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Abstract
We propose Intermediate Layer Optimization
(ILO), a novel optimization algorithm for solving
inverse problems with deep generative models.
Instead of optimizing only over the initial latent
code, we progressively change the input layer ob-
taining successively more expressive generators.
To explore the higher dimensional spaces, our
method searches for latent codes that lie within
a small l1 ball around the manifold induced by
the previous layer. Our theoretical analysis shows
that by keeping the radius of the ball relatively
small, we can improve the established error bound
for compressed sensing with deep generative mod-
els. We empirically show that our approach out-
performs state-of-the-art methods introduced in
StyleGAN-2 and PULSE for a wide range of in-
verse problems including inpainting, denoising,
super-resolution and compressed sensing.

1. Introduction
We study how deep generators can be used as priors to solve
inverse problems like inpainting, super-resolution, denoising
and compressed sensing from random projections. Image
reconstruction methods can be either supervised (Pathak
et al., 2016; Richardson et al., 2020; Yu et al., 2018) or
unsupervised (Menon et al., 2020; Bora et al., 2017; Pajot
et al., 2019), see the recent survey (Ongie et al., 2020) for
a unified presentation. Such inverse problems naturally
appear in many applications including medical imaging,
single pixel reconstruction and other domains (Lustig et al.,
2007; 2008; Chen et al., 2008; Duarte et al., 2008; Qaisar
et al., 2013; Hegde et al., 2009).

We focus on unsupervised image reconstruction techniques
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that rely on a pre-trained generator, building on the general
framework introduced in CSGM (Bora et al., 2017). The
central optimization problem that appears in unsupervised
image reconstruction is the inversion of a deep generative
model, i.e. finding a latent code that explains the measure-
ments. This can be performed for different generators, e.g.
DCGAN or more recently the powerful StyleGAN-2 (Karras
et al., 2019; 2020) as shown in the excellent results obtained
by PULSE (Menon et al., 2020). Unfortunately, inverting a
generator with even 4 layers is NP-hard (Lei et al., 2019) so
approximate inversion methods are needed.

The CSGM framework (Bora et al., 2017) used gradient
descent to minimize the measurement mean squared error
(MSE) and showed good empirical performance for numer-
ous inverse problems including inpainting and compressed
sensing with random Gaussian measurements using DC-
GAN. However, this does not work as well for deeper gen-
erators e.g. BigGAN as discussed in Daras et al. (2020).
PULSE (Menon et al., 2020) improved the CSGM frame-
work focusing specifically on super-resolution, by refin-
ing the latent space optimization and using the StyleGAN-
2 (Karras et al., 2019; 2020) generator.

We propose a novel optimization method for solving gen-
eral inverse problems using a technique we call Interme-
diate Layer Optimization (ILO). Our method adaptively
changes which layer is optimized, moving from the initial
latent code to intermediate layers closer to the pixels. By
optimizing intermediate layers we expand the range of the
generator to better satisfy the measurements. This has to be
done carefully since intermediate layers can produce non-
realistic images and therefore inversion must be regularized.

1.1. Our Contributions

1. We propose a novel optimization method for solv-
ing general inverse problems by adaptively changing
which layer variables are optimized. Our method extends
PULSE (Menon et al., 2020) beyond super-resolution, to all
inverse problems with differentiable forward operators.
2. To avoid over-expanding the range of the generator to
non-realistic images, we only search for latent codes within
a small l1 ball around the manifold induced by the previous
layer. Conceptually, our method generalizes the framework
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introduced in Dhar et al. (2018); instead of allowing sparse
deviations only in the image space, we allow small devia-
tions from the manifold of any layer of the generator.
3. We theoretically analyze our framework by establishing
sample complexity and error bounds. We show that by re-
stricting the radius of the latent searches, we can improve
the established error bound of CSGM (Bora et al., 2017).
4. Experimentally, our method significantly outperforms
the previous state-of-the-art techniques for solving inverse
problems with deep generative models for a wide range of
tasks including inpainting, denoising and super-resolution.
5. To illustrate the power of inverse problems with general
differentiable forward operators, we use a classifier as a
measurement process. Specifically, we show how we can
use a classifier to bias generators to produce human images
that look like ImageNet classes like frogs, corals and gold-
fishes. Our method uses gradients from classifiers trained
to achieve robustness to adversarial attacks as proposed
in (Santurkar et al., 2019), but guiding generative latent
codes as opposed to pixels directly.

2. Algorithm
2.1. Setting

The key step in our approach is to decompose pre-trained
generative models as compositions of feed-forward neural
networks. Given a (pre-trained) generative model G(z) ∈
Rn that produces images from latent codes z ∈ Rk, we
decompose it as a G = G2 ◦G1 where G1 : Rk → Rp and
G2 : Rp → Rn. As usual, the latent vectors zk ∈ Rk were
sampled according to a simple distribution Pz , typically
Gaussian and independent.

Our observations are formed by a known measurement ma-
trix

y = Ax+ noise, (1)

where A : Rm×n and x ∈ Rn is the real image we want to
recover. We emphasize that our algorithm can be applied
when the measurement process is a general differentiable
operator y = A(x) but our theory only applies to linear
inverse problems. Since we will be working with latent
vectors in different layers we indicate the dimension as a
superscript, so zk denotes an initial latent vector in Rk and
zp an intermediate vector in Rp.

2.2. Approach

Our approach is described in Algorithm 1. The first step
of our method is the same as in CSGM (Bora et al., 2017);
we optimize over a k-dimensional latent code, zk, which
is the input of the first layer of the generator. In practice,
to obtain the solution of line 1 of Algorithm 1, we pick
an initial zk from the latent distribution of the generator

and we optimize the loss function ||AG(zk)− Ax|| using
gradient descent. Once we solve this optimization problem,
we obtain a solution, ẑk, that we map to the p-dimensional
space usingG1. By doing that, we get an intermediate latent
representation, ẑp = G1(ẑk).

From that point onwards, our algorithm proceeds in rounds.
At the beginning of each round, we optimize on the p-
dimensional input space of G2 but we only allow solutions
that lie within an l1 ball centered at ẑp. Intuitively, we allow
deviations from the range of G1 to increase the expressitiv-
ity of the model, but we restrict those deviations to avoid
overfitting on the measurements (see Experiments section).

