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Computational identification of prognostic biomarkers capable of withstanding 

follow-up validation efforts is still an open challenge in cancer research. For 

instance, several gene expression profiles analysis methods have been 

developed to identify gene signatures that can classify cancer sub-phenotypes 

associated with poor prognosis. However, signatures originating from 

independent studies show only minimal overlap and perform poorly when 

classifying datasets other than the ones they were generated from. In this paper, 

we propose a computational systems biology approach that can infer robust 

prognostic markers by identifying upstream Master Regulators, causally related 

to the presentation of the phenotype of interest. Such a strategy effectively 

extends and complements other existing methods and may help further 

elucidate the molecular mechanisms of the observed pathophysiological 

phenotype. Results show that inferred regulators substantially outperform 

canonical gene signatures both on the original dataset and across distinct 

datasets.    

1. Introduction 

A key application of genome-wide expression profile analysis is the 

identification of small gene signatures that effectively classify cancer 

sub-phenotypes with differential prognosis [1, 2]. For instance, both 

supervised and unsupervised methods have been extensively used to 

identify genes whose expression is predictive of patient outcome. In 

breast cancer, two recent large-scale Gene Expression Profile (GEP) 

studies identified independent ~70 gene panels that were 60-70% 

accurate in predicting progression to metastatic cancer in less than five 

years in their respective patient cohorts [3, 4]. However, paradoxically, 
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there was virtually no statistical significance in the overlap between the 

two signatures (only one gene in common between them) and the 

signatures performed poorly in classifying samples from the other study. 

Such apparent paradox cannot be explained based only on technical 

reasons such as sample collection, microarray technology, and 

differences in data analysis [5]. Furthermore, such cases are quite the 

norm rather than the exception [6]. Thus the identification of robust 

prognostic biomarkers is still an open challenge in cancer research. 

We argue that the fundamental reason why genes in prognostic 

signatures are so unstable and study-dependent is related to their role as 

“passengers” rather than “drivers” of the phenotypic differences (e.g., 

poor outcome). Since regulatory networks often act as amplification 

cascades, genes that are most differentially expressed tend to be further 

downstream from the somatic or inherited determinants of the prognostic 

differences. Due to the complex combinatorial interplay of regulatory 

proteins in the cell, these downstream genes are also the most unstable, 

as many co-factors and potential noise sources are involved in the 

transcriptional cascade that leads to their differential expression. Indeed, 

oncogenes and tumor suppressors are not generally the most 

differentially expressed genes although they may show an outlier 

behavior in some samples [7]. Thus, rather than looking for differentially 

expressed genes between two phenotypes of interest, we argue that one 

should look instead for regulators that are causally responsible for the 

implementation of the observed differential expression patterns. This was 

previously suggested [5, 8] but never implemented because accurate, 

genome-wide maps of regulatory processes in tumor related human cells 

have been lacking. 

Recently, we introduced and extensively validated ARACNe, an 

algorithm for the dissection of transcriptional networks that can infer the 

targets of transcription factors (TF) from microarray expression profile 

data. ARACNe was shown to scale up to the complexity of mammalian 

transcriptional networks [9], producing accurate networks that are cell-

phenotype specific. The algorithm has been successfully biochemical 

validated in B and T cells [9, 10] and more recently in glial cells 

(manuscript submitted), showing an accuracy greater than 80% in 

identifying targets validated by Chromatin Immunoprecipitation (ChIP) 

assays. Additional enhancements allow the algorithm to produce 

transcriptional maps that are fully directed by utilizing explicit 
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knowledge both of which genes encode specific TFs and of their binding 

site when available [11, 12]. 

Here, we show that ARACNe inferred transcriptional regulation 

maps can be effectively interrogated for the unbiased inference of TFs 

that may induce or suppress specific gene signatures associated with poor 

prognosis in breast cancer. Furthermore, we show that Master Regulator 

is a better and more robust classifier than the large gene signatures 

proposed in [4] and [13].  

