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Supplementary Materials
The supplementary materials are organized as follows

• (Section A): First, we give a simple 1D example to
build intuition for the theoretical results.

• (Section B): In the context of Section 3.1, we give a
concrete example to demonstrate the non-identifiability
of ΩW , defined in (12). We focus on the simple case
when W is one dimensional, and the matrix ΩW re-
duces to a single number ρW := β2

W /(β
2
W + σ2

W ),
indicating the signal-to-variance ratio of W . We give
an example of an observed distribution for which ρW is
not identified, and moreover, the optimal predictor with
respect to the robustness set CA(λ) is not identified
(see Figure 10).

• (Section C): Proofs for results stated in the main paper.

• (Section D): Additional results (and proofs) for Proxy
Targeted Anchor Regression (PTAR) and Cross-Proxy
TAR, deferred from the main paper.

• (Section E): Details for implementation of all experi-
ments

• (Section F): Additional synthetic experimental results

A. An example for building intuition
To illustrate the problem, consider the following setup,
where we observe A,X, Y at training time, and wish to
learn a predictor ŷ = α+ γx that will generalize to a new
environment where Pte(A) 6= Ptr(A).

A

YX

Figure 9. Simple example where X,Y,A ∈ R.

Suppose that our data is generated under Ptr as follows

A = εA, εA ∼ N (0, 1)

X = A+ εX , εX ∼ N (0, σ2
X)

Y = A+ εY , εY ∼ N (0, σ2
Y ),

where εA, εX , εY are jointly independent. This simple ex-
ample demonstrates a few concepts:

• Assuming σ2
X > 0, the conditional expectation E[Y |

X] changes as the distribution of A changes.

• We can write the residuals Y − Ŷ as a linear function
in A and the noise variables. This holds, even if the
errors are non-Gaussian.

• The test population MSE is a convex function of α, γ.

In particular, we will see that the parameters α, γ trade
off between the variance of A and εX : There exists an
invariant solution, where α = 0, γ∗ = 1, such that the MSE
is completely independent of A, but this is only optimal in
the setting where Var(A)→∞.

Conditional Expectation depends on A Starting with
the assumption that A,X, Y are multivariate Gaussian, we
can write down the optimal predictor in the target environ-
ment, supposing that at test time Pte(A)

(d)
= N (µA, σ

2
A).

Ete[Y | X = x] = Ete[Y ] +
Covte(X,Y )

Varte(X)
· (x− Ete[X])

= µA +
σ2
A

σ2
A + σ2

X︸ ︷︷ ︸
γ

·(x− µA)

= µA(1− γ) + γx,

where if εX = 0, then γ = 1 and the optimal solution does
not depend on the parameters of A, and is given by

Ete[Y |X = x] = x. (18)

However, for any σ2
x > 0, the optimal solution under Pte(A)

depends on µA, σ2
A.

Rewriting residuals Regardless of whether the Gaussian
assumption holds, for a given predictor Ŷ = α + γx, we
can write the error Y − Ŷ as a function that is linear in A
and the noise variables

Y − Ŷ = (A+ εY )− γ(A+ εX)− α
= A(1− γ) + (εY − γεX − α).

Optimizing for a known target distribution The mean
squared error E[(Y − Ŷ )

2
] can be written as a function of

α, γ, and the mean and variance of A under Pte(A). Here,
all expectations are taken with respect to the test distribution.

Ete[(y − ŷ)
2
] = Ete[Ete[(y − ŷ)

2 | A]]

= α2 − 2αEte[A](1− γ)

+ (1− γ)
2Ete[A2] + γ2σ2

x + σ2
y. (19)

By first-order conditions, this expression is minimized by

α∗ = µA(1− γ∗) γ∗ =
σ2
A

σ2
A + σ2

X

. (20)

When σ2
A →∞, then γ∗ → 1 from Equation (20). This is

intuitive, because in Equation (19), γ = 1 renders the MSE
functionally independent of the distribution of A.
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Optimizing for a worst-case distribution Equation (20)
shows the optimal solution under a known target distribu-
tion, if µA, σ2

A were known in advance. However, a similar
intuition applies to the case where Pte(A) is unknown, but
we expect it to lie in a particular class. Consider interven-
tions of the form do(A := ν), where we constrain ν to lie
in the set of random variables C(λ) := {ν : E[ν2] ≤ λ}. In
this case, our worst-case loss is given by

sup
ν∈C(λ)

Eν [(Y − Ŷ )
2
]

= sup
ν∈C(λ)

(1− γ)
[
−2αE[ν] + (1− γ)E[ν2]

]
+ α2 + γ2σ2

X + σ2
Y ,

where the last line does not depend on ν. We observe that
α∗ = 0, by analyzing two cases. First, if γ = 1, then
the first term is eliminated, and the only term that depends
on α is α2. Second, if γ 6= 1, then (1− γ)

2
> 0, the

first term is partially maximized when E[ν2] = λ, and
if α 6= 0, then the expression can be made even larger
by choosing a deterministic ν = ±

√
λ (instead of e.g., a

random ν ∼ N (0, λ2)), depending on the sign of α(1− γ).
From this (and the presence of the α2 term in the second
line) it follows that α∗ = 0, in this case as well. When α =
0, the supremum is obtained by any random or deterministic
ν such that E[ν2] = λ.

With α∗ = 0 and taking E[ν2] = λ in the supremum, this
expression simplifies to

sup
ν∈C(λ)

Eν [(Y − Ŷ )
2
]

= (1− γ)
2
λ+ γ2σ2

X + σ2
Y .

Differentiating with respect to γ, we obtain

γ∗ =
λ

σ2
X + λ

.

Here, λ trades off accuracy and stability; As λ → ∞, we
recover the solution where γ∗ = 1, but for situations where
σ2
X is large and λ is bounded, we are better off choosing
γ∗ < 1.

B. Example: Non-identifiability of ΩW

Overview In the context of Section 3.1, we give a con-
crete example to demonstrate the non-identifiability of ΩW ,
defined in (12). We focus on the simple case when W is one
dimensional, and the matrix ΩW reduces to a single number
ρW := β2

W /(β
2
W + σ2

W ), indicating the signal-to-variance
ratio of W . We give an example of an observed distribution
for which ρW is not identified, and moreover, the optimal
predictor with respect to the robustness set CA(λ) is not
identified (see Figure 10).

Setup If (X,Y,W ) ∈ R3 is distributed multivariate nor-
mal with zero mean, then their covariance matrix fully deter-
mines the observed distribution. Let that covariance matrix
be denoted by Σ(X,Y,W ) ∈ R3×3, which gives us six ob-
served moments of the distribution

Σ(X,Y,W ) :=

 E[X2] · ·
E[XY ] E[Y 2] ·
E[WX] E[WY ] E[W 2]

 ,

where we only show the lower triangular portion, since the
matrix is symmetric. Suppose that we knew that this ob-
served distribution was generated by the following SCM,
but that we do not know the values for the parameters
(βW , βX , βY , α, σ

2
W , σ

2
X , σ

2
Y )

A := εA εA ∼ N (0, 1)

W := βWA+ εW εW ∼ N (0, σ2
W )

X := βXA+ εX εX ∼ N (0, σ2
X)

Y := αX + βYA+ εY εY ∼ N (0, σ2
Y ),

where εA, εW , εX , εY are jointly independent. We can at-
tempt to identify the parameters using the following rela-
tionships implied by the SCM, and matching these to the
moments that we observe

E[WX] = βWβX

E[XY ] = βY βX + αE[X2]

E[WY ] = βW (βY + αβX)

E[W 2] = β2
W + σ2

W

E[X2] = β2
X + σ2

X

E[Y 2] = α2E[X2] + 2αβY βX + β2
Y + σ2

Y

However, as we will see, this does not identify the pa-
rameters. In particular, there is a set of parameterizations
which all give rise to the same observed distribution, and
which imply different values of the signal-to-variance ratio
ρW := β2

W /(β
2
W + σ2

W ).

