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Motivation: We present a probabilistic model called a Joint Intervention Network

(JIN) for inferring interactions among a chosen set of regulator genes. The input

to the method are expression changes of downstream indicator genes observed un-
der the knock-out of the regulators. JIN can use any number of perturbation

combinations for model inference (e.g. single, double, and triple knock-outs). Re-

sults/Conclusions: We applied JIN to a Vibrio cholerae regulatory network to
uncover mechanisms critical to its environmental persistence. V. cholerae is a fac-

ultative human pathogen that causes cholera in humans and responsible for seven

pandemics. We analyzed the expression response of 17 V. cholerae biofilm indi-
cator genes under various single and multiple knock-outs of three known biofilm

regulators. Using the inferred network, we were able to identify new genes involved
in biofilm formation more accurately than clustering expression profiles.

1. Introduction and Previous Work

DNA microarray expression data provides a rich source of phenotypes to
infer gene regulatory networks. Recently, several methods have been de-
veloped to learn a cellular network from quantitative observations9,2. No-
tably, Bayesian Networks (BNs) have been used to infer networks from both
observational7,16 and interventional11 gene expression microarray data. In-
terventional data can be used to identify causal networks10. In addition to
gene expression data, BNs have been used to learn signaling networks from
phosphorylation data collected from single-cells under perturbations12. Al-
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gorithms for exact inference of BN structure with uncertain perturbations
have been applied to similar data5.

In contrast to the standard BN approach, the Nested Effects Model
(NEM)9 infers gene networks from expression changes of “secondary genes”
observed under the knock-out of regulatory genes. NEMs search for a net-
work of regulators that are consistent with a nested hierarchy among the
expression changes. Like BNs, NEMs provide a generative model that can
score a candidate network in proportion to the data likelihood.

Geneticists have used epistasis analysis of complex phenotypes to order
genes into pathways for nearly a century3. The models considered here
assume phenotypes (or expression states in our case) result from the loss
of a signal propagating along a genetic network. Epistasis analysis uses
the phenotypes of single- and multiple-gene deletions to place genes into
a pathway order. In this work, we assume the genes of interest signal to
one another according to a “switch regulatory,” rather than a “substrate
dependent,” model as defined by Huang and Sternberg (2006)8. In switch
regulatory epistasis, if the knock-out of gene A produces phenotype P ,
the knock-out of B produces phenotype Q, and the double knock-out of
AB produces phenotype Q, B is said to be epistatic to, and is placed
downstream of, A. In the context of using microarray expression data,
the up- or down-regulation of a gene across a panel of mutant regulators
does not directly convey the information about the network of regulators.
Instead, a secondary gene’s relative expression differences in single- versus
double-mutants may be informative. Recently, Van Driessche et al.14 used
an ad hoc approach based on Euclidean distance to compare double and
single knock-out expression profiles.

In this paper, we describe the Joint Intervention Network (JIN) model
that implements a probabilistic epistasis analysis for quantitative, multi-
variate phenotypes. JIN differs from previous methods in the following
aspects. First, it employs relative expression changes formed from the
comparison of all possible pairs of perturbation datasets. Second, it ex-
tracts epistatic information from data on multiple perturbation combina-
tions. Third, it is able to determine the order of genes as well as their func-
tional dependencies (e.g., inhibition, activation, multiplicative, or additive)
from the downstream effects, and can therefore find functional dependen-
cies between regulators that may not be observed in direct transcript levels.
Fourth, it identifies new targets of the regulators that have expression pro-
files consistent with the predicted regulatory network.

The survival of Vibrio cholerae both outside and inside a host, has
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Figure 1. A–B. Signaling networks used in the toy example discussed in the text. A

and B are known regulators, while H is a hidden regulatory influence, Y . A. Linear

network. B directly controls Y ’s expression; A indirectly controls Y via B. B. Conver-
gent network. A and B both directly control Y ’s expression. C. The input to the Joint

Intervention Network model are relative gene expression changes of a set of indicator

genes, I, measured under different comparisons of knock-out combinations of a set of
regulator genes (A, B, and C), and the genotypes of the comparisons (g1 and g2). First,

a high scoring network is found that connects regulators (nodes) to each other by pre-
dicted interactions (edges) and regulators to indicators (shown in plate notation using a

solid box to indicate replicated indicator nodes and edges). Next, this regulatory model

is used to find other genes in the genome that have consistent expression changes.

been linked to its ability to form biofilm. We applied JIN to the pertur-
bation expression data of three vps biofilm regulators and automatically
reconstructed the model consistent with the network proposed by the ex-
perimentalists that collected the data4. Furthermore, the model identified
new target genes involved in biofilm formation.

