1 =

k∑
j=l+1

tj1e
∑j−1
i=l+1 s

i
1 =

k∑
j=l+1

tj1e
sl,j−1
1 (66)

where all sums are zero if they have no summands. Then it is easy to show by induction using (63) that

zl1 = es
l,k
1 zk1 + t

l,k
1 , ∀l ≤ k (67)

and that
es
l,j
1 zj1 + t

l,j
1 = es

l,k
1 zk1 + t

l,k
1 , ∀l ≤ min(j, k) (68)

Second, define

sk2(u) =

k∑
l=1

sl2(e
sl,k1 u+ t

l,k
1 ) (69)

t
k
2(u) =

k∑
l=1

tl2(e
sl,k1 u+ t

l,k
1 )e

∑l−1
i=1 s

i
2(e

s
i,k
1 u+t

i,k
1 ) (70)
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We will show by induction on k that

zk2 =
(
z02 − t

k
2(z

k
1 )
)
e−s

k
2 (z

k
1 ) (71)

The case for k = 1 trivially holds. Now suppose that (71) holds for k ≥ 1, and let’s show it also holds for k + 1.
Using (64), we can write

zk+1
2 =

(
zk2 − tk+1

2 (zk+1
1 )

)
e−s

k+1
2 (zk+1

1 ) (72)

We need to show that

sk+1
2 (zk+1

1 ) = sk+1
2 (zk+1

1 ) + sk2(z
k
1 ) (73)

t
k+1
2 (zk+1

1 ) = tk+1
2 (zk+1

1 )es
k
2 (z

k
1 ) + t

k
2(z

k
1 ) (74)

This can be done using (68), the fact that zk+1
1 = es

k+1,k+1
1 zk+1

1 + t
k+1,k+1
1 and the definitions of sk2 and tk2 , which

in turn allows us to conclude the induction proof.

Finally, by replacing z0 and zk by x and z respectively, in (67) and (71), we have

x1 = es
0,k
1 z1 + t

0,k
1 (75)

x2 = es
k
2 (x1)z2 + t

k
2(x1) (76)

which proves the transitivity of affine autoregressive flows. �

D Universality of the causal function

Proposition 4. Consider k affine autoregressive flows T1, . . . ,Tk, and let T = T1 ◦ · · · ◦Tk. Denote by tlj and
slj the coefficients of the l-th sub-flow Tl, and by tkj and skj those of T. Suppose that all of the slj and tlj are
feed-forward neural networks that have universal approximation capability (assuming all technical conditions hold).
Then tkj and skj also have universal approximation capability.

Proof. We will suppose for the proof that d = 2. The proof for d > 2 is similar. According to Proposition 3, T is
also an affine autoregressive flow, and tk2 and sk2 have the following expressions:

sk2(u) =

k∑
l=1

sl2(e
sl,k1 u+ t

l,k
1 ) (77)

t
k
2(u) =

k∑
l=1

tl2(e
sl,k1 u+ t

l,k
1 )e

∑l−1
i=1 s

i
2(e

s
i,k
1 u+t

i,k
1 ) (78)

where tl,k1 and sl,k1 are defined in equations (66) and (65) respectively.

On the one hand, translating and scaling the argument u of sk2 by tl,k1 and sl,k1 only changes the bias and the
slope of the input layer of each of the sl2, l = 1, . . . , k. Thus, one can interpret equation (77) as the output of an
additional final layer of the neural network whose outputs are the sl2 functions. The number of flows k in this
case increases the width of this final layer. Using the classical result of the universal approximation theorem of
feed-forward networks with arbitrary width (Hornik, 1991), we conclude that sk2 also satisfies such properties.

Interestingly, note that this results holds even if each of the slj function is simply an affine function followed by a
nonlinearity (i.e. a 1-hidden layer feed-forward network).