2. Results  

To identify and compare transcriptional regulators that are determinants 

of the gene expression signatures associated with rapid progression to 

metastasis in breast cancer, we used two datasets of 295 [3] and 286 [4] 

breast cancer samples each (hereafter denoted as the NKI and Wang 

datasets). The authors had previously used supervised analysis methods 

on these datasets to determine a 70-gene and a 76-gene prognostic 

signatures, respectively, (SNKI and SWang). While these signatures were 

able to accurately classify the original datasets in cross-fold validation 

tests, using a Support Vector Machine (SVM) classifier [14], 

classification performance of the SNKI signature on the Wang data or of 

the SWang signature on the NKI data was shown to be quite poor.  

We performed the following analysis independently on the NKI and 

on the Wang dataset (For simplicity, we illustrate it only for the NKI 

data): (a) First, the NKI dataset was processed by ARACNe to infer a 

genome-wide transcriptional interaction network NNKI. (b) Then, the 

network was interrogated 

using the Master 

Regulator Analysis 

(MRA), see Methods, to 

identify a repertoire of 

candidate TFs, i.e. master 

regulators MRi, whose 

regulons  Ri, 

(transcriptional target set) 

was highly overlapping 

with the signature SNKI. 

(c) Finally, the MRi genes   

were tested  as  classifiers  

 

Figure 1. Graphical representation of the overlap of 

metastasis signature genes and the top 20 TF regulators 

between the two datasets. 
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Table 1 Top 20 Master Regulators inferred by MRA independently from NKI and 

Wang datasets. 

GIDNKI SYMNKI FET p-val GIDWANG SYMWANG FET p-val 

9232 PTTG1 4.5×10-16 7534 YWHAZ 4.9×10-5 

2305 FOXM1 6.0×10-11 5933 RBL1 1.1×10-4 

7832 BTG2 4.1×10-6 9232 PTTG1 5.3×10-4 

7534 YWHAZ 1.1×10-5 7027 TFDP1 7.4×10-4 

7704 ZBTB16 1.2×10-5 10736 SIX2 2.7×10-3 

4782 NFIC 1.4×10-5 3148 HMGB2 4.1×10-3 

1054 CEBPG 1.6×10-5 4208 MEF2C 5.0×10-3 

9735 KNTC1 1.9×10-5 4605 MYBL2 5.7×10-3 

2737 GLI3 4.5×10-5 4488 MSX2 6.2×10-3 

8522 GAS7 4.5×10-5 1869 E2F1 6.7×10-3 

7027 TFDP1 5.9×10-5 6095 RORA 1.3×10-2 

147912 SIX5 6.9×10-5 2305 FOXM1 1.3×10-2 

1869 E2F1 1.2×10-4 3607 FOXK2 1.4×10-2 

3608 ILF2 2.4×10-4 6936 C2orf3 1.5×10-2 

4904 YBX1 2.4×10-4 4603 MYBL1 1.5×10-2 

3223 HOXC6 5.2×10-4 23054 NCOA6 1.7×10-2 

1746 DLX2 5.8×10-4 7528 YY1 2.2×10-2 

51123 ZNF706 7.0×10-4 677 ZFP36L1 2.2×10-2 

3148 HMGB2 8.6×10-4 171017 ZNF384 2.3×10-2 

3066 HDAC2 9.3×10-4 10520 ZNF211 2.4×10-2 

 

outcome against the SNKI signature, both in the NKI and Wang set using 

five-fold cross-validation based on an SVM classifier. 

Surprisingly, from an unbiased list of 852 TFs (determined by Gene 

Ontology annotation) shared by the two datasets, the analysis produced a 

30% overlap among the top 20 inferred master regulator TFs (p = 2×10
-6

, 

by FET), which is especially significant when compared to the 1 gene 

overlap between the two signatures (p = 0.25, FET) (Figure 1). Note that 

both ARACNe and the MRA were performed independently on each of 

the two datasets. The top 20 TFs are listed in Table 1.  