2. Methods

We assume n signaling genes participate in the regulation of a pathway of
interest and that the effect of their regulatory input is observable through
indicator expression states, Y . Under different combinations of knock-outs
to the signaling genes, indicator expression is used as quantitative pheno-
types to order the signaling genes into a network.

2.1. Theoretical Motivation

We motivate our approach with an example to illustrate the use of us-
ing (1) knock-out combinations and (2) relative expression changes ob-
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served under knock-outs. Multiple knock-outs provide information that
cannot be revealed by single knock-outs. For example, the networks in
Figures 1A and 1B are indistinguishable using single knock-outs since both
networks will exhibit down-regulation of indicator gene Y in both single
knock-outs ∆A and ∆B. However, the results of the double knock-out
∆AB can help distinguish between the two models. If the model is linear,
∆B and ∆AB have the same effects on Y , but ∆A and ∆AB have distinct
effects. ∆A has weaker effect on Y because (hidden) regulators of B, in ad-
dition to A, may be present. If the model is convergent and additive, both
∆A and ∆B have weaker effects on Y compared to ∆AB. If the model is
convergent and multiplicative, both ∆A and ∆B have the same effect on
Y compared to ∆AB.

Adopting relative changes alleviates the quantization problem inherent
in discrete models that use direct expression levels. Let the relative ex-
pression change (REC) for an indicator gene i, xi(g1, g2), be the log2-ratio
of i’s expression level in genotype g1 over its level in genotype g2. Con-
sider the linear model in Figure 1A. H represents a hidden factor such as
an unknown regulator or an environmental variable not controlled in the
experiment. Both single knock-outs ∆A and ∆B and double knock-out
∆AB down-regulate Y relative to wild-type. In addition, Y is lower in ∆B

or ∆AB compared to ∆A, as H may provide a constituent activation of
Y in ∆A. It is problematic to apply a binary quantization on the direct
expression level of Y under ∆A, since Y is between the level of the double
knock-out and wild type. More refined quantization also suffers from the
arbitrary quantization levels.

In contrast, it is straightforward to determine whether Y under one
condition is higher, lower or equal to another condition. In this example,
suppose B = H +A+ ε and Y = B + ε. Each regulator contributes a mean
influence of µ to Y ’s activity and ε � µ is the background noise level.
Then y(∆A)

y(WT ) ≈
1
2 , and y(∆AB)

y(WT ) = y(∆B)
y(WT ) ≈

ε
2µ , where y(g) represents the

continuous expression of Y under genotype g. Clearly, xY (∆AB,∆A) ≈
log( ε

µ ) � 0 and xY (∆AB,∆B) ≈ 0. Epistatic reasoning could now place A

above B since B’s knock-out phenotype matches that of the double mutant.

2.2. The Joint Intervention Network Model

The input to the method consists of two parts: an n×p matrix xij of RECs
and a 2×p matrix g of the genotypes of each comparison (Fig. 1C, “Indicator
Expression”). A row in X corresponds to one indicator gene. Columns in
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Figure 2. A JIN structure, J(G), for the candidate network G from Fig. 1A, consists

of a set of regulatory network instances G(g) connected to the expression state of the

indicator genes, Y , and connections from hidden genotype-specific expression Y (g) to X
observations representing RECs. A, B, and C are the perturbed signaling genes and the

set of Yn=17 represents the expression of the indicator genes. The JIN represents three

different genotypes, WT (wild-type strain), ∆C (single knock-out strain), and ∆BC
(double knock-out strain), and models observations of all possible comparisons. The

solid box indicates plate notation to indicate replication of variables and dependencies.

both X and g correspond to a comparison of two of the p phenotypes. Thus,
for each indicator i, xij = log(yi(g1j)/yi(g2j)), where yi(g) represents the
expression of indicator gene i under genotype g. To form as many RECs as
possible, X is augmented with virtual ratios. If a pair of genotypes does not
have an observed REC, but there are comparisons to a common reference
genotype (i.e. columns j and k where g2j = g2k), a new column h was
constructed so that xih = xij−xik for all such j and k. The new column(s)
represent the pairwise comparison between genotypes g1j and g1k that may
be important for detecting epistasis.