A class of observationally equivalent SCMs Let θ :=
(βW , βX , βY , α, σ

2
W , σ

2
X , σ

2
Y ) ∈ R7 be the parameters of

the SCM, and let Σ = f(θ) be the covariance matrix over
(X,Y,W ) implied by these parameters.

For any covariance matrix Σ, there exists a subsetC ⊂ [0, 1]
such that for any ρW ∈ C, we can write the parameters as
a function of ρW , such that f(θ(ρW )) = Σ. The set C is
constrained by the observed moments: In particular, as we
show below, ρW ≥ corr(W,X)2 due to the constraint that
σ2
X ≥ 0, and the condition that σ2

Y ≥ 0 also imposes a
lower bound. In particular, for the covariance matrix below,
we demonstrate numerically that [0.06, 1] ⊂ C.

Σ(X,Y,W ) :=

9 3 1
3 9 2
1 2 9

 .
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Figure 10. (a) SCM parameters that all give rise to the same observational distribution, and observe that (b) the parameter γAR(A) (as if A
were observed) can diverge substantially from the solution γPAR(W ), when a single proxy is available. λ = 5 for this example.

We now give a strategy for constructing θ(ρW ), given a
desired ρW (including checking the constraint that this
ρW ∈ C). Suppose that W and X are positively corre-
lated, as in this example. Fixing some ρW ∈ [0, 1], we start
by writing βW , σW as functions of ρW , where

βW :=
√

E[W 2]ρW

σ2
W := E[W 2](1− ρW ).

The first constraint, that σ2
X ≥ 0, can be captured as fol-

lows. Let ρX := β2
X/E[X2]. Observe that

√
ρXρW =

corr(W,X). This implies a lower bound on ρW , given by
ρW ≥ corr(W,X)2, since ρX ≤ 1 due to σ2

X ≥ 0. This
also implies that ρX is determined uniquely by ρW , and is
given by ρX = corr(W,X)

2
/ρW . From this we can write

βX :=
√

E[X2]ρX

σ2
X := E[X2](1− ρX).

These choices for (βW , σ
2
W , βX , σ

2
X) match the observed

moments E[X2],E[W 2],E[WX]. Then the rest of the pa-
rameters can be found as follows, where βW , βX are fixed
as above

βY :=
1

βW (1− ρX)

(
E[WY ]− E[XY ]E[WX]

E[X2]

)
α :=

E[XY ]− βY βX
E[X2]

σ2
Y := E[Y 2]− β2

Y − 2αβY βX − α2E[X2]

where all of these are functions of ρW , in that βW , βX are
functions of ρW . It remains to verify that for a given choice
of ρW , we satisfy the constraint that σ2

Y ≥ 0. For simplicity,
we check this constraint computationally in the context of
Example 1, for a range of values of ρW , and we give the
set of observationally-equivalent parameters in Figure 10a,
where valid values of ρW range over [0.06, 1].

Next we show that the Proxy Anchor Regression estimator,
γPAR(W ), differs from the Anchor Regression estimator,
γAR(A), and more so when ρW becomes small. This is
shown in Figure 10b, for λ = 5, and we give the relevant
computations here.

Solution to PAR(W ) If we have a single proxy, then we
can write down the optimization problem Equation (10) as

min
γ

E[(Y − γX)
2
] + λE[(Y − γX)W ]

2E[W 2]
−1

= min
γ

E[Y 2]− 2γE[Y X] + γ2E[X2]

+ λ(E[YW ]− γE[XW ])
2E[W 2]

−1
,

from which we obtain the optimal solution

γPAR(W ) =
E[Y X]E[W 2] + λE[YW ]

E[X2]E[W 2] + λE[XW ]
.

Solution to AR(A) First, we can write the residual as

Y − Ŷ = Y − γX
= αX + βYA+ εY − γβXA− γεX
= α(βXA+ εX) + βYA+ εY − γβXA− γεX
= A((α− γ)βX + βY ) + (α− γ)εX + εY ,

such that the expected squared error is given by

Edo(A:=ν)(Y − Ŷ )
2

= ((α− γ)βX + βY )
2E[ν2] + (α− γ)

2
σ2
X + σ2

Y , (21)

and when ν ∈ {ν : E[ν2] ≤ (1 + λ)}, taking the supre-
mum involves replacing E[ν2] with (1 + λ). Optimizing
Equation (21) with respect to γ, we obtain

∂

∂γ

[
((α− γ)βX + βY )

2
(1 + λ) + (α− γ)

2
σ2
X + σ2

Y

]
= −2βX(αβX − γβX + βY )(1 + λ)− 2(α− γ)σ2

X ,
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which implies that

0 = βX(αβX − γβX + βY )(1 + λ) + (α− γ)σ2
X

= (αβ2
X + βXβY )(1 + λ)− γβ2

X(1 + λ) + ασ2
X − γσ2

X ,

so that the optimal choice of γ is given by

γAR(A) =
(αβ2

X + βXβY )(1 + λ) + ασ2
X

β2
X(1 + λ) + σ2

X

.

If λ = −1, this recovers the causal effect of X on Y , and if
λ→∞, this recovers a set of coefficients that are invariant
to variation in A, as can be seen by plugging the resulting
coefficient γ = α+ βY /βX into Equation (21).

C. Proofs
C.1. Auxiliary results

First, we show that the proof of Theorem 1 of Rothenhäusler
et al. (2021) can be decomposed into two parts, and use this
observation to simplify the proof of our Theorem 1. Propo-
sition A1 establishes that `PLS can be written as a quadratic
form in the structural parameters w>γMA. Proposition A2
is a straightforward generalization of the techniques used in
Rothenhäusler et al. (2021), and establishes that any regular-
ization term that can be written in this way naturally implies
a robustness guarantee.

By Assumption 1, our SCM can be written in the following
form, where ε ⊥⊥ A, and all variables are mean-zero and
have bounded covariance.XY

H

 = (Id−B)
−1

(MAA+ ε). (22)

In this context, we use the following notational shorthand,

wγ :=
(

(Id−B)
−1
dX+1,· − γ

>(Id−B)
−1
1:dX ,·

)>
, (23)

such that we can write the residual as a function of both the
exogenous noise ε and A as

R(γ) := Y − γ>X = w>γ (ε+MAA), (24)

under the training distribution. (This identity explains the
valley in the loss landscape displayed in Figure 3: If dA ≥ 2,
for any parameter γ, there exist an orthogonal intervention
direction ν ∈ (w>γMA)⊥, to which the loss is invariant.)
Proposition A1. Under Assumption 1,

`PLS(X,Y,A; γ)

= w>γMAE[AA>]M>Awγ , (25)

and

`PLS(X,Y,W ; γ)

= w>γMAE[AW>]E[WW>]
−1E[WA>]M>Awγ , (26)

where wγ is defined by Equation (23).