Once we obtain the solution of line 4 of Algorithm 1, i.e.
once we find the latent code, z̃p, that best explains the
measurements and lies inside an l1 ball of the previous
latent, we project this solution back to the range of the
generator. To do that, we search for the latent code zk

such that G1(zk) is as close as possible to z̃p (line 5 of
Algorithm 1). This problem is solved by initializing a latent
vector zp to ẑp and then minimizing using gradient descent
the loss ||G1(zk)− z̃p||. The solution of this problem forms
a new ẑk vector which is in turn projected again to the
intermediate code ẑp = G1(ẑk). Our algorithm attempts
to explore the set we call the extended range: the range of
vectors realizable by the previous layer, dilated by an l1 ball
of sparse deviations. Within this set we would like to find
the latent vector that best explains the measurements.

We emphasize that our theoretical analysis provides per-
formance bounds for the global optimum in this extended
range, while our algorithm is based on projected gradient
descent for a non-convex problem and therefore can be stuck
in local optima. It may be possible to prove that such local
optimization algorithms obtain global minima under gen-
erator weight assumptions as achieved in the pioneering
work of Hand & Voroninski (2018); Hand et al. (2018) for
CSGM, but this remains open for future work.

3. Theoretical Analysis
3.1. Preliminaries

We begin our theoretical discussion by revisiting some im-
portant elements of the theory of compressed sensing with
deep generative models.

Definition 1 (S-REC (Bora et al., 2017)). Let S ⊆ Rn. For
some parameters γ, δ > 0, a matrix A ∈ Rm×n is said to
satisfy S-REC(S, γ, δ) if ∀x1, x2 ∈ S, we have that:

||A(x1 − x2)||2 ≥ γ||x1 − x2||2 − δ. (2)

The S-REC condition, introduced in CSGM (Bora et al.,
2017), guarantees that if two vectors, x1, x2 ∈ Rn, are very
different (right side of the equation), then their measure-
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Original Observation CSGM MSE (PULSE) CSGM LPIPS CSGM LPIPS+MSE Ours

Figure 1. Results on the inpainting task. Rows 1, 2, 3 and 5 are real images (outside of the test set, collected from the web) while rows 4,
6 are StyleGAN-2 generated images. Column 2: the first five images have masks that were chosen to remove important facial features.
The last row is an example of randomized inpainting, i.e. a random 1% of the total pixels is observed. Columns 3-5: reconstructions using
the CSGM (Bora et al., 2017) algorithm with the StyleGAN-2 generator and the optimization setting described in PULSE (Menon et al.,
2020). While PULSE only applies to super-resolution, we extend it using MSE, LPIPS and jointly MSE+LPIPS loss. The experiments of
Columns 3-5 form an ablation study of the benefits of each loss function. Column 6: reconstructions with ILO (ours). As shown, ILO
consistently gives better reconstructions of the original image. Also, many biased reconstructions can be corrected by our method. In the
last two rows, recovery of the image is still possible from very few pixel observations using our method.

ments will be significantly different as well (left side of the
equation). In CSGM, the set S of interest is the range of the
generator. Therefore, S-REC is a key property for proving
small reconstruction error when observing Ax. Bora et al.
(2017) show that, for any L-Lipschitz generator G : Rk →
Rn, if 1) A is a matrix with i.i.d. Gaussian entries drawn
from N (0, 1

m ) and 2) m = 1
a2 Ω

(
k log

(
Lr1
δ

))
, then with

probability 1− e−a2Ω(m), S-REC(G(Bk1 (r1)), 1− a, δ)) is
satisfied.

Algorithm 1 ILO for one layer of the generator
// CSGM solution

1 ẑk ← argminzk∈Bk
2 (r1)
||AG(zk)−Ax||2

2 ẑp ← G1(ẑ
k)

3 for t← 0 to r do
// Best solution within an l1 ball
centered around the prev. solution

4 z̃p ← argminzp∈ẑp⊕B
p
1 (r2)
||AG2(z

p)−Ax||
// Projection back to the range

5 ẑk ← argminzk∈Bk
2 (r1)
||G1(z

k)− z̃p||
6 ẑp ← G1(ẑ

k)
end
// Return the best solution within an l1
ball of some point in the range

7 return G2(z̃
p)

3.2. Intermediate Layer Optimization

Our theoretical result is a sample complexity bound for
the reconstruction algorithm that optimizes in the full ex-
tended range of the generative model, similar in style to the
CSGM (Bora et al., 2017) result.

Let Bkq (r1) denote a ball of radius r1 measured in lq norm
and ⊕ denote the Minkowski sum operation, i.e. given sets
S1, S2, the set

S1 ⊕ S2 = {x+ y|x ∈ S1, y ∈ S2}.

If the initial vector zk lies in a ball of radius r1, denoted as
Bk2 (r1), the range of the first generator is G1(Bk2 (r1)). We
are expanding this set to create the extended range:

G1(Bk2 (r1))⊕Bp1(r2).

Our result is showing that minimizing the measurements
in this extended range gives a reconstruction that is close
to the best reconstruction that the extended generator G2

can produce. This result is obtained with high probability
over the random measurement matrix A, if the number of
measurements is sufficiently large:

Theorem 1. Let G = G2 ◦ G1 with G1 : Rk → Rp be
an L1-Lipschitz function and G2 : Rp → Rn be an L2-
Lipschitz function. Let A ∈ Rm×n be the measurements
matrix with Aij ∼ N (0, 1/m) i.i.d. entries.
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Let K be a parameter of our choice where K ≤ √p, and
r2 = Kδ

L2
. Consider the true optimum in the extended range

z̄p = argminzp∈G1(Bk
2 (r1))⊕Bp

1 (r2)||x−G2(zp)||, (3)

and the measurements optimum in the extended range

z̃p = argminzp∈G1(Bk
2 (r1))⊕Bp

1 (r2)||Ax−AG2(zp)||.
(4)

Then, if the number of measurements is sufficiently large:

m =
1

(1− γ)2
Ω

(
k log

L1L2r1

δ
+K2 log p

)
, (5)

then with probability at least 1 − e−Ω((1−γ)2·m), we have
the following error bound:

||x−G2(z̃p)|| ≤
(

1 +
4

γ

)
||x−G2(z̄p)||

+δ · log(4K)

γ
·
√
p

K
log

√
p

K
. (6)

We will now try to develop intuition about the theorem. We
begin by explaining the sets involved in Equations (3), (4).
We consider Bk2 (r1) to be a set containing all the latent
codes of the first layer of the generator that could be poten-
tially pre-images of any sensed signal x. We refer to Bk2 (r1)
as the domain of G and to G1(Bk2 (r1)) as the range of G1.
The extended range contains all vectors that lie within an l1
ball of radius r2 from some point in the range of G1. This
is the set G1(Bk2 (r1))⊕Bp1(r2) that we optimize over.