On the other hand, since each of the tl2 have universal approximation capability, each can in particular approximate

a function of the form u 7→ fl(u)e
∑l−1
i=1 s

i
2(e

s
i,k
1 u+t

i,k
1 ), where fl is a simple affine function followed by a nonlineariy

σ (i.e. a 1-hidden layer feed-forward network). Thus, tk2 can approximate a function of the form
∑k
l=1 fl, which,

by the same argument used above, will have universal approximation capability (Hornik, 1991). �
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E Algorithms for causal inference

E.1 Interventions

As discussed in Section 4.1, the intervention do(xi = α) breaks the links from x<π(i) to xi and sets a point mass
on zi. Computing the value of xj 6=i requires sampling from

∏
j 6=i pzj then propagating sequentially through the

flow. This avoids having to invert the flow and compute zi = τ−1i (xi,x<π(i)). However, in the case of affine
autoregressive flows, tau−1 is readily available, and can be used to make the above algorithm parallelizable. In fact,
we can compute zi = τ−1i (xi,x<π(i)), sample zj 6=i, then propagate the concatenated z forward through the flow to
obtain xdo(xi=α). Note that the value of x<π(i) is required to infer zi, which will break the parallelism. But since
the same value is used to parametrized τi and τ−1i , any value v can be used as long as τi(τ−1i (α,v),v) = α. In
our implementation, we chose v = 0. The sequential and parallel implementation are summarized by Algorithms 1
and 2 respectively.

Algorithm 1 Generate samples from an interventional distribution (sequential)

Input: interventional variable xi, intervention value α, number of samples S
for s = 1 to S do
sample z(s) from flow base distribution (the value of zi can be discarded)
set xi(s) = α
for j = π−1(1) to π−1(d); j 6= i do

compute observation xj(s) = τj(zj(s),x<π(j)(s))
end for

end for
Return: interventional sample X = {x(s) : s = 1, . . . , S}

Algorithm 2 Generate samples from an interventional distribution (parallel)

Input: interventional variable xi, intervention value α, number of samples S
for s = 1 to S do
sample z(s) from flow base distribution (the value of zi can be discarded)
set zi(s) = τ−1 (α,0)
compute x(s) = T(z(s))

end for
Return: interventional sample X = {x(s) : s = 1, . . . , S}

E.2 Counterfactuals

The process of obtaining counterfactual predictions is described in Pearl (2009a) as consisting of three steps:

1. Abduction: given an observation xobs, infer the conditional distribution/values over latent variables zobs.
In the context of an autoregressive flow model this is obtained as zobs = T−1(xobs).

2. Action: substitute the values of zobs with the values based on the counterfactual query, xxj←α. More
concretely, for a counterfactual, xxj←α, we replace the structural equations for xj with xj = α and adjust
the inferred value of latent zobsj accordingly.

3. Prediction: compute the implied distribution over x by propagating latent variables, zobs, through the
structural equation models.

This is summarized by Algorithm 3.
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F Experimental details

F.1 Architectures and hyperparameters

The optimization was done using Adam, with learning rate lr = 0.001, β = (0.9, 0.999), along with a scheduler
that reduces the learning rate by a factor of 0.1 on plateaux. All flows use an isotropic Laplace distribution as a
prior. The different architectures and hyperparameter used for the experiments are as follows:

• Causal discovery simulations: The flow T is a composition of 2 sub-flows T1 and T2. For each of the Tl,
both sj and tj are multi-layer perceptrons (MLPs), with 1 hidden layer and 10 hidden units. Each direction
was trained for 200 epochs, with a mini-batch of 128 data points. The same architecture was used for all
panels of Figure 1.

• Cause-effect pairs: The flow T is a composition of 4 sub-flows T1, · · · ,T4. For each of the Tl, both sj
and tj are MLPs, with either 1 or 3 hidden layers, each with 5 hidden units. For each direction, we train
two different flows (with 1 or 3 hidden layers), and select the flow that yields higher test likelihood. Each
direction was trained for 750 epochs, with a mini-batch of 128 data points. For each pair, 80% of the data
points were used for training, and the remaining 20% to evaluate the likelihood. The same architecture was
used to classify all the pairs.

• EEG arrow of time: The flow T is a composition of 4 sub-flows T1, · · · ,T4. For each of the Tl, both sj
and tj are MLPs, with 4 hidden layers, each with 10 hidden units. Each direction was trained for 400 epochs,
with a mini-batch of 32 data points. For each channel, 80% of the data points were used for training, and
the remaining 20% to evaluate the likelihood. The same architecture was used to classify all the channels.

• Interventions on simulated data: The flow T is a composition of 5 sub-flows T1, · · · ,T5. For each of the
Tl, both sj and tj are MLPs, with 1 hidden layers, each with 10 hidden units. We train the flow, conditioned
on the causal ordering, to fit the correct SEM. Training was done for 750 epochs, with a mini-batch of 32
data points.