Proof. The first statement follows from Equation (6) and
the observation that

E[R(γ)A>] = E[w>γ (ε+MAA)A>]

= w>γ E[εA>] + w>γMAE[AA>]

= w>γMAE[AA>],

where we used ε ⊥⊥ A. Similarly

`PLS(X,Y,W ; γ)

= E[R(γ)W>]E[WW>]
−1E[WR(γ)

>
]

= E[w>γ (ε+MA)W>]E[WW>]
−1E[WR(γ)

>
]

= w>γMAE[AW>]E[WW>]
−1E[WA>]M>Awγ ,

where the first equality follows from Equation (6), and the
final equality follows from the fact that ε ⊥⊥W .

Proposition A2. Under Assumption 1, for any λ and any
real, symmetric Ω such that 0 � E[AA>] + λΩ, any loss
function of the form

`(γ, λ) := `LS(X,Y ; γ) + λw>γMAΩM>Awγ , (27)

where wγ is defined by Equation (23), is equal to the follow-
ing worst-case loss under bounded perturbations

`(γ, λ) = sup
ν∈C(λ)

Edo(A:=ν)[(Y − γ>X)
2
],

where

C(λ) := {ν : E[νν>] � E[AA>] + λΩ}.

Proof. We have, making use of the fact that ε ⊥⊥ A, and
E[ε] = 0

sup
ν∈C(λ)

Edo(A:=ν)

[
(Y − γ>X)

2
]

= sup
ν∈C(λ)

Edo(A:=ν)

[
(w>γ (ε+MAν))

2
]

= E
[
(w>γ ε)

2
]

+ sup
ν∈C(λ)

E[(w>γMAν)
2
]

= E
[
(w>γ ε)

2
]

+ sup
ν∈C(λ)

w>γMAE[νν>]MA
>wγ

= E
[
(w>γ ε)

2
]

+ w>γMA(E[AA>] + λΩ)MA
>wγ

= E
[
(w>γ ε)

2
]

+ w>γMAE[AA>]MA
>wγ

+ λw>γMAΩMA
>wγ

= E
[
(w>γ (ε+MAA))

2
]

+ λw>γMAΩMA
>wγ

= `LS(X,Y ; γ) + λw>γMAΩMA
>wγ

= `(γ, λ),
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where in the fifth line we used the definition of C(λ). The
supremum is achievable even if ν is a deterministic vector,
since we can take ν := Sb√

b>Sb
where S := E[AA>] + λΩ

and b := MA
>wγ . Then the supremum value is achieved

by ν, as νν> = Sbb>S
b>Sb

and b>νν>b = b>Sbb>Sb
b>Sb

= b>Sb.
To show that νν> � S, such that ν ∈ C(λ), we can take
any conformable vector x to see that

x>(S − νν>)x = x>Sx− x>Sbb>Sx

b>Sb

= 〈x, x〉 − 〈x, b〉
2

〈b, b〉
≥ 0,

where we use the fact that 〈e, f〉 := e>Sf defines an inner
product, and we apply Cauchy-Schwarz: 〈x, x〉〈b, b〉 ≥
〈x, b〉2.

In the proofs for Section 3, we will occasionally make use
of the following fact, which we prove here to simplify expo-
sition later on.

Proposition A3. In the setting of a single proxy (i.e., under
Assumptions 1 and 2) let ΩW be defined as follows

ΩW := E[AW>]E[WW>]
−1E[WA>]. (28)

Then ΩW � E[AA>]. Furthermore, if E[εW ε
>
W ] is posi-

tive definite, then this inequality is strict, that is, ΩW ≺
E[AA>].

Proof. Recall that E[AA>] and E[WW>] are invertible
(and hence positive definite) by assumption.

The inequality ΩW � E[AA>] is equivalent to showing
that S := E[AA>] − E[AW>]E[WW>]

−1E[WA>] � 0.
Observe that S is the Schur complement of the matrix

K := E

[(
A
W

)(
A
W

)>]
. The matrix K is positive semi-

definite (PSD) if and only if E[AA>] is positive definite
(true by assumption) and S is PSD (see Zhang (2006, Theo-
rem 1.12b)). Since K is PSD by construction, as the covari-
ance matrix of A,W , this implies that S � 0.

Similarly, K is positive definite (PD) if and only if E[AA>]
and S are both PD (see Zhang (2006, Theorem 1.12a)).
Under the condition that E[εW ε

>
W ] is full-rank, then K is

PD, and the second inequality follows.

C.2. Proof of additional results

Proof of Equation (9). It follows from Proposition A1 that

`PLS(X,Y,A; γ) = w>γMAΩAM
>
Awγ

`PLS(X,Y,W ; γ) = w>γMAΩWM
>
Awγ ,

where ΩW := E[AW>]E[WW>]
−1E[WA>] and ΩA :=

E[AA>] are both full rank because E[AW>] =
E[AA>]βW and by assumptions that E[WW>],E[AA>]
and βW are full rank. Hence both `PLS(X,Y,A; γ) and
`PLS(X,Y,W ; γ) are zero exactly when w>γMA = 0.

C.3. Proof of main results

C.3.1. SECTION 3

Proof of Theorem 1. We use the fact that ε is mean-zero and
independent of both A and W . Recall that

`PAR(W ; γ, λ) = `LS(γ) + λ`PLS(W ; γ),

where we suppress the dependence on X,Y in the notation.
Letting wγ be as defined in Equation (23), it follows from
Equation (26) that

`PLS(X,Y,W ; γ)

= w>γMA E[AW>]E[WW>]
−1E[WA>]︸ ︷︷ ︸

ΩW

M>Awγ .

The statement then follows from the application of Propo-
sition A2, and the fact that ΩW � E[AA>] (by Proposi-
tion A3), such that E[AA>]+λΩW � 0 for all λ ≥ −1.

Proof of Proposition 1. Recall that the guarantee regions
are given by

CA(λ) = {ν : E[νν>] � E[AA>] + λE[AA>]}
CW (λ) = {ν : E[νν>] � E[AA>] + λΩW }
COLS = {ν : E[νν>] � E[AA>]},

where

ΩW = E[AW>]E[WW>]
−1E[WA>].

The fact that E[WW>]
−1 � 0 implies ΩW � 0, and

this implies that COLS ⊆ CW (λ) for λ ≥ 0. Showing
CW (λ) ⊂ CA(λ) amounts to showing that ΩW ≺ E[AA>],
which holds by Proposition A3 when E[εW ε

>
W ] � 0.

Next, we prove that CW is monotonically decreasing in the
noise E[εW ε

>
W ], in the sense that if E[εW ε

>
W ] � E[ηW η

>
W ]

then

Eη[AW>]Eη[WW>]
−1Eη[WA>]

� Eε[AW>]Eε[WW>]
−1Eε[WA>],

where Eη is the expectation in the SCM whereW := β>WA+
ηW (and similar for Eε).

Suppose that E[εW ε
>
W ] � E[ηW η

>
W ]. Then

Eη[WW>]
−1 � Eε[WW>]

−1, and since Eη[AW>] =
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Eε[AW>], for any vector x ∈ RdA it holds that,

(Eη[WA>]x)
>Eη[WW>]

−1
(Eη[WA>]x)

≤ (Eε[WA>]x)
>Eε[WW>]

−1
(Eε[WA>]x).