Let’s now consider the error bound of (6). First, z̄p is the
latent code in the extended range that best explains the
image x. We refer to this as the true optimum latent code.
Next, z̃p, is the measurements optimum, i.e. the latent code
in the extended range that best explains the measurements
Ax. It is important to realize that a reconstruction algorithm
only has access to this measurement error and can never
compute z̄p. Our goal is to show that z̃p produces an image
close to the one produced by z̄p.

Our theorem states that given enough measurements m,
the measurements optimum is nearly as good as the true
optimum (see (6) and Remark 3).

Remark 1 (Choice of K). The size of the extended range
affects the required number of measurements ((4)) and our
error bound (see (6)). Observe that the size of the extended
range is directly controlled by K, since, for any fixed δ, we
set r2 = Kδ

L2
. As K increases, we explore a bigger set and

both terms on the right side of (6) become smaller. However,
measurements scale quadratically with K. We can set K
to scale approximately as

√
k (see Remark 3 for details on

how all the quantities can scale). For that choice of K,
observe that our result requires measurements that scale
linearly on k (and only logarithmic in p) while the CSGM
result requires measurements that scale linearly on p. The
costs for the small increase in the measurements, are 1)
the additive error scales with

√
p, 2) we are restricted to

exploring a small radius.

In practice, these can be tuned as hyperparameters and our
experiments show that even small expansions significantly
outperform CSGM in numerous inverse problems.

Remark 2 (CSGM sample bound applied directly on the
intermediate layer). We compare to the result we obtain by
applying CSGM to the intermediate layer generator. That
would yield measurements that scale as:

m = Ω

(
k log

(
L1L2r1

δ

)
+ p log

(
L2r2

δ

))
.

These many measurements result in an additive error term
ofO(δ). Our new bound requires fewer measurements when
the free parameter K is smaller than

√
p.

Remark 3 (Parameter Scaling). There are various ways to
set the parameters in our bounds, depending on the scaling
of sizes of the intermediate layers and the Lipschitz con-
stants. For typical piecewise linear networks with d layers
and maximum n neurons in each layer, we know that the
end-to-end Lipschitz constant L ≤ L1 · L2 might scale as
nd for bounded maximum weights. Hence, as in CSGM, we
may set r1 to scale as nd. The error term ||x − G2(z̄p)||
scales linearly with n. Hence, we need to choose δ,K such
that the additive term in inequality (6) scales sublinearly.
We may set δ to scale as 1√

p . To get the same order of mea-

surements as CSGM, we may set K to scale as
√
k. For that

choice of parameters, the radius for the intermediate search,
i.e. r2 scales as

√
k
pn
−d2 , where d2 is the depth of G2.

Remark 4 (Model expressitivity). As we optimize over
deeper layers, the model expressitivity increases and hence
the error ||x−G2(z̄p)|| decreases.

3.3. Sketch of the proof

The central novelty of our proof is how we upper bound the
metric entropy of the epsilon nets used to cover the extended
range of the generator, i.e. the set G1(Bk2 (r1)) ⊕ Bp1(r2).
First, we observe that if S1 is a epsilon net for G1(Bk2 (r1))
and S2 is an epsilon net for Bp1(r2), then a simple bound for
the size of an epsilon net on the extended range will have at
most |S1| · |S2| elements.

CSGM uses a volumetric argument to upper bound the size
of the epsilon net for S1. Our key idea is that using the
same method to bound the size of the cover for the l1 ball is
sub-optimal for small radii. Instead, we use Maurey’s empir-
ical method or the related Sudakov’s minoration inequality
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(Pisier, 1986; Wainwright, 2019) yielding logarithmic (in-
stead of linear) dependence on the dimension p. Maurey’s
bound poses technical challenges that we need to address
when extending the chaining argument of the CSGM proof.
With Maurey’s method, successive nets in the chaining can
have significantly higher metric entropy for large radii. To
minimize the additive error in our bound during chaining,
we switch from volumetric epsilon-nets to Maurey’s method
at the right selected scale. The full proof of our Theorem
can be found in the Appendix.

3.4. S-REC for partial circulant matrices

We extend the theory of matrices that satisfy the S-REC con-
dition beyond i.i.d. Gaussian measurements. To establish
that a family of random matrices satisfies this condition (and
hence obtains sample complexity bounds), three conditions
must be proved with high probability (Bora et al., 2017;
Baraniuk et al., 2008): (1) The random matrix A should
satisfy the Johnson-Lindenstrauss (JL) lemma on a suitable
ε-net, (2) The matrix operator norm should be bounded:
‖A‖op ≤

√
n, and (3) for a fixed vector x, ‖Ax‖ ≤ 2‖x‖.

Here we establish that randomly signed partial circulant
matrices satisfy the S-REC condition for a number of mea-
surements scaling similarly to Gaussian i.i.d. measurements.

Lemma 1. Consider the setting of Theorem 1. Let g =
[g1, · · · , gn] be a vector with i.i.d. Gaussian entries of vari-
ance 1/m, let F ∈ Rm×n be a partical circulant matrix
that has g in its first row, and let D ∈ Rn×n be a diagonal
matrix with uniform ±1 entries along its diagonal. Then
for m = Ω

(
1

(1−γ)2 (k log L1L2r1
δ +K2 log p) log4(n)

)
,

FD satisfies S-REC(G2(G1(Bk2 (r1))⊕Bp1(r2)), 1− γ, δ ·
log(4K)

γ ·
√
p

K log
√
p

K ) with probability 1− e−Ω(m).