We first search for a high-scoring regulatory model by scoring network
candidates and then use the highest-scoring candidate to find other genes
that are under the same regulation model (Fig. 1C, “Regulatory Network
Search” and “Pathway Expansion” respectively). We use a score that re-
flects how well G explains the RECs recorded in X (either observed or
virtual). To score G, a Bayesian Network (BN), J(G), is first constructed,
which we refer to as the Joint Intervention Network of G (Figure 2). The
log-posterior of the JIN is used as the score for G (see Supp. Methods “Reg-
ulatory Network Search”17). J(G) is constructed from a candidate network
by creating instances of G for each genotype g, referred to as a component
network, G(g). For each genotype g, the component network G(g) encodes
how the underlying network G is modified under perturbation, i.e. discon-
necting perturbed nodes from their parents. Nodes associated with each
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G(g) are shown in dashed boxes in Figure 2. Conditional probability tables
are shared between component networks. G contains a hidden binary vari-
able for every regulator as well as every indicator gene, representing either
active or inactive gene activity, and connections representing regulatory in-
fluences from regulator to regulator states and from regulator to indicator
gene states (Y nodes).

In our setting, the state of the indicator genes, Y = Y1, Y2, . . . Yn, are
forced to be descendants of the signaling genes since these genes serve as
the phenotypic output of signaling regulation. A node, Xij , represents the
discretized REC of the ith indicator gene under the jth genotype comparison
of g1j and g2j . The node Xij is connected to two parents in the BN:
Yi(g1j) and Yi(g2j), where Yi(g1j) and Yi(g2j) are binary random variables
representing the unobserved expression state of gene i (either 0 “inactive”
or 1 “active”) under perturbations g1j and g2j respectively. A REC node
Xij is a ternary random variable and was set to +1 (“higher”) if xij > τ ,
-1 (“lower”) if xij < −τ , or 0 (“equal”) otherwise. We used τ = 0.3 to
provide a conservative estimate of equal expression between two genotypes4.
With the discrete values from the nodes in the JIN, we use a deterministic
conditional probability table for Xij : P(Xij |Yi(g1j), Yi(g2j)) = 1 iff Xij =
Yi(g1j)− Yi(g2j).

The parameters of J(G), θ, that define how regulators influence gene ac-
tivity are restricted to encode biological intuitions about influences on gene
expression. Each edge in the regulatory network can be either repressing
or activating, with activation broken into two classes: necessary activa-
tors, and a pool of alternative activators. (see Supp. Methods “Regulatory
Model”17).

3. Results

The biofilm regulatory pathway involves a complex interplay of transcrip-
tion factors HapR, VpsT, and VpsR (see Fig. 3A). These regulators con-
trol the expression of Vibrio polysaccharide (VPS) genes (vps-I and vps-II
gene clusters) that allow a community of Vibrio cells to change its sur-
face properties by modulating cell-matrix and cell-surface contacts. Dual
channel microarray gene expression data were obtained from Beyhan et al.
20074. Briefly, the dataset consisted of a combination of single, double and
triple knock-outs of three biofilm regulatory genes: hapR, vpsR and vpsT,
representing eight different genotypes including wild type. A competitive
microarray hybridization was performed using RNA isolated from a dele-
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Figure 3. A. Known biofilm regulation of V. cholerae. HapR, VpsR, and VpsT

influence vps gene expression. VpsT and VpsR activate the vps genes, while HapR

represses the expression of vps genes. Line thickness indicates magnitude or strength
of regulation. B. Biofilm pathway predicted by JIN. The regulatory structure

learned by JIN. Links are annotated by their feature score (see Results). The solid box

indicates plate notation. C. Predicted interactions and supporting RECs For
three interactions in the predicted regulatory model, we show related discretized RECs.

The dashed line from HapR to VpsR indicates an indirect interaction. The dashed circle
around VpsT and VpsR indicates treatment as a single genetic unit. The deletions for

each REC are coded with H=∆hapR, R=∆vpsR, and T=∆ vpsT.

tion mutant and that of wild-type. Six replicates were performed for each
of seven deletion strains. Virtual hybridizations (see Methods) were added
between compatible deletion strains, resulting in all 28 possible comparisons
of strains.

Using known vps indicator genes, we used JIN scoring to infer a signaling
network among the three regulators. The likelihood of the vps data under
the learned regulatory network was found to be significant compared to the
likelihood of arbitrary, non-vps genes. Bayesian feature scoring11 was used
to rank predicted interactions by a confidence measure (see Supp. Methods
“Bayesian Feature Scoring”17). In addition, the inferred regulatory network
was used to implicate new members of the V. cholerae biofilm pathway.
Several of these genes have been tested and validated for involvement in
biofilm formation.
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3.1. Inference of the V. cholerae Biofilm Regulatory

Network

A high-scoring biofilm regulatory network of VpsR, VpsT and HapR was
found using known downstream gene clusters vps-I (VC0917–VC0927) and
vps-II (VC0934–VC0939). Their relative expression under each deletion
strain compared to wild-type is shown in Figure 3C. Each gene’s expres-
sion was treated as an independent observation of the biofilm phenotype.
A greedy hill-climb with random restarts was used to sample biofilm regu-
latory networks. We ran 1000 independent hill climbs, each starting from
a different G and/or with different parameter values of J(G) (see Supp.
Methods “Regulatory Network Search”17).