This establishes the matrix inequality.

To conclude the proof, suppose that E[εW ε
>
W ] = 0, dA =

dW and that βW has full rank. It then follows that

ΩW = E[AW>]E[WW>]
−1E[WA>]

= E[AA>]βW (β>WE[AA>]βW )
−1
β>WE[AA>]

= E[AA>]βWβ
−1
W E[AA>]

−1
β>W
−1
β>WE[AA>]

= E[AA>],

such that CW (λ) = E[AA>] +λΩW = (1 +λ)E[AA>] =
CA(λ).

Proof of Theorem 2. Let wγ be defined as in Equation (23).
We can write the population quantity as follows, making use
of the fact that ε, εZ , and εW are jointly independent, and
that all errors have zero mean.

`×(W,Z; γ)

= E[(Y − γ>X)W>]E[ZW>]
−1E[Z(Y − γ>X)

>
]

= E[w>γ (MAA+ ε)W>]E[ZW>]
−1

· E[Z(A>M>A + ε>)wγ ]

= w>γMAE[AW>]E[ZW>]
−1E[ZA>]M>Awγ

= w>γMAE[A(A>βW + ε>W )]

E[(β>ZA+ εZ)(A>βW + ε>W )]
−1

E[(β>ZA+ εZ)A>]M>Awγ

= w>γMAE[AA>]βW
(
β>ZE[AA>]βW

)−1

β>ZE[AA>]M>Awγ

= w>γMAE[AA>]βWβ
−1
W E[AA>]

−1
(β>Z )

−1

β>ZE[AA>]M>Awγ

= w>γMAE[AA>]E[AA>]
−1E[AA>]M>Awγ

= w>γMAE[AA>]M>Awγ

The result follows from Proposition A1.

In the main text, we state that the xPAR(W,Z) objective is
convex in γ and has a closed form solution. We give the
proof here:
Proposition A4. Under Assumptions 1, 3 and 4, the loss in
Equation (14) is convex in γ, and its minimizer is given by

γ∗×PAR :=
(
2E[XX>] + λ(L+ L>)

)−1(
2E[XY >] + λ(K1 +K2)

)
,

where we define

L := E[XW>]E[ZW>]−1E[ZX>],

K1 := E[XW>]E[ZW>]−1E[ZY >]

K2 := E[XZ>]E[WZ>]−1E[WY >].

Proof. By Theorem 2 and Equation (7),
`×PAR(W,Z; γ, λ) = `AR(X,Y,A; γ, λ), and the
latter is convex in γ, since it is the sum `LS , which is
convex, and λ`PLS(X,Y,A; γ), which is a quadratic form
by Proposition A1 and hence convex.

Consequently optimal solution can be found by taking the
gradient of `×PAR(W,Z; γ, λ) = `LS + λ`× with respect
to γ and equating it to 0. Letting D := E[ZW>]−1, we
can differentiate `×PAR term wise, using Equation (13) to
rewrite `×:

0 = 2γ>E[XX>]− 2E[Y X>]

− λE[YW>]DE[ZX>]

− λE[Y Z>]D>E[WX>]

+ λγ>(L+ L>),

where L := E[XW>]E[ZW>]−1E[ZX>]. Defin-
ing K1 := E[XW>]DE[ZY >] and K2 :=
E[XZ>]D>E[WY >], and rearranging, we obtain:

γ>(2E[XX>] + λ(L+ L>))

= 2E[Y X>] + λ(K>1 +K>2 ),

so by transposing and solving for γ, we get the expression
from the statement.

C.3.2. SECTION 4

Proof of Proposition 2. Let wγ be defined by (23) and for
any γ let b>γ := w>γMA. We can write the loss as follows

Edo(A:=ν)[(Y − γ>X − α)
2
]

= E[(w>γ (ε+MAν)− α)
2
]

= E[(w>γ ε+ w>γMAν − α)
2
]

ε⊥⊥ν
= E[(w>γ ε)

2
] + E[(w>γMAν − α)

2
]

= E[(w>γ ε)
2
] + E[(w>γMAA)

2
]

− E[(w>γMAA)
2
] + E[(w>γMAν − α)

2
]

= `LS(γ)− E[(b>γ A)
2
] + E[(b>γ ν − α)

2
]

= `LS(γ)− b>γ E[AA>]b>γ

+ b>γ E[νν>]bγ − 2E[b>γ ν]α+ α2

= `LS(γ) + b>γ
(
E[νν>]− E[AA>]

)
bγ

− 2E[b>γ ν]α+ α2
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= `LS(γ)

+ b>γ
(
E[νν>]− E[AA>]

)
bγ − (b>γ E[ν])

2

+ (b>γ E[ν])
2 − 2E[b>γ ν]α+ α2

= `LS(γ) + b>γ (Σν − ΣA) bγ +
(
b>γ E[ν]− α

)2
,

where for any value of γ, that minimizing with respect
to α yields α∗ = b>γ E[ν], where b>γ = w>γMA. Given
that we can write the structural relationship Y − γ>X =
b>γ A+w>γ ε, and knowing that E[ε] = 0 and that ε ⊥⊥ A, we
know that b>γ A is the conditional expectation of R(γ) given
A.

In the main text, we note that Equation (16) (the objective
function `TAR) is convex in γ, α, and has a closed form
solution. We prove that result here.
Proposition A5. Under Assumption 1, the minimizer
γ∗TAR, α

∗
TAR of Equation (16) is given by

γ∗ =
(
E[XX>] + E[XA>]ΩE[AX>]

)−1(
E[XY >] + E[XA>]ΩE[AY >]

)
α∗ = b>γ∗µν ,

where Ω = E[AA>]
−1

(Σν − ΣA)E[AA>]
−1

, and b>γ is
defined in Equation (15).

Proof of Proposition A5. Let wγ be as defined in Equa-
tion (23) and let b>γ := w>γMA. Since E[(Y − γ>X) |
A] = E[w>γ [MAA + ε] | A] = b>γ A, for any γ, b>γ is the
linear regression coefficient of (Y − γ>X) onto A, so we
may write b>γ = E[(Y − γ>X)A>]E[AA>]−1. Plugging
in the optimal value α(γ) := b>γ µν , we obtain

`TAR(A;µν ,Σν , γ, α(γ))

= `LS(γ) + b>γ (Σν − ΣA) bγ

= `LS(γ) + E[(Y − γ>X)A>]ΩE[A(Y − γ>X)
>

]

This objective is convex in γ. The derivative of the loss with
respect to γ is

−2(E[(Y − γ>X)X>] + E[(Y − γ>X)A>]ΩE[AX>]),

and equating to 0 and solving for γ yields

γ∗ =
(
E[XX>] + E[XA>]ΩE[AX>]

)−1(
E[XY >] + E[XA>]ΩE[AY >]

)
.

We also claim in the main text that if ν is a constant, then
the minimizer of Equation (16) can be found by performing
OLS using both X,A as predictors, and then plugging in
the known value ν for A in prediction. We prove that result
here.

Proof. If ν is a constant, then we can write the first two
terms as follows, where wγ is defined in Equation (23).