To study the stability of MR genes as a function of the training set, 

we repeated this procedure using different GEP subsets from the NKI 

dataset to infer prognostic signatures. We generated 100 sample sets by 

randomly selecting 34 out of 78 NKI samples with poor outcome and 44 

out of 118 samples with good outcome in each training set, preserving 

the ratio of poor to good prognosis samples in the original study. We 

then computed the Pearson correlation between the prognostic groups 
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and the expression level for all 

informative genes across the 78 

samples [13]. The top 70 genes 

with the highest absolute 

correlation coefficient were 

selected as the corresponding 

SNKI, and the top 20 Master 

Regulator TFs were identified using the MRA analysis. Finally, we 

compared the overlap of signature genes and regulators derived from 

each set to the ones from the original set, and reported the average 

overlap percentage in Table 2. Results clearly show that while the 

signature gene selection is highly affected by the training sample choice, 

with only 8.6% average overlap between signatures, the inferred master 

regulator TFs were much more consistent, with a 47.8% overlap despite 

the highly discordant signatures that were used to infer them. Although 

the causal role of the inferred regulators in the phenotype remains to be 

validated, this observation suggests that master regulators are less 

sensitive to training set selection and experimental variability. 

In order to study whether the signature regulators possess the same 

or better prognostic capabilities than the signature genes, we used an 

SVM classifier to differentiate patients that developed distant metastasis 

within 5 years from patients that were metastasis-free for at least 5 years. 

We used both the inferred Master Regulators and the NKI/Wang 

signatures as the features for SVM-based classification. Gaussian Radial 

Basis Function kernel was employed in the SVM classifier along with 

the default parameters specified in MATLAB Bioinformatics Toolbox. 

Five-fold cross-validation was used to evaluate the performance in 

predicting the patients’ prognostic group. Master regulators were tested 

independently, using lists of increasing size from the single best MR to a 

list of the top 70 MRs. 

Two methods were used to assess the enrichment of TFs’ regulon 

genes in genes that are differentially expressed between the two 

prognostic groups. The first one used the Fisher Exact Test (FET) to 

determine the statistical significance of the overlap between TFs’ regulon 

genes and the prognostic signatures. The second used the Kolmogorov-

Smirnov test, as implemented by the Gene Set Enrichment Analysis 

(GSEA) method, to assess enrichment of the TFs’ regulon genes in 

Table 2. Average overlap between SNKI 

signatures and top 20 Master Regulators 

inferred from 100 GEP sample sets. 

Predictor Overlap 

Signature genes 8.6% 

Top 20 regulators 47.8% 
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differentially expressed genes without having to select a specific 

threshold (see Methods). Both methods produced similar performance. 

Results of prognosis classification for the SVM classifier using either 

(a) the SNKI or SWang signature genes, (b) Master Regulator TFs ranked by 

FET p-value, and (c) Master Regulator TFs ranked by GSEA are shown 

in Figure 2. Since protein activity is not necessarily proportional to the 

mRNA concentration of the corresponding genes, due to post-

transcriptional/translational modifications, we used the regulon of a TF 

as an indicator of the TF’s activity. In particular, gene expressions were 

first converted into z-score. In each sample, all genes were sorted by the 

z-score and then used as the reference list in GSEA. The TF’s activity 

level was approximated by the Normalized Enrichment Score (NES) 

computed for its regulon. 

Classification performance was assessed by five-fold cross-

validation. The analysis shows that even a handful of Master Regulators 

can predict progression to metastatic tumors with higher accuracy than 

the ≥70-gene signatures. Indeed, performance of the Master Regulator 

classifier invariably decreased as more genes were used. Classification 

 

Figure 2: Accuracy of metastasis classification using signature genes and top TFs derived from 

(a) NKI dataset, and (b) Wang dataset. Predictions were made on NKI (left) and on Wang dataset 

(right) in both cases. 
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accuracy using the gene-signatures drops when the SNKI is used to 

classify Wang samples or vice-versa (i.e. in cross-dataset studies), while 

Master Regulator prediction remained highly predictive. The decrease in 

classification power as a function of the number of Master Regulators 

used in the classifier also suggests that the method produces informative 

ranking of the TFs’, with more significant Master Regulators producing 

more accurate classification. In summary, the most significant master 

regulators were much better conserved across training sets (48% vs. 9%), 

consistently outperformed differentially expressed signatures in five-fold 

cross-validation studies, and were better able to classify samples in 

independent studies. 