Our proof of this lemma can be found in the appendix and re-
lies on previous results establishing JL properties for partial
circulant matrices post-multiplied by random diagonal ma-
trices (Krahmer & Ward, 2011; Hinrichs & Vybı́ral, 2011).

There is an important computational benefit in such struc-
tured measurement matrices. We are sensing high resolution
images that are 1024× 1024 for 3 color channels resulting
in signal dimension n being 3 million. If measurements are
at ten percent (a typically challenging compressed sensing
regime), that results to m× n matrices that are 300k × 3m
which require gigabytes to store and hit GPU memory limi-
tations. Therefore random Gaussian measurement matrices
cannot be implemented for high resolution imaging. Partial
circulant matrices require orders of magnitude less memory
due to their structure and matrix-vector products can be
computed much faster using FFT. We expect that these ben-
efits will have a key role for future high-resolution imaging
systems.

4. Experiments
4.1. Algorithmic adaptations to StyleGAN

Up to this point, we have presented and theoretically an-
alyzed the ILO algorithm. Our method is not tied to any
specific architecture and it only assumes access to a genera-
tive model and the underlying domain of the latent space of
the initial layer. In this section, we present empirical innova-
tions on how to use our framework with the state-of-the-art
generative model StyleGAN-2 (Karras et al., 2020).

StyleGAN-2 has several peculiarities that need to be taken
into account for the design of a compressed sensing algo-
rithm. First, in StyleGAN-2 the initial latent code zk ∈ Rk
is not fed directly to the model. Instead, it is first mapped
through a multilayer linear network, the mapping network,
to an intermediate representation wk ∈ Rk. We refer to the
domains of zk, wk as Z,W respectively. During training,
a zk is sampled according to a distribution on Z , it gets
transformed through the mapping network to a wk ∈ W
and one copy of wk is fed to each one of the 18 layers of
StyleGAN-2. Additionally, each one of the layers receives
a noise vector uk (unique for each layer).

4.1.1. OPTIMIZATION SETTING

The first thing to decide is which intermediate layer will be
used to split the StyleGAN-2 generator. We observe that
we obtain better results with multiple splits. We consider
the generator of StyleGAN-2 as a composition of layers
G1 ◦ G2 ◦ ... ◦ G18 and we run Algorithm (1) in rounds,
where in each round the initial layer is discarded.

To ensure that we stay in an l1 ball around the manifold at
each layer, we use Projected Gradient Descent (PGD) (Nes-
terov, 2003). To implement the projection to an l1 ball
around the current best solution (see line 4 of Algorithm
(1)), we use the method of Duchi et al. (2008). Guided by
our theory, we increase the maximum allowed deviation as
we move to higher dimensional latent spaces. The radii of
the balls are tuned separately as hyperparameters, for a full
description see the Appendix.

For all inverse problems, it is helpful to allow thewk vectors
to deviate (Menon et al., 2020), i.e. we can optimize over a
sequence {wki }18

i=1. The deviations are typically regularized
with an additional term in the loss function, which captures
the geodesic distance of the vectors. PULSE reports that op-
timizing only over the first five noise vectors, i.e. {uki }5i=1,
yields better reconstructions for super-resolution comparing
to optimizing over the whole sequence. We show that this
is not necessarily true if this optimization is performed se-
quentially. Our method starts by optimizing only the first
five noise vectors (as in PULSE), but we gradually allow
optimization of the rest of the latent vectors as we move to
higher dimensional latent spaces.



Intermediate Layer Optimization for Inverse Problems

4.2. Loss functions and adaptation to general inverse
problems

Here we consider the effect of different loss functions in
solving general inverse problems. It has been observed
that LPIPS yields optimal performance with image size
256 × 256 (Karras et al., 2020). Therefore, we downsam-
ple images from 1024 × 1024 to 256 × 256 pixels. If the
given image is inpainted, missing pixels are mixed with
observed pixels during this downsampling. We observe that
this blending leads to distorted reconstructions when using
the LPIPS loss. Hence, for inpainting under scarce measure-
ments we use only the MSE loss. We note that unlike the
previously proposed methods, ILO can work for inpainting
with extremely few observed pixels – even with less than 1%
of the whole image. In presence of enough measurements,
we use both LPIPS and MSE. To address these distortion
issues, we minimize the perceptual distance between the
generated image and a superimposed reconstruction, i.e. we
replace the missing pixels of the observed image with the
ones generated by StyleGAN prior to downsampling.

For super-resolution, we use a weighted average of LPIPS
and MSE (as in inpainting with sufficient measurements). To
compare the high-resolution and low-resolution images, we
first downsample with cubic interpolation (Keys, 1981) as in
PULSE. We also consider the problem of denoising, where
Gaussian noise is added to the image. As usual, we assume
knowledge to the forward operator A(x). Simply inverting
a noisy high-resolution image creates grainy reconstructions
due to the expressive power of StyleGAN-2. We address this
in the optimization process by adding gaussian noise to the
generated images before using them in the loss function. We
call this new technique Stochastic Noise Addition (SNA).

4.3. Results

We show that ILO obtains state-of-the-art unsupervised per-
formance for solving inverse problems with deep gener-
ative models in four different settings: inpainting, super-
resolution, denoising and compressed sensing with circulant
matrices. We compare with different variants of the CSGM
algorithm using optimization and loss function innovations
introduced in PULSE and StyleGAN. Unless stated other-
wise, we will denote with CSGM + MSE the optimization
procedure described in PULSE for the StyleGAN genera-
tor. Through a wide variety of experiments, we observe
that ILO largely outperforms alternative techniques, both
in terms of visual quality and in terms of true MSE error.
We measure the latter on images sampled randomly from
Celeba-HQ (Liu et al., 2018; Lee et al., 2020). Finally, to
show the benefits of extending the range of the generator, we
illustrate how one can use an adversarially robust classifier
to guide the generation of human faces that look like objects
from ImageNet (Deng et al., 2009).