Figure 3B shows the inferred vps regulatory network with edges anno-
tated with feature scores. We calculated a feature score11 for each edge
as the proportion of final networks found by hill climbing that contained
the edge, weighted by their likelihoods. Three edges in the network were
associated with high feature scores.

Consistent with JIN’s predictions, two of the three edges are well docu-
mented. HapR was found to inhibit VpsT, and VpsR was found to have the
most direct influence on the vps genes. Several of the relations predicted
by the JIN method are consistent with the observed RECs (Figure 3C).
The RECs contrasting ∆vpsT,vpsR to ∆vpsR reveal more “equal” obser-
vations than the RECs contrasting ∆vpsT,vpsR to ∆vpsT, indicating that
the regulatory influence from VpsT to VpsR is stronger than the direction
from VpsR to VpsT. The model predicts an indirect influence of HapR on
VpsR (via VpsT). This prediction is supported by the presence of more
“equal” ∆hapR,vpsR to ∆vpsR RECs compared to the ∆hapR,vpsR to
∆hapR RECs. If VpsT and VpsR are considered as a single genetic unit,
their epistatic relationship to HapR is evident from the triple knock-outs.
The ∆vpsR,vpsT,hapR to ∆vpsR,vpsT RECs have more “equal” observa-
tions than the ∆vpsR,vpsT,hapR to ∆hapR RECs.

3.2. Significance of the learned network

To assess the significance of the vps network inferred by JIN, we asked
how well the expression of vps genes fit the model compared to “unrelated”
genes. A log-likelihood ratio (LLR) for each gene i was calculated from its
vector of data, Xi as log(P (Xi|J(G), θ)/P (Xi|Null)), where the null model
was formed by disconnecting all Yi’s from the regulator genes. An LLR for
all of the vps genes and for genes whose expression was not correlated with
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Figure 4. A. Separation of LLR. Histograms of the LLRs of indicator genes and of

genes uncorrelated to the indicator genes. B. Significance of learned regulatory

network. Histogram of KL-divergences from sets of randomly drawn indicator genes.
The arrow indicates the separation shown in A. C. LLR of entire genome. Histogram

of LLRs from entire genome. Arrows indicated the LLR of the indicator genes.

the vps genes was calculated. Uncorrelated genes were selected as those
with absolute Pearson correlation to the vps genes’ mean centroid less than
0.2. The LLRs of the vps genes were all above zero, while nearly all of the
uncorrelated genes had an LLR less than zero, showing nearly no overlap
with the LLRs of uncorrelated genes. The distribution of the vps LLRs and
the uncorrelated LLRs is shown in Figure 4A.

To quantify the difference between these distributions, we calculated
the Kullback-Leibler divergence. We found that the distributions had a KL
divergence of 5.4 bits and next asked if this divergence was significant. KL
divergences of randomly selected indicators were much lower than the vps
indicators (see Figure 4B) yielding an empirical P value of 3× 10−12. a

3.3. Expansion of the vps Pathway

We ranked all of the genes by the LLR scores assigned by the JIN vps model
and chose the top 15 for further analysis. The majority of these top-scoring
genes have evidence supporting their association with the biofilm pathway
(gray rows in Table 1).

Three genes, exeA (VC2445), VC0483, and VC0930, contain a VpsR
binding site in their promoter15, indicating that they are under direct regu-
lation of the furthest downstream biofilm regulator. Additionally, VC0930,
along with chromosomal neighbors VC0931 and VC0933 which lie between
the vps-I and vps-II clusters, were recently shown to modulate biofilm

aP value computed from a Gamma fit to the empirical distribution.
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Table 1. Top predictions for new vps pathway members.