3. Methods 

3.1. ARACNe Network Inference  

ARACNe uses an information theoretic approach to dissect physical 

transcriptional interactions between TFs and their targets [12]. Briefly, 

the algorithm first uses a large GEP dataset to distinguish candidate 

interactions between a TF and other genes in the GEP by computing 

pairwise mutual information (MI). It employs a computationally efficient 

Gaussian kernel estimator to estimate the MI as: 
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ARACNe first eliminates interactions that are below a minimum MI 

threshold, defined based on statistical significance threshold. Then, the 

Data Processing Inequality (DPI) theorem from information theory is 

used to eliminate the vast majority of interactions that are likely 

mediated by another TF.   
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Bootstrap sampling, a nonparametric technique for statistical 

inference, is employed in the networks reconstruction process in order to 

accommodate the noise in microarray data and the error in MI 

estimation. The sampling procedure generates bootstrap datasets that are 

obtained by randomly selecting samples with replacement from the 

original dataset. One hundred bootstrap datasets are used to create the 

bootstrap networks. Due to the sampling procedure with replacement, the 

generated bootstrap datasets will consist of some replicated samples, and 

thus increase MI values for all edges computed from these datasets. To 

avoid this artifact, an infinitesimal amount of uniformly distributed noise 

is added on the bootstrap samples so that all the repeats with identical 

values would produce a randomized order. A consensus network is then 

constructed by retaining edges supported across a significant number of 

the bootstrap networks.  

3.2.  Gene Sets Enrichment Analysis  

GSEA uses the Kolmogorov-Smirnov statistical test to assess whether a 

predefined gene set (in this case the Master Regulator set) is statistically 

enriched in genes that are the two extremes of a list ranked by 

differential expression between two biological states [15].  The algorithm 

is very useful to detect differential expression of a set of genes as a 

whole, even though the fold-change may be small for each individual 

gene. 

Since gene regulons include both TF-activated and TF-repressed 

genes, GSEA was extended to assess enrichment of two complementary 

gene sets against N ranked genes. For instance, suppose that is expected 

to be a Master Regulator capable of activating a signature. Then one 

would expect the TF-activated gene set to be enriched in genes that are 

upregulated, while the TF-repressed gene set should be enriched in genes 

that are downregulated. Standard GSEA would dilute the evidence 

supporting TFs that can function both as activators and repressors.  

The extended GSEA, for two complementary gene sets, proceeds as 

follows: (a) Compute signal-to-noise ratio (S2N), the difference of means 

scaled by the standard deviation (µA-µB)/(σA-σB), between phenotype A 

and B, for each of the N genes in microarray. Order the N genes by S2N 

from the most positive to the most negative values, denoted by R; (b) 

identify hits independently for the positive gene set S+ in R, and the 

negative gene set S- in 𝑅 , in which 𝑅  is the inversed ranking of R with 

the inverted S2N values; (c) Combine R and 𝑅  and reorder the S2N 
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values by keeping the hits for both S+ and S-, denoted as RC (see Figure 

3); (d) Compute a running score by walking down the combined ranking 

RC. The score will increase by |ri|
p
/ΣiєS|r|

p
 if the i

th
 gene is a hit, or 

otherwise decrease by 1/(2N-S), where S is the combined total number of 

genes in S+ and S-. Finally, (e) Enrichment Score (ES) is determined as 

sum of the maximum and the minimum deviation from zero along the 

running score. 