`LS − b>γ ΣAbγ

= E[(w>γ (MAA+ ε))
2
]− w>γMAE[AA>]M>A bγ

= E[(w>γ (MAA+ ε))
2
]− E[(w>γMAA)

2
]

= E[(w>γ ε)
2
]

which is equivalent to the objective for the loss when
Y,X are residualized with respect to A (see Section 8.6
of Rothenhäusler et al. (2021)). By the Frish-Waugh-Lovell
theorem (Lovell, 1963; 2008), this yields the same coeffi-
cients γ for X as if we had performed regression on X,A
together. For this value of γ, b>γ is the coefficient that we
would obtain for A in the joint regression, because it equals
the regression coefficients for Y − γ>X on A.

Proof of Proposition 3. We use ν to denote the random
shift. Let ν ∈ T (µν ,Σν), or equivalently, let ν := µν + δ,
where µν is fixed and δ satisfies the constraint that E[δδ>] �
Σν , where Σν is a symmetric positive definite matrix. Let
wγ be defined by (23) and for any γ let b>γ := w>γMA. We
can write the loss as follows

sup
ν∈T

Edo(A:=ν)[(Y − γ>X − α)
2
]

= sup
ν∈T

E[(w>γ (ε+MAν)− α)
2
]

= sup
ν∈T

E[(w>γ ε+ w>γMAν − α)
2
]

= E[(w>γ ε)
2
] + sup

ν∈T
E[(w>γMAν − α)

2
]

= E[(w>γ ε)
2
] + E[(w>γMAA)

2
]

− E[(w>γMAA)
2
] + sup

ν∈T
E[(w>γMAν − α)

2
]

= `LS(γ)− E[(b>γ A)
2
] + sup

ν∈T
E[(b>γ ν − α)

2
],

where on the fourth line we used the fact that E[εν] = 0 by
the fact that ν = µv + δ, and δ is independent of ε. In the
last line we replaced w>γMA by b>γ . We can re-write the
last term as follows, where the supremum with respect to δ
is constrained in the set E[δδ>] � Σν

sup
ν∈T

E[(b>γ ν − α)
2
]

= sup
δ:E[δδ>]�Σν

E[(b>γ (δ + µν)− α)
2
]

= sup
δ

E[(b>γ δ + b>γ µν − α)
2
]

= sup
δ

E[(b>γ δ)
2
] + 2E[(b>γ δ)](b

>
γ µν − α) + E[(b>γ µν − α)

2
]

= b>γ Σνbγ + 2 ‖bγ‖Σν ·
∣∣b>γ µν − α∣∣+ (b>γ µν − α)

2
,
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where ‖bγ‖Σν :=
√
b>γ Σνbγ is the norm induced by the

inner product defined with respect to Σν . In the last line,
we have used the fact that the expression is maximized
(subject to the constraint) by the deterministic distribution
δ∗ = ± Σνbγ√

b>γ Σνbγ
where the sign depends on the sign of

(b>γ µν −α): δ∗ satisfies b>γ δ∗δ
>
∗ bγ = b>γ Σνbγ , maximizing

the first term. Further, the second term is also maximized
by δ∗, because if any other random or deterministic δ satis-
fies |Eb>γ δ| > |b>γ δ∗|, it follows by Jensens inequality that
E[(b>γ δ)

2] ≥ (E[(b>γ δ)])
2 > (b>γ δ∗)

2 = b>γ Σνbγ , such that
E[δδ>] � Σν , so δ is not in the set over which the supre-
mum is taken. Consequently, the supremum is attained at
δ∗, because δ∗ maximizes both terms.

Using this expression for the supremum, we can write the
objective as

sup
ν∈T

Edo(A:=ν)[(Y − γ>X − α)
2
]

= `LS(γ) + b>γ (Σν − ΣA)bγ

+ 2 ‖bγ‖Σ ·
∣∣b>γ µν − α∣∣+ (b>γ µν − α)

2
,

for which the optimal choice of α∗ is given by b>γ µν , for
any γ, and for this choice of α, we can see that γ∗ =
arg minγ `LS(γ) + b>γ (Σν − ΣA) bγ .

D. Targeting with proxies
Definition 6 (Proxy Targeted Anchor Regression). Let µ̃ :=
Edo(A:=ν)[W ] denote the mean of W under intervention,
and let Σ̃W := Covdo(A:=ν)(W ) denote the covariance. We
define

`PTAR(W ; µ̃, Σ̃W , γ, α) (29)

= `LS(γ) + c>γ

(
Σ̃W − ΣW

)
cγ + (c>γ µ̃− α)

2
,

where c>γ := E[R(γ)W>]ΣW
−1.

As mentioned in the main text, Equation (29) is not generally
equal to Equation (16), and does not generally yield the
optimal predictor under the targeted loss. A simple example
is given in Proposition A6.

Proposition A6. Assume Assumptions 1, 2, and that
E[εW ε

>
W ] is full rank. Let ν

(d)
= A+ η for the deterministic

vector ηT = E[R(γ∗OLS)A>], where
(d)
= indicates equality

of distribution, and assume η 6= 0. Then, the minimizers of
Equations (16) and (29) differ, in that

α∗PTAR < α∗TAR

and if dW = dA = 1, and A has unit variance, then
α∗PTAR
α∗TAR

= ρW , where ρW := β2
W /(β

2
W + E[ε2W ]).

Proof. The assumption that ν = A+ η implies that Σν −
ΣA = 0, and E[ν] = η. That is, we have changed the mean
of the distribution, but not the covariance. This implies

E[W̃ ] = β>WE[ν] = β>W η

ΣW̃ − ΣW = β>W (Σν − ΣA)βW = 0,

where in the second equation we use the fact that ΣW =
β>WE[AA>]βW + E[εW ε

>
W ] (and similarly for ΣW̃ ), and

the εW terms cancel in the subtraction. We can then write
both objectives as follows

`PTAR(W, W̃ ; γ, α)

= `LS(γ) +
(
c>γ β

>
W η − α

)2
= `LS(γ) +

(
E[R(γ)AT ]βWΣ−1

W β>W η − α
)2

`TAR(A, ν; γ, α)

= `LS(γ) +
(
b>γ η − α

)2
= `LS(γ) +

(
E[R(γ)AT ]Σ−1

A η − α
)2

This gives the optimal value of α in both cases as the value
that minimizes the second term

α∗PTAR = E[R(γ∗PTAR)AT ](βWΣ−1
W β>W )η

α∗TAR = E[R(γ∗TAR)AT ]Σ−1
A η,

and since the second term can be made equal to zero by
these choices of α, the optimal γ in both cases is identically
γ∗PTAR = γ∗TAR = γ∗OLS , the value of γ that minimizes
the first term `LS(γ). Hence, we can write the difference
between these terms as

α∗TAR − α∗PTAR
= E[R(γ∗OLS)AT ](Σ−1

A − βWΣ−1
W β>W )E[AR(γ∗OLS)],

where we have replaced η with the assumed value of
E[AR(γ∗OLS)]. By assumption, ΣA is full-rank, so that
matrix Ω := (Σ−1

A − βWΣ−1
W β>W ) is positive definite if

and only if ΣAΩΣA is positive definite. Working with this
representation, we can see that

ΣAΩΣA = ΣA − ΣAβWΣ−1
W βTWΣA

= E[AA>]− E[AW>]E[WW>]
−1E[WA>]

� 0,

where the last line follows from Proposition A3. In the case
where dW = dA = 1, and A has unit variance, then let
ρW = β2

W /(β
2
W + E[ε2W ]), and observe that

α∗PTAR = η2ρW α∗TAR = η2.
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Proposition A6 describes a worst-case mean-shift in A,
where η is taken in the direction that maximizes the loss of
the OLS solution γ∗OLS . This is also a particularly simple
case to analyze for building intuition, because the optimal
solution to both Equations (16) and (29) is to take γ = γ∗OLS
and to estimate an intercept term α equal to the bias incurred
by the shift in the mean of A. However, the noise in W re-
sults in under-estimating the impact of the shift, and the gap
to the optimal solution depends on the signal-to-variance
relationship in W , which (as discussed in Section 3) is not
generally identified.