LLR
Corr.
Rank Locus Name Description

7.14 8 VC2445 exeA general secretion pathway protein A

7.03 34 VC1888 bap1 biofilm-associated protein

6.83 116 VC2732 epsE general secretion pathway protein E
6.77 99 VC2730 epsG general secretion pathway protein G

6.77 270 VCA0570 Sui1 family protein
6.74 69 VC0483 hypothetical protein

6.73 287 VC1064 lipoprotein-related protein

6.69 114 VCA0612 mscL large-conductance mechanosensitive channel
6.67 86 VC0930 rbmC rugosity-biofilm modulator

6.67 30 VC0931 rbmD rugosity-biofilm modulator

6.67 12 VC1701 hypothetical protein
6.62 67 VC1320 DNA-binding response regulator

6.51 62 VC1935 CDP-diacylglycerol–glycerol-3-phosphate
3-phosphatidyltransferase-related protein

6.48 133 VC1195 lipoprotein, putative

6.48 9 VC0933 rbmF rugosity-biofilm modulator

formation6. VC0930, along with its paralog VC1888, also a top JIN biofilm
candidate, are secreted proteins critical to pellicle and biofilm formation.

Several other genes are involved in secretion and are predicted to be vps
pathway members. VC2730–VC2733, of which JIN predicts epsE (VC2732)
and epsG (VC2730) as top biofilm candidates, are involved in secretion of
VPS1. prtV (rank 18, not shown in Table 1) is a protease that has recently
been found in the extra-cellular matrix (Fong and Yildiz, in preparation).

Several regulators were also found. VC1320 negatively regulates biofilm
formation in the smooth variant of V. cholerae (submitted, Bilecen and
Yildiz). rpoN, ranked at 25 (not shown in Table 1), has been shown to
positively regulate biofilm formation15. Other genes predicted are candi-
dates for cell surface sensing and/or modification. mscL, predicted to be
a high-conductance mechanosensitive channel, may sense surface contact,
which is one of the first steps in biofilm formation. Finally, VC1701 and
VC1935 have been shown to be differentially regulated between the ∆vpsR
and ∆vpsT genotypes, indicating that they may play a role in modulating
biofilm formation.

We compared the learned regulatory network to that predicted by
ModuleNetworks13 from the same data (see Supplemental File 117). Mod-
uleNetworks only found HapR and VpsR to be significant regulators, with
P values of 4.10E-03 and 1.12E-10, respectively. Additionally, robustness
analysis revealed that ModuleNetworks used HapR and VpsT as regulators
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in less than 25% of the trials.
JIN had a higher precision for identifying new candidates than rank-

ing by correlation, which simulates a cluster-based approach. The top 25
candidates were selected from both methods, and genes common to both
lists were removed, resulting in 17 genes in each list. Seven genes unique to
JIN’s list were known to be related to biofilm formation while only three
genes unique to the correlation-based list were related.

4. Conclusion and Discussion

The method presented uses a novel probabilistic structure, the Joint Inter-
vention Network, for explicitly linking different genotypes to their pheno-
typic consequences. It models epistasis analysis by using relative expression
changes, rather than direct expression levels, as the quantitative phenotype.
The pathway reconstruction method differs from previous approaches, such
as NEMs defined by Markowetz et al., in that it uses the downstream effects
of knock-out combinations of two or more genes and expression changes of
indicator genes already known to be relevant to the pathway rather than
the expression of genes selected through data preprocessing.

JIN successfully predicted several genes involved in V. cholerae biofilm
formation, one of the pathogen’s survival mechanisms. With respect to
VpsT and VpsR, our model predicts a linear, rather than convergent regula-
tion of the vps genes, and the validity of this needs to be tested. Prior stud-
ies have found a VpsR binding site in the promoter of vpsT, which would
suggest VpsR acts upstream of VpsT and not downstream as predicted by
our model. The JIN model therefore predicts VpsT regulates VpsR by a dif-
ferent, currently unknown mechanism, and that this regulation has greater
strength than VpsR’s regulation on VpsT. No transcription factor binding
sites have been identified for VpsT. Therefore, it would be interesting to
identify targets of VpsT (e.g. through chromatin-immunoprecipitation) and
search for the presence of sequence motifs. Binding sites found in the pro-
moter region of vpsR but not in vps genes would support JIN’s prediction
that VpsT directly regulates VpsR.

In this work, we assumed the observed epistatic interactions result from
the propagation of a signal according to the state of activity of the gene
products. However, different signal propagation mechanisms, such as in-
teractions that depend on substrates or other intermediates, are known to
reveal different epistatic relationships8. Also, feedback present in the net-
work may significantly influence our ability to recover its structure, as may
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be the case for the predicted interaction between VpsT and VpsR. Thus,
further development of computational approaches for ordering genes into
pathways using high-dimensional phenotypes, which can incorporate more
general models of epistasis than presented here, may hold promise for appli-
cation to a wide variety of genotype-phenotype investigations to accelerate
our understanding of various disease-related processes.
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