Inpainting: For inpainting, the algorithm tries to complete
missing pixels to a given image. The measurement process
corresponds to a linear matrix that has rows that are a subset
of the identity. Results for inpainting are shown in Figure
1. We perform two types of experiments. First, we mask
important facial features from real images (collected from
the web) and generated images from StyleGAN-2. Next, we
do randomized inpainting, i.e. we inpaint pixels of a given
image independently with a pre-defined probability. We
experiment with observation probabilities up to 1%. This
is a very challenging scenario: a human observer cannot
distinguish face characteristics from such few pixels, e.g.
see Figure 1 last row, second column. As shown in the
Figure, ILO gives reconstructions that look much closer to
the hidden image than the other methods. Our method is
able to give surprisingly accurate reconstructions even under
extreme scarce measurements (see last column, last row of
Figure 1). To quantify the performance of the different
methods we randomly select a few images from Celeba-
HQ (Liu et al., 2018; Lee et al., 2020) and reconstruct at
different levels of sparsity. Figure 2 column 1 shows that
ILO is 2× better in terms of reconstruction error anywhere
between 5%− 100% observed pixels.

Denoising: Our next experiment is on denoising. To ablate
the SNA framework we introduced, we show results with
and without our technique on an image with additive noise
of standard deviation σ = 30. Results are summarized in
Table 1. Since SNA consistently improves reconstruction,

Algorithm SNA PSRN (dB)

CSGM 7 19.89
X 21.38

ILO 7 28.34
X 32.92

Table 1. Results with and without SNA for a noisy image (σ = 30).

we use it in all subsequent denoising experiments.

We compare with the CSGM framework using MSE, only
LPIPS or a combination of both loss functions. For ILO, we
only use a weighted combination of MSE and LPIPS. We
also compare with a standard denoising method, the BM3D
algorithm (Dabov et al., 2006). We vary the noise standard
deviation from 5 to 256 and clip the perturbed values to the
range [0, 255] (RGB). Results are shown in Figure 2, second
column. We observe that ILO outperforms all the previously
proposed CSGM based methods by a large margin. For
the typical setting of σ = 25, ILO is 1.8× better than the
best performing CSGM baseline. BM3D shows excellent
performance, outperforming all other methods in the very
low noise regime but rapidly deteriorates for harder settings.
Figure 3 shows visual results for the task of denoising. As
shown, ILO gives superior visual reconstructions and better
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Figure 2. Plots showing the true MSE error on Celeba-HQ images, i.e. the MSE between the real image (that we never observe) and the
reconstructed image from the measurements. From left to right: Inpainting, Denoising, Super-resolution and Compressed sensing with
partial circulant matrices. As shown, ILO significantly outperforms all previous methods except in the very noisy regime.

actual performance comparing to the (adapted for denoising)
PULSE and the classical BM3D method.

Super-resolution: We report results on super-resolution,
the task PULSE was actually designed for. We sample
images from Celeba-HQ, downsample using Bicubic Down-
sampling and measure the reconstruction error. Three exam-
ple reconstructions are shown in Figure 4. We also report
reconstruction error on Celeba-HQ. Results are reported in
Figure 2, third column. As shown, ILO outperforms signif-
icantly all the other methods, including PULSE (CSGM +
MSE). To give some examples, when the image is down-
scaled from 1024×1024 to 64×64 (scaling factor 16), ILO
is 1.65× better than PULSE in terms of reconstruction error.
For 32× 32 images, ILO is 1.4× better than PULSE.

As shown, our method not only generates reconstructions
that look much closer to the true image, but also appears
to generate more racially diverse samples (Jain et al., 2020;
Tan et al., 2020; Menon et al., 2020), e.g. see third row.

Compressed sensing with partial circulant matrices:
For an experiment with observations of random projections
we used partial circulant measurement matrices with ran-
dom signs. Lemma 1 establishes that such matrices satisfy
the conditions for Theorem 1. Figure 2, column 4, shows
the reconstruction error when varying the number of mea-
surement rows. When the number of measurements is 5%
of the dimension n, ILO performs 2× better than CSGM in
terms of reconstruction error.

Out of Distribution generation: Our method can generate
images that lie outside of the range of the pre-trained gener-
ator. By choosing the radius of the l1 ball for each layer, we
control the trade-off between how natural (comparing to the
dataset the model was trained on) these images look, and
the out-of-distribution generation capability of our model.

To demonstrate this, we run the following experiment; we
remove entirely the loss functions that relate the generated
images with a reference image (i.e. MSE and LPIPS) and

we add a new classification loss term using an external clas-
sifier trained on a different domain. Essentially, we search
for latent codes that lie in an l1 ball around the range of
intermediate layers and maximize the probability that the
generated image belongs to a certain category. We consider
a classifier trained on ImageNet (Deng et al., 2009). This
optimization problem is one of the simplest methods to cre-
ate adversarial examples (Xiao et al., 2018) and hence the
generated images will not be visually interesting. However,
if our classifier is adversarially robust, then even optimizing
directly over the pixel space leads to an interesting genera-
tive process (Santurkar et al., 2019). We use the latent space
of StyleGAN-2 to generate images of faces with fruit or
animal characteristics. The radius of the l1 projection at dif-
ferent layers controls the distance of the generated images
to human faces. The results are shown in Figure 5.

Running time: Our algorithm runs CSGM as the first step
and therefore initially seems to be strictly slower. Surpris-
ingly, ILO can find better solutions than CSGM in fewer
total steps. StyleGAN-2 typically requires 300− 1000 op-
timization steps (on the first layer) for a good reconstruc-
tion (Karras et al., 2019; 2020). However, we observe that
running 50 steps in each one of the first four layers outper-
forms CSGM. That said, ILO continues to improve with
more iterations, also depending on task, number of measure-
ments and hyperparameters. Figures 6, 7 show speed plots
(with vertical axis being MSE and LPIPS correspondingly)
for inversion with ILO. To obtain the plots, we use a single
V100 GPU. We run 300 optimization steps per layer. The
leftmost point corresponds to CSGM, i.e. we optimize over
only the first layer. For each other point, we also optimize
over the input space of a layer one level deeper compared to
the previous point, e.g. the rightmost point corresponds to
1200 optimization steps (300 for each one of the first four
layers).