We also prove that the Cross-Proxy Targeted Anchor Re-
gression objective is equal to that of Targeted Anchor Re-
gression.

Theorem 3. Under Assumptions 1, 3, and 4, for all γ ∈
RdX , α ∈ R,

`×TAR(W,Z; µ̃, Σ̃W , γ, α) = Edo(A:=ν)[(Y − γ>X − α)
2
]

where µ̃ := Edo(A:=ν)[W ] is the mean of W under interven-
tion, and Σ̃W is the covariance Σ̃W := Covdo(A:=ν)(W ).

Proof of Theorem 3. We have

a>γ = E[R(γ)Z>](E[WZ>])
−1

= E[R(γ)(A>βZ + ε>Z )]

E[(β>WA+ εW )(β>ZA+ εZ)
>

]
−1

= E[R(γ)A>]βZ(β>WE[AA>]βZ)
−1

= E[R(γ)A>](E[AA>])
−1

(β>W )
−1
,

while

µ̃ = β>WE[ν]

Σ̃W − ΣW = β>W (Σν − ΣA)βW .

With b>γ := w>γMA and wγ defined by (23), we have that

a>γ µ̃ = b>γ E[ν]

a>γ (Σ̃W − ΣW )aγ = b>γ (Σν − ΣA)bγ ,

which is equivalent to `TAR(A;µν ,Σν , γ, α) (Definition 4,
Equation (16)). The proof is complete by Proposition 2.

Note that the argument is symmetric for using an observed
shift in either Z or W , so it suffices to know the anticipated
shift with respect to one proxy.

E. Details for experiments
E.1. Details of Section 5.1

We outline the details of the simulation experiment in Sec-
tion 5.1.

Summary We simulate a training data set Dtrain from a
SCM that induces the structure in Figure 2, fix λ := 5 and
fit estimators PAR(W ) and xPAR(W,Z). We consider the
intervention Pdo(A:=ν) with ν = (−2.83, 0.35, 0.71)>, and
simulate a test data set Dtest from that distribution. We then
compute the intervention mean squared prediction error
(MSPE) Êdo(A:=ν)[(Y − γ>X)2] both for PAR(W ) and
xPAR(W,Z). We repeat this procedure m = 105 times for
several signal-to-variance ratios x (not including 0), and
display the quantiles of the losses in Figure 5. We also plot
the population losses Edo(A:=ν)[(Y − γ>X)2] for PAR(W )
and xPAR(W,Z), as well as AR(A) and OLS.

Technical details We let E[AA>] = β = Id and
E[εW ε

>
W ] = s2 Id, such that W = β>A + s · εW . Then

ΩW as defined in Equation (11) simplifies to

ΩW = E[AA>]β(β>E[AA>]β + E[εW ε
>
W ])−1β>E[AA>]

=
1

1 + s2
Id .

We call x = (1 + s2)−1 the signal-to-variance ratio, and
we can obtain a given signal-to-variance ratio x, by setting
s =

√
(1− x)/x.

For each n ∈ {150, 500} and signal-to-variance ratio
x ∈ {1/20, 2/20, . . . , 20/20}, we set s =

√
(1− x)/x

and sample a data set Din,s for i = 1, . . . , 5000, each with
sample size n, from the structural equations:

A := εA (30)
W := A+ s · εW
Z := A+ s · εZ

(Y,X,H) := (Id−B)−1(MA+ ε),

where dA = dW = dZ = dX = 3, dY = dH = 1. M and
B are given by

M =


1 0 −2
0 2 1
−1 3 0
2 2 −3
0 −2 2

 , B =


0 −2 2 0 1
0 0 0 0 0
0 0 0 0 0
3 0 0 0 1
0 0 0 0 0

 ,

and all noise variables are i.i.d., εA, εW , εZ , ε ∼ N (0, Id).
For every combination (n, s) we have 5000 data sets Din,s ,
i = 1, . . . , 5000. For each data set, we compute the proxy
estimators γin,s,W and γin,s,W ;Z , using one or two proxies
respectively, and we simulate 5000 corresponding test data
sets of size n from Pdo(A:=ν) (using the structural equations
above, except for changing the assignment for A to A :=
ν). The prediction MSE for the i’th test data set is then
1
n

∑n
j=1(Yj−γ>Xj)

2, resulting in 5000 values of the MSE
for each combination of (n, s).

At each combination of (n, s) we plot the median by a line
of the estimated worst case losses, and by a shaded region
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indicate the interval between the 25% and 75% quantiles of
the observed distribution. We plot the median instead of the
mean since for small x, s2 = 1−x

x is large, and especially
for WCLin,s(W,Z) and n = 150, the mean will be driven
very much by outliers for small x.

The population versions of losses for any s is computed
first by computing the population estimators γ from the
parameter matrices M,B, and then computing the loss
at ν by Edo(A:=ν)[(Y − γ>X)2] = w>γMνν>M>wγ +

w>γ E[εε>]wγ .

E.2. Details of Section 5.2

We outline the details of the simulation experiment in Sec-
tion 5.2.

Summary We analyze the effect of applying anchor re-
gression with one proxy, PAR(W ), when the signal-to-
variance ratio is potentially misspecified. To do so, we sim-
ulate data from the same SCM as in Section 5.1 (n = 104),
and in particular from a range of true (unknown) signal-to-
variance ratios x ∈ (0, 1]. To each data set, we apply an-
chor regression with one proxy, PAR(W ), and with λ := 5.
We further assume the signal-to-variance ratio to be 40%
– independently of its true value. This means, by Proposi-
tion 1, that we assume that PAR(W ) minimizes the worst
case mean squared prediction error (MSPE) over the region
C := {νν> � (1 + 0.4 · λ)E[AA>]}, with the worst case
MSPE for being equal to the optimal value of the PAR(W )
objective function. If x = 0.4, then PAR(W ) indeed mini-
mizes the worst case MSPE over C and the estimated worst
case MSPE over C is close to the actual worst case MSPE
over C. But if x 6= 0.4, the estimator minimizes the worst
case MSPE over a different set, and then expect that the true
worst case MSPE over C differs from its estimate. Figure 6
shows that this is indeed the case: We observe that if the true
signal-to-variance ratio is larger than the assumed 40%, our
estimate of the MSPE is too conservative. On the contrary,
if the true signal-to-variance ratio is smaller than assumed,
our estimates of the MSPE over C are too small, meaning
that we underestimate the worst case MSPE in the region
C.

Technical details For a fixed signal-to-variance ratio x,
we simulate a training data set Dtrain (n = 104) from the
same procedure as in Section E.1, i.e. using the structural
equations in Equation (30), and with the same parameters
M and B. We fit the PAR(W ) estimator to the data using
λ := 5, and the estimated worst case mean squared predic-
tion error (MSPE) over C is then the value of the objective
function in the estimated parameter (by Theorem 1).