• Interventions on es-fMRI data: The flow T is a composition of 5 sub-flows T1, · · · ,T5. For each of the
Tl, both sj and tj are MLPs, with a single hidden layer consisting of 2 hidden units. In order to obtain
interventional predictions, a CAREFL model was first trained using resting-state fMRI data conditioned
upon the causal ordering. Since we did not seek to infer the causal structure, 100% of the training data was
employed (this is in contrast to causal discovery experiments which only trained models on 80% of the data).

F.2 Exploring flow architectures

As discussed in Section C, stacking multiple autoregressive flows on top of each other is equivalent to using a
single autoregressive flow with a wide hidden layer. To explore this aspect, we run multiple experiments where
each flow is an MLP with one hidden layer and a LeakyReLU activation, in which we vary the width of the
hidden layer and the number of stacked flows. We observed empirically that stacking multiple layers in the flows
lead to empirical improvements, as reported by Figure 6.

F.3 Preprocessing of EEG data

The openly available EEG data from Dornhege et al. (2004) contains recordings for 5 healthy subjects. For each
subject, the data has been sampled at 100Mhz and 1000Mhz. For our experiments, we considered subject number

Algorithm 3 Answer a counterfactual query

Input: observed data xobs, counterfactual variable xj and value α
1. Abduction: infer zobs = T−1(xobs)
2. Action: (a) set zobsj,xj←α = τ−1j (α,xobs<π(j))

(b) set zobsi,xj←α = zobsi for i 6= j

3. Prediction: pass zobsxj←α forward through the flow T

Return: xxj←α = T(zobsxj←α)
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Figure 6: Impact of changing the width versus the depth of the normalizing flow in CAREFL

3, and used the data sampled at 1000Mhz. In particular, we only considered n = 150 and n = 500 time points.
Each of the 118 EEG channels was then reversed with probability 0.5.

The task is to properly infer the arrow of time for each of the 118 EEG, considered separately. We transform
a univariate timeseries (xt)t∈[[1,n]] corresponding to 1 channel into bivariate causal data by shifting it by a lag
parameter l, to obtain data of the form (xt, xt+l)t∈[[1,n−l]]. For the results plotted in Figure 3, we used three
values of lag for ANM, RECI, the linear LR and CAREFL-NS: l ∈ {1, 2, 3}, which we then combined into one
dataset. For CAREFL, we used only two values of lag: l ∈ {1, 2}.

F.4 Preprocessing of functional MRI data

Results included in this manuscript come from preprocessing performed using FMRIPREP (Esteban et al., 2019), a
Nipype based tool (Gorgolewski et al., 2011). Each T1w (T1-weighted) volume was corrected for INU (intensity non-
uniformity) using N4BiasFieldCorrection v2.1.0 and skull-stripped using antsBrainExtraction.sh v2.1.0
(using the OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1, and
the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical grey-matter of Mindboggle. Spatial normalization to the
ICBM 152 Non-linear Asymmetrical template version 2009c was performed through non-linear registration with
the antsRegistration tool of ANTs v2.1.0, using brain-extracted versions of both T1w volume and template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed
on the brain-extracted T1w using fast.

Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 and motion corrected using
mcflirt. This was followed by co-registration to the corresponding T1w using boundary-based registration with
six degrees of freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-
T1w transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step using
antsApplyTransforms using Lanczos interpolation.

Regional time series were subsequently calculated from the processed FMRI data (transformed into MNI space)
using NiLearn (Abraham et al., 2014) and the Harvard-Atlas probabilistic atlas, with regions thresholded at
25% probability and binarised. Given the regional location of intracortical stimulation in the subjects, FMRI
time-series from the Cingulate gyrus and Heschl’s gyrus were selected for analysis.

We note that each patient received surgery and stimulation in different locations, as determined by their diagnosis
and clinical criteria. As such, the two regions studied were selected so as to include as many subjects as possible
in our experiments. Moreover, the Cingulate gyrus is a region associated with cognitive processes such as saliency
and emotional processing (Vogt, 2019) whereas Heschl’s gyrus covers primary auditory cortex, associated with
early cortical processing of auditory information; as such connectivity between the regions captures the interaction
between a higher-order heteromodal region and a unimodal sensoryl region.