We randomly permuted the phenotype labels and repeated steps (a – 

d) for 10,000 times to compute the ES null distribution. Statistical 

significance of the ES can be computed by comparing the observed ES to 

the null distribution. A MATLAB function implementing the extended 

GSEA described above is available from 

http://www.dbmi.columbia.edu/~wkl7001/gsea2.m. 

3.3. Master Regulator Analysis (MRA)  

Given two phenotypes A and B and a transcriptional interaction network 

model, the Master Regulator analysis attempts to identify TFs that may 

induce the transition from A to B.  

For each TF in the transcriptional interaction model, we test whether 

activation or inhibition of the TF may affect genes to produce a change  

     

Figure 3. Extended GSEA assesses two complementary gene sets at once. Hits are identified 

independently for the positive gene set S+ in R, and the negative gene set S- in 𝑅 , in which 𝑅  is 

the inversed ranking of R with the inverted S2N values. The rankings R and 𝑅  are then combined 

and reordered according to the S2N values, denoted as RC. All the identified hits, for both S+ and 

S-, are remained throughout the reordering process. ES is defined as sum of the maximum and the 

minimum deviation from zero along the running score. 
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as similar as possible to that observed between B and A. Specifically, we 

first assume that TF activation may lead to the transition. In this case, we 

test whether TF-activated targets (the R+ regulon of the TF) are enriched 

in the genes that are overexpressed in B and whether the TF-repressed 

targets (the R- regulon of the TF) are enriched in genes that are 

underexpressed genes in B. This is accomplished with one of two tests:  

FET Analysis: In this analysis, genes that are differentially expressed in 

B vs. A are first filtered by a statistical significance threshold (e.g., 5% 

FDR by t-test or u-test) and then divided into two groups, S+ and S-, 

containing respectively genes that are overexpressed or underexpressed 

in B vs. A. The statistical significance p
+
 of the intersection between R+ 

and S+ as well as the statistical significance p
-
 of the intersection 

between R- and S- is computed, given the total number of considered 

genes, using the FET test. Since the two tests are statistically 

independent, the final p-value is assessed as p = p
+
 × p

-
.  

Gene Set Enrichment Analysis: In this test, rather than selecting gene 

signatures S+ and S-, the GEP genes are ranked in a list LA→B, from the 

most underexpressed to the most overexpressed in B vs. A. Then, the 

extended GSEA analysis is used to simultaneously assess whether R+ 

and R- are respectively enriched in genes that are overexpressed and 

underexpressed in LA→B. The procedure is then repeated to test whether 

TF silencing may lead to the transition. In this case, the role of R+ and 

R- is inverted but the procedure is not affected. Finally, Master 

Regulators are sorted by statistical significance (p-value).  

4. Discussion 

In this manuscript, we have presented an approach for identifying robust 

prognostic markers using transcriptional regulatory networks in the 

breast cancer context. Rather than establishing signatures of genes that 

are differentially expressed in poor prognosis vs. good prognosis 

samples, the method attempts to identify the upstream transcriptional 

regulators of the signature that are consistent with the network topology.  

We have shown that top Master Regulator genes, independently 

inferred from different datasets or from different subsets of the same 

dataset, are far more stable and robust than top genes correlated to 

disease outcome. For instance, overlap of the top 70 correlated genes 
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after subsampling was only 8.6% while overlap of the top 20 Master 

Regulators inferred from the same datasets was 46.8% on average.  

Finally, we have shown that in independent testing using two large 

datasets for which prognostic signatures were previously published, the 

top inferred Master Regulators consistently and substantially 

outperformed the signatures in five-fold cross-validation tests using an 

SVM-based classifier. This was especially visible when the signature or 

Master Regulators inferred from one dataset were used to classify 

samples from the other.  

Since they are inferred from a network model that explicitly encodes 

the regulation logic (i.e. edges are directed), these findings also generate 

testable hypotheses and rational models for understanding the oncogenic 

processes leading to the phenotypic difference between poor and good 

prognosis samples.  
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