Related Work: There has been significant recent work
in unsupervised methods for inverse problems using pre-
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Original Noisy MSE BM3D Ours

Figure 3. Results on the task of denoising. Gaussian noise (σ = 25, known) is added to the original image and recovered with various
methods. The MSE images indicate the reconstructed images obtained by inverting the noisy image.

Original LR (×16) CSGM MSE
(PULSE)

CSGM
LPIPS

Ours

Figure 4. Results on the super-resolution task. ILO (ours) gives
more accurate reconstructions comparing to PULSE (third column)
and other baselines. Many biased reconstructions can be corrected
by applying ILO on the weighted combination of MSE and LPIPS.

Figure 5. Illustration of using a classifier as a differentiable for-
ward operator. Here we assume that the only observation is
y = A(x|class) where A is an ImageNet classifier. The classes
used in this Figure are (from top-left): Frog, Coral, Irish Wolf
Dog, Goldfish, Boston Terrier Dog and Apple. We use a robust
classifier as proposed by Santurkar et al. (2019) and solve the
inverse problem to generate images that look like these classes.
The difference with Santurkar et al. (2019) is that we perform the
search using ILO in the StyleGAN-2 generator latent spaces as
opposed to pixels and that keeps images closer to human faces.

Figure 6. Speed plot (MSE / elapsed seconds) for the task of in-
version. We use a single V100 GPU. We run 300 optimization
steps per layer. The leftmost point corresponds to CSGM, i.e. we
optimize over only the first layer. For each other point, we also
optimize over the input space of a layer one level deeper compared
to the previous point, e.g. the rightmost point corresponds to 1200
optimization steps (300 for each one of the first four layers).

Figure 7. Speed plot (LPIPS / elapsed seconds) for the task of
inversion. We use a single V100 GPU. We run 300 optimization
steps per layer. The leftmost point corresponds to CSGM, i.e. we
optimize over only the first layer. For each other point, we also
optimize over the input space of a layer one level deeper compared
to the previous point, e.g. the rightmost point corresponds to 1200
optimization steps (300 for each one of the first four layers).
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trained generative models. Recently, Liu & Scarlett (2020)
showed that the sample scaling of CSGM is near-optimal
in the absence of further assumptions. Hand & Voroninski
(2018) proved algorithmic convergence guarantees for solv-
ing non-convex linear inverse problems with deep generative
priors under random weight assumptions. Faster recovery al-
gorithms were proposed by Raj et al. (2019); Shah & Hegde
(2018) while Pandit et al. (2019) analyzed approximate
message passing (AMP) for inverse problems in the high-
dimensional random limit. Beyond AMP, Regularization-
by-Denoising (RED) methods have shown excellent recent
performance in imaging, see e.g. Sun et al. (2019). Deep
generative models have been developed for MRI (Mardani
et al., 2018) and benefited from task-awareness (Kabkab
et al., 2018), meta-learning (Wu et al., 2019) and specifi-
cally designed autoencoders (Mousavi et al., 2019). Solving
inverse problems for out-of-distribution images has been
studied in (Asim et al., 2020).

The theoretical framework we introduce is related to the
ideas proposed by Dhar et al. (2018) on allowing additive
sparse deviations in the generated images. In that case,
the recovered signals have the form G(z) + v, where G :
Rk → Rn is a deep generative model, z ∈ Rk is a latent
variable and v ∈ Rn is an l-sparse vector. The additive term
allows the recovery of signals that lie outside of the range.
Our approach is a generalization of this framework since it
allows sparse deviations anywhere in the latent space.

Intermediate Layer Optimization has also been proposed
in the GAN Surgery paper (Park et al., 2020) and in Bau
et al. (2019) as a method to identify modes of the data dis-
tribution that have been dropped from the generator. The
main difference between ILO and this prior line of work is
in the optimization procedure; we optimize sequentially and
we regularize with a previous search in the lower dimen-
sional space and by allowing only small deviations from
the range. Our paper also benefits from the StyleGAN-2
architecture (Karras et al., 2019; 2020) and several key ideas
from PULSE (Menon et al., 2020).

Finally, there is significant prior work on deep learning meth-
ods that do not rely on pre-trained generators, see e.g. (Lucas
et al., 2018; Yu et al., 2019; Liu et al., 2019; Sun & Chen,
2020; Sun et al., 2020; Yang et al., 2019; Tian et al., 2020;
Tripathi et al., 2018). Such methods can show excellent per-
formance but require training a network specifically for each
reconstruction task. This is in contrast with our framework
that can solve all inverse problems universally, leveraging
the same pre-trained network.

5. Conclusions and Future Work
We proposed a novel framework for solving inverse prob-
lems leveraging pre-trained generative models. Our method

expands the range of the generator by optimizing different
intermediate layers and achieves excellent performance for
several tasks. On the theory side, a central open problem
would be to establish global convergence of ILO, possibly
following the ideas of (Hand & Voroninski, 2018; Hand
et al., 2018) or surfing (Song et al., 2019).

On the empirical side, a central open problem would be the
application of our framework in other domains like medi-
cal imaging, but that would require pre-trained generative
models e.g. for high-resolution MRI images. Another open
direction that is particularly exciting is the use of classifiers
to generate out-of-distribution samples. Our generated sam-
ples show the powerful modularity of combining pre-trained
generators with differentiable forward operators that can
guide image reconstruction in a data-driven way.

Acknowledgements
This research has been supported by NSF Grants CCF
1934932, AF 1901292, 2008710, 2019844 the NSF IFML
2019844 award as well as research gifts by Western Digital,
WNCG and MLL, computing resources from TACC and the
Archie Straiton Fellowship.



Intermediate Layer Optimization for Inverse Problems

References
Asim, M., Daniels, M., Leong, O., Ahmed, A., and Hand,

P. Invertible generative models for inverse problems:
mitigating representation error and dataset bias. In Inter-
national Conference on Machine Learning, pp. 399–409.
PMLR, 2020.

Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.
A simple proof of the restricted isometry property for
random matrices. Constructive Approximation, 28(3):
253–263, 2008.

Bau, D., Zhu, J.-Y., Wulff, J., Peebles, W., Strobelt, H.,
Zhou, B., and Torralba, A. Seeing what a gan cannot
generate, 2019.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. Com-
pressed sensing using generative models. In International
Conference on Machine Learning, pp. 537–546. PMLR,
2017.

Chen, G.-H., Tang, J., and Leng, S. Prior image constrained
compressed sensing (piccs): a method to accurately re-
construct dynamic ct images from highly undersampled
projection data sets. Medical physics, 35(2):660–663,
2008.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Im-
age denoising with block-matching and 3d filtering. In
Image Processing: Algorithms and Systems, Neural Net-
works, and Machine Learning, volume 6064, pp. 606414.
International Society for Optics and Photonics, 2006.

Daras, G., Odena, A., Zhang, H., and Dimakis, A. G. Your
local gan: Designing two dimensional local attention
mechanisms for generative models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Dhar, M., Grover, A., and Ermon, S. Modeling sparse devi-
ations for compressed sensing using generative models.
In International Conference on Machine Learning, pp.
1214–1223. PMLR, 2018.

Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J. N.,
Sun, T., Kelly, K. F., and Baraniuk, R. G. Single-pixel
imaging via compressive sampling. IEEE signal process-
ing magazine, 25(2):83–91, 2008.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T.
Efficient projections onto the l 1-ball for learning in high
dimensions. In Proceedings of the 25th international
conference on Machine learning, pp. 272–279, 2008.

Hand, P. and Voroninski, V. Global guarantees for enforcing
deep generative priors by empirical risk. In Conference
On Learning Theory, pp. 970–978. PMLR, 2018.

Hand, P., Leong, O., and Voroninski, V. Phase retrieval un-
der a generative prior. arXiv preprint arXiv:1807.04261,
2018.

Hegde, C., Duarte, M. F., and Cevher, V. Compressive
sensing recovery of spike trains using a structured sparsity
model. In SPARS’09-Signal Processing with Adaptive
Sparse Structured Representations, 2009.

Hinrichs, A. and Vybı́ral, J. Johnson-lindenstrauss lemma
for circulant matrices. Random Structures & Algorithms,
39(3):391–398, 2011.

Jain, N., Olmo, A., Sengupta, S., Manikonda, L., and Kamb-
hampati, S. Imperfect imaganation: Implications of
gans exacerbating biases on facial data augmentation and
snapchat selfie lenses. arXiv preprint arXiv:2001.09528,
2020.

Kabkab, M., Samangouei, P., and Chellappa, R. Task-aware
compressed sensing with generative adversarial networks.
In AAAI, 2018.

Karras, T., Laine, S., and Aila, T. A style-based gen-
erator architecture for generative adversarial networks.
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2019. doi: 10.1109/
cvpr.2019.00453. URL http://dx.doi.org/10.
1109/CVPR.2019.00453.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. Analyzing and improving the image quality
of stylegan. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jun 2020. doi:
10.1109/cvpr42600.2020.00813. URL http://dx.
doi.org/10.1109/cvpr42600.2020.00813.

Keys, R. Cubic convolution interpolation for digital image
processing. IEEE transactions on acoustics, speech, and
signal processing, 29(6):1153–1160, 1981.

Krahmer, F. and Ward, R. New and improved johnson–
lindenstrauss embeddings via the restricted isometry prop-
erty. SIAM Journal on Mathematical Analysis, 43(3):
1269–1281, 2011.

Lee, C.-H., Liu, Z., Wu, L., and Luo, P. Maskgan: Towards
diverse and interactive facial image manipulation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5549–5558, 2020.

Lei, Q., Jalal, A., Dhillon, I. S., and Dimakis, A. G. Inverting
deep generative models, one layer at a time. In NeurIPS,
2019.

http://dx.doi.org/10.1109/CVPR.2019.00453
http://dx.doi.org/10.1109/CVPR.2019.00453
http://dx.doi.org/10.1109/cvpr42600.2020.00813
http://dx.doi.org/10.1109/cvpr42600.2020.00813


Intermediate Layer Optimization for Inverse Problems

Liu, H., Jiang, B., Xiao, Y., and Yang, C. Coherent se-
mantic attention for image inpainting. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV),
Oct 2019. doi: 10.1109/iccv.2019.00427. URL http:
//dx.doi.org/10.1109/ICCV.2019.00427.

Liu, Z. and Scarlett, J. Information-theoretic lower bounds
for compressive sensing with generative models. IEEE
Journal on Selected Areas in Information Theory, 1(1):
292–303, May 2020. ISSN 2641-8770. doi: 10.1109/
jsait.2020.2980676. URL http://dx.doi.org/10.
1109/JSAIT.2020.2980676.

Liu, Z., Luo, P., Wang, X., and Tang, X. Large-scale celeb-
faces attributes (celeba) dataset. Retrieved August, 15
(2018):11, 2018.

Lucas, A., Iliadis, M., Molina, R., and Katsaggelos, A. K.
Using deep neural networks for inverse problems in imag-
ing: beyond analytical methods. IEEE Signal Processing
Magazine, 35(1):20–36, 2018.

Lustig, M., Donoho, D., and Pauly, J. M. Sparse mri: The
application of compressed sensing for rapid mr imaging.
Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in
Medicine, 58(6):1182–1195, 2007.

Lustig, M., Donoho, D. L., Santos, J. M., and Pauly, J. M.
Compressed sensing mri. IEEE signal processing maga-
zine, 25(2):72–82, 2008.

Mardani, M., Gong, E., Cheng, J. Y., Vasanawala, S. S.,
Zaharchuk, G., Xing, L., and Pauly, J. M. Deep generative
adversarial neural networks for compressive sensing mri.
IEEE transactions on medical imaging, 38(1):167–179,
2018.

Menon, S., Damian, A., Hu, S., Ravi, N., and Rudin,
C. Pulse: Self-supervised photo upsampling via latent
space exploration of generative models. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020. doi: 10.1109/cvpr42600.2020.
00251. URL http://dx.doi.org/10.1109/
cvpr42600.2020.00251.