To find the actual worst case MSPE over C for a given

estimator λ, we use the fact from Equation (24) that

Edo(A:=v)[(R− γ>X)2] = (b>γ v)2 + w>γ wγ , (31)

where we use that E[εε>] = Id, wγ is given by Equa-
tion (23) and b>γ = w>γMA. The second term doesn’t de-
pend on v, and since C is spherical, the worst case MSPE
over C is attained in the direction v ∝ bγ , with v normal-
ized such that ‖v‖2 = (1 + 0.4 · λ) (that is v lies on the
boundary of C). Using the known M and B, we compute
wγ , bγ , and the actual worst case MSPE over C is given by
Equation (31) plugging in v = bγ ·

√
(1 + 0.4 · λ)/‖bγ‖.

We compute also the worst case MSPE over C when us-
ing an OLS estimator for the prediction. We fit γ̂OLS
from Dtrain, and, as for the actual MSPE of PAR(W ),
the worst case MSPE over C using OLS can be com-
puted, by computing vectors bγ̂OLS , wγ̂OLS . Again the
worst case MSPE over C using γ̂OLS is attained by set-
ting v = bγ̂OLS ·

√
(1 + 0.4 · λ)/‖bγ̂OLS‖ and plugging v,

bγ̂OLS and wγ̂OLS into Equation (31).

For every signal-to-variance ratio x ∈ {1/20, . . . , 20/20},
we repeat the procedure m = 1000 times, for each comput-
ing the estimated and actual MSPEs. In Figure 6 we plot the
median MSPE as well as the interval from the 25% quantile
to the 75% quantile.

E.3. Details of Section 5.3

We outline the details of the simulation experiment in Sec-
tion 5.3.

Summary We demonstrate the ability of Proxy Anchor
Regression to select invariant predictors, in a synthetic set-
ting where predictors X may contain both causal and anti-
causal predictors. We simulate data sets (n = 105) from a
SCM with the structure shown in Figure 7 (top), where one
anchor, A1, is a parent of the causal predictors, while the
other A2 is a parent of the anti-causal predictors.

We consider two identically distributed noisy proxies W,Z
ofA := (A1, A2). The challenge, in this scenario, is thatA2

is measured with significantly more noise than A1, across
both proxies. As a consequence, proxy anchor regression
with one proxy, PAR(W ), puts more weight on anti-causal
features: the noise in W is mistaken for fluctuations in
A2, resulting in Xanti-causal mistakenly appearing invariant to
shifts in A2. In contrast, when two proxies W,Z are avail-
able, the estimator xPAR(W,Z) asymptotically equals that
of anchor regression with observed anchors, and its regres-
sion coefficients puts more weight on the causal predictors;
see Figure 7 (bottom).

Technical details With dA1 = dA2 = dW = dW = 6,
dXcausal = dXanti-causal = 3 and dY = 1, we simulate data from
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the SCM in Figure 7 (top) which amounts to simulating
from the following structural equations:

A1 := εA1

A2 := εA2

W := (A1, A2)> + (εW,1, εW,2)>

Z := (A1, A2)> + (εZ,1, εZ,2)>

Xcausal := M1A1 + εXcausal

Y := γ>causalXcausal + εY

X2 := M2A2 + γanti-causalY + εXanti-causal .

Here M1 ∈ RdXcausal×dA1 and M2 ∈ RdXanti-causal×dA2 are
matrices with 1 in every entry, γcausal = (1/4, 1/4, 1/4)>

and γanti-causal = (4, 4, 4)> (such that the regression
coefficients of Y onto Xcausal, Xanti-causal are of simi-
lar magnitudes). All noise terms are independent and
εA1

, εA2
, εXcausal , εXanti-causal , εY ∼ N (0, Id), and εW,1, εZ,1 ∼

N (0, Id), εW,2, εZ,2 ∼ N (0, 32 · Id).

We simulate a data set D (n = 105) from these structural
equations, and fit the proxy anchor regression estimators
γ(W ) and γ(W,Z) from Section 3. We repeat thism = 104

times, and display the mean absolute value of the regres-
sion coefficients (that is the entries of the vectors γ(W ) and
γ(W,Z)) in Figure 7 (bottom), as well as the standard devi-
ation of the absolute value of the regression coefficients as
error bars.

E.4. Details of Section 5.4

Summary We demonstrate the trade-off made by Tar-
geted Anchor Regression (TAR) versus Anchor Regression
(AR), considering the case when A is observed for simplic-
ity. We simulate training data and fit estimators γOLS, γAR
and γTAR, where γTAR is targeted to a particular mean and
covariance of a random intervention do(A := ν), and we se-
lect λ for γAR such that this intervention is contained within
CA(λ). We then simulate test data from two distributions:
Pdo(A:=ν) (i.e., the shift occurs), and P (where it does not),
and evaluate the mean squared prediction error (MSPE). The
results are shown in Figure 8, and demonstrated that TAR
performs better than AR and OLS in the first scenario, but
this comes at the cost of worse performance on the training
distribution.

Technical details The entire procedure below produces
a prediction MSE for each of three methods and two set-
tings, and we repeat this m = 105 times, to produce the
histograms of MSEs shown in Figure 8.

We simulate a training data set Dtrain (ntrain = 105) from the

structural equations

A := εA

(Y,X,H) := (Id−B)−1(MA+ ε),

where dA = dX = 2 and dY = dH = 1, εA, ε ∼ N (0, Id)
and M and B were selected by a simulation resulting in:

M =


2 1
0 1
2 2
0 3

 , B =


0 −0.06 0.07 0.04

0.05 0 0.19 0.03
0.11 −0.11 0 0.1
−0.02 0.02 0.09 0

 .

We consider the target distribution do(A := κ>A+η) where

κ =

(√
2 0

0 1

)
, η =

(
0
2

)
,

and so we fit the targeted AR estimator
(γtargeted-AR, αtargeted-AR) from Equation (16), where
the covariance of the anticipated shift is given by
Σν := κ>E[AA>]κ, and the mean shift is simply η.
We also fit OLS estimates γOLS(X,Y ) and γAR(X,Y,A)
where for AR we select λ such that (1 + λ) equals the
largest eigenvalue of κ>E[AA>]κ + ηη>, such that
E[(κ>A+ η)(κ>A+ η)>] � (1 + λ)E[AA>].

We then simulate a test data set (ntest = 105) both from 1)
the training distribution (i.e. same simulation procedure as
for the training set) or 2) by changing the structural equation
for A to A := κ>εA + η, and keeping all other quantities as
for the simulation of training data (i.e. the test distribution
is the anticipated distribution). We evaluate the prediction
MSE on each of the data sets by 1

ntest

∑
j(Yj − γ>Xj)

2

(including the term αtargeted-AR for the targeted AR).

E.5. Details of Section 6

Features The dataset contains time-stamps as well as sea-
son indicators, which we do not use anywhere as features.
The remaining features are Dew Point (Celsius Degree),
Temperature (Celsius Degree), Humidity (%), Pressure
(hPa), Combined wind direction (NE, NW, SE, SW, or CV,
indicating calm and variable), Cumulated wind speed (m/s),
Hourly precipitation (mm), and Cumulated precipitation
(mm).

Data Processing Each city has PM2.5 readings from mul-
tiple sites, which we average to get a single reading, and we
take a log transformation. For Precipitation (Cumulative)
we subtract off the (current hour) precipitation to avoid co-
linearity. We take a log transformation of the variable for
Wind Speed, Precipitation (Hourly) and Precipitation (Cu-
mulative), due to skewness. We drop all rows that contain
any missing data.
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Proxies (Temperature) We use temperature as our proxy
variable, and treat it as unavailable at test time. We con-
struct two synthetic proxies of temperature to serve as
W,Z, adding independent Gaussian noise while control-
ling the signal-to-variance ratio (in the training distribution)
at Var(A)/Var(W ) = 0.9. This results in different standard
deviations of the Gaussian noise across different environ-
ments, because of differences in the training distributions
across training seasons and cities. The standard error of the
noise varies between 2 and 5 degrees, to maintain the same
signal-to-variance ratio.

Training Details (PAR, xPAR) For the distributional ro-
bustness approaches described in Section 3, we choose
λ ∈ [0, 40] by leave-one-group-out cross-validation on the
three training seasons, using the first year (2013) of data.
For Proxy Anchor Regression using Temperature directly,
there is heterogeneity in the cross-validated choice of λ:
In 9 out of 20 scenarios, λ = 40 is chosen, but in the re-
maining 11, λ = 0 is chosen, which is equivalent to OLS.
We saw a similar result when the maximum value of λ was
20, and increased the maximum limit to 40 without seeing
much difference, so we did not increase it further. Con-
cretely, with λ in [0, 20], there are some scenarios where
PAR (TempC) has slightly worse or slightly better MSE
(vs. λ in [0, 40]), but the differences are all less than 0.001.
The only observable difference in Table 1 when running
with λ in [0, 20] is that the “best” performance is -0.040
(λ = 20), as opposed to -0.041 (λ = 40) [where lower is
better, rounded to nearest 0.001]. For Proxy Anchor Re-
gression using W and for Cross-Proxy Anchor Regression
(xPAR) using W,Z together, we use the same values of λ
as above, for comparability.

Training Details (PTAR, xPTAR) For the targeted ap-
proaches described in Section 4, we use the mean and vari-
ance of the temperature in the test distribution to target our
predictors, and similarly use the distribution of the proxies
when using Proxy Targeted Anchor Regression (PTAR) with
W and Cross-Proxy TAR (xPTAR) with W,Z. Note that
xPTAR (unlike xPAR) is asymmetric in the proxies, but in
this case the proxies are distributed identically.

Benchmarks As described in the main text, our primary
benchmark is OLS, trained on the three training seasons,
evaluated on the held-out season. We also include two other
baselines: First, OLS that has access to temperature during
both train and test, which we denote OLS (TempC), and
OLS that includes temperature during training, and attempts
to estimate a bias term by plugging in the mean (test) value
for temperature during prediction.

In Table 2 we give the full results over all 20 scenarios,
which includes the 11 scenarios where λ = 0 is chosen

Table 2. MSE (lower is better) over 20 scenarios consisting of five
cities and four held-out seasons. Average difference to OLS esti-
mator (lower is better) given in the second column, and minimum
/ maximum difference in remaining columns.

Estimator Mean Diff Min Max

OLS 0.457
OLS (TempC) 0.455 -0.002 -0.028 0.026
OLS + Est. Bias 0.474 0.018 -0.072 0.150

PAR (TempC) 0.454 -0.003 -0.041 0.006
PAR (W) 0.454 -0.002 -0.037 0.006
xPAR (W, Z) 0.454 -0.003 -0.039 0.007

PTAR 0.450 -0.007 -0.061 0.002
PTAR (W) 0.452 -0.005 -0.038 0.001
xPTAR (W, Z) 0.450 -0.007 -0.059 0.003

by cross-validation, rendering the PAR and xPAR solutions
equivalent to OLS.

Regularization paths In Figure 12 we have shown how
the solution in the “best” scenario differs for Proxy Anchor
Regression (PAR) with λ = 40 versus OLS (i.e., λ = 0). In
Figure 13, we show how the coefficients change in-between
these two extremes: for every integer value of λ in [0, 40] we
show the difference in the PAR vs. OLS coefficients for each
feature. Increasing λ further does not make a significant
difference for this particular example.



Regularizing towards Causal Invariance: Linear Models with Proxies

0.70 0.75 0.80 0.85
MSE

OLS

PAR (TempC)

PTAR (TempC)

Figure 11. Best performance for Proxy Anchor Regression (PAR)
and Proxy Targeted AR (PTAR), corresponding to Summer in
Beijing. Variance estimates generated by bootstrapping the test
residuals of the fitted models.
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Figure 12. Comparison of learned coefficients. All variables were
standardized to unit variance. The intercept for OLS and AR is the
same (by construction) at α = 4.087 while the intercept for TAR
is lower at α = 3.885.
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Figure 13. Coefficient path, showing the difference between the
PAR and OLS coefficients in Figure 12 for different values of λ.
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F. Additional experiment: Signal-to-variance
ratio

To examine the effect of the signal strengths βW and
βZ , we scale the signals βW,s = βZ,s = s Id for s ∈
{0,
√

2/3, 0.8}, which for the single proxy estimator γ̂PAR
amounts to optimizing over worst case loss in the robustness
regions C(λ) = {vv> � (1 + λ s2

1+s2 ) Id}.

For s ∈ {1, 3}, such that the signal-to-variance ratio s2

1+s2

equals either 10% or 50%, we simulate a training data set
Dtrain with two proxies W and Z from the structural equa-
tions A := εA, (X

>, Y >, H>)> := (1 − B)−1(MaA +
ε),W := β>W,sA + εW and Z := β>Z,sA + εZ where all
noise terms are i.i.d with unit covariance and MA, B are
given by:

M :=


2 1
0 1
2 2
0 3

 , B :=


0 −0.57 0.73 0.37

0.53 0 1.91 0.33
1.14 −1.13 0 0.96
−0.22 0.16 0.87 0

 .

Since for this experiment we are not interested in finite
sample properties of the estimators, we use sample size
n = 107.

For each data set we fit estimators γ̂PAR(W ) (using only one
proxy), γ̂xPAR(W, Z) (using both proxies), γ̂AR(A), and γ̂OLS,
and evaluate the estimators at data sampled from interven-
tional distributions Pdo(A:=v) for several interventions v of
increasing strength (i.e. increasing distance from E[A] = 0).

As the signal to variance ratio increases, the PAR(W )
loss approaches the AR(A). Further we observe that
xPAR(W,Z) coincides with the AR(A) estimator for both
signal-to-variance levels. This is illustrated in Figure 14.
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Figure 14. Anchor and proxy estimators for different levels of
signal-to-variance ratio β(E[WW>])−1β>. A training data set
(n = 107) with two proxies W,Z is simulated and the esti-
mators γ̂PAR(A), γ̂xPAR(W,Z), γ̂AR(A), and γ̂OLS are fitted using a
fixed λ. Interventions v of increasing strength is sampled, and
for each a new data set (n = 105) is sampled from Pdo(A:=v),
and for each estimator γ̂, the prediction mean squared error
Edo(A:=(v1,v2))[(Y − γ̂>X)2] is computed. This procedure is
repeated for signal-to-variance ratios 10% and 50%.