Mousavi, A., Dasarathy, G., and Baraniuk, R. G. A data-
driven and distributed approach to sparse signal repre-
sentation and recovery. In International Conference on
Learning Representations, 2019.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Di-
makis, A. G., and Willett, R. Deep learning techniques for
inverse problems in imaging. IEEE Journal on Selected
Areas in Information Theory, 1(1):39–56, 2020.

Pajot, A., de Bezenac, E., and Gallinari, P. Unsupervised
adversarial image reconstruction. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=BJg4Z3RqF7.

Pandit, P., Sahraee, M., Rangan, S., and Fletcher,
A. K. Asymptotics of map inference in deep net-
works. 2019 IEEE International Symposium on Infor-
mation Theory (ISIT), Jul 2019. doi: 10.1109/isit.2019.
8849316. URL http://dx.doi.org/10.1109/
ISIT.2019.8849316.

Park, J. Y., Smedemark-Margulies, N., Daniels, M., Yu, R.,
van de Meent, J.-W., and HAnd, P. Generator surgery for
compressed sensing. In NeurIPS 2020 Workshop on Deep
Learning and Inverse Problems, 2020. URL https:
//openreview.net/forum?id=s2EucjZ6d2s.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and
Efros, A. A. Context encoders: Feature learning by
inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2536–2544,
2016.

Pisier, G. Probabilistic methods in the geometry of ba-
nach spaces. In Probability and analysis, pp. 167–241.
Springer, 1986.

Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., and Lee,
S. Compressive sensing: From theory to applications, a
survey. Journal of Communications and networks, 15(5):
443–456, 2013.

Raj, A., Li, Y., and Bresler, Y. Gan-based projector for faster
recovery with convergence guarantees in linear inverse
problems. 2019.

Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar,
Y., Shapiro, S., and Cohen-Or, D. Encoding in style: a
stylegan encoder for image-to-image translation. arXiv
preprint arXiv:2008.00951, 2020.

Santurkar, S., Tsipras, D., Tran, B., Ilyas, A., Engstrom,
L., and Madry, A. Image synthesis with a single (robust)
classifier. arXiv preprint arXiv:1906.09453, 2019.

Shah, V. and Hegde, C. Solving linear inverse problems
using gan priors: An algorithm with provable guaran-
tees. 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr 2018. doi:
10.1109/icassp.2018.8462233. URL http://dx.doi.
org/10.1109/ICASSP.2018.8462233.

Song, G., Fan, Z., and Lafferty, J. Surfing: Iterative
optimization over incrementally trained deep networks.
NeurIPS, 2019.

http://dx.doi.org/10.1109/ICCV.2019.00427
http://dx.doi.org/10.1109/ICCV.2019.00427
http://dx.doi.org/10.1109/JSAIT.2020.2980676
http://dx.doi.org/10.1109/JSAIT.2020.2980676
http://dx.doi.org/10.1109/cvpr42600.2020.00251
http://dx.doi.org/10.1109/cvpr42600.2020.00251
https://openreview.net/forum?id=BJg4Z3RqF7
https://openreview.net/forum?id=BJg4Z3RqF7
http://dx.doi.org/10.1109/ISIT.2019.8849316
http://dx.doi.org/10.1109/ISIT.2019.8849316
https://openreview.net/forum?id=s2EucjZ6d2s
https://openreview.net/forum?id=s2EucjZ6d2s
http://dx.doi.org/10.1109/ICASSP.2018.8462233
http://dx.doi.org/10.1109/ICASSP.2018.8462233


Intermediate Layer Optimization for Inverse Problems

Sun, W. and Chen, Z. Learned image downscaling for
upscaling using content adaptive resampler. IEEE Trans-
actions on Image Processing, 29:4027–4040, 2020. ISSN
1941-0042. doi: 10.1109/tip.2020.2970248. URL http:
//dx.doi.org/10.1109/TIP.2020.2970248.

Sun, Y., Liu, J., and Kamilov, U. S. Block coordinate
regularization by denoising. NeurIPS, 2019.

Sun, Y., Liu, J., and Kamilov, U. S. Block coordinate
regularization by denoising. IEEE Transactions on
Computational Imaging, 6:908–921, 2020. ISSN 2573-
0436. doi: 10.1109/tci.2020.2996385. URL http:
//dx.doi.org/10.1109/TCI.2020.2996385.

Tan, S., Shen, Y., and Zhou, B. Improving the fairness of
deep generative models without retraining, 2020.

Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., and Lin, C.-W.
Deep learning on image denoising: An overview. Neural
Networks, 131:251–275, Nov 2020. ISSN 0893-6080.
doi: 10.1016/j.neunet.2020.07.025. URL http://dx.
doi.org/10.1016/j.neunet.2020.07.025.

Tripathi, S., Lipton, Z. C., and Nguyen, T. Q. Correction by
projection: Denoising images with generative adversarial
networks. arXiv preprint arXiv:1803.04477, 2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Wu, Y., Rosca, M., and Lillicrap, T. Deep compressed
sensing, 2019.

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song,
D. Generating adversarial examples with adversarial
networks. arXiv preprint arXiv:1801.02610, 2018.

Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and
Liao, Q. Deep learning for single image super-resolution:
A brief review. IEEE Transactions on Multimedia, 21
(12):3106–3121, 2019.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S.
Generative image inpainting with contextual attention. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5505–5514, 2018.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang,
T. Free-form image inpainting with gated convolu-
tion. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Oct 2019. doi: 10.1109/
iccv.2019.00457. URL http://dx.doi.org/10.
1109/ICCV.2019.00457.

http://dx.doi.org/10.1109/TIP.2020.2970248
http://dx.doi.org/10.1109/TIP.2020.2970248
http://dx.doi.org/10.1109/TCI.2020.2996385
http://dx.doi.org/10.1109/TCI.2020.2996385
http://dx.doi.org/10.1016/j.neunet.2020.07.025
http://dx.doi.org/10.1016/j.neunet.2020.07.025
http://dx.doi.org/10.1109/ICCV.2019.00457
http://dx.doi.org/10.1109/ICCV.2019.00457

