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ABSTRACT: Osteosarcoma is one of the most common types of bone cancer in children. To gauge
the extent of cancer treatment response in the patient after surgical resection, the H&E stained image
slides are manually evaluated by pathologists to estimate the percentage of necrosis, a time consum-
ing process prone to observer bias and inaccuracy. Digital image analysis is a potential method to
automate this process, thus saving time and providing a more accurate evaluation. The slides are
scanned in Aperio Scanscope, converted to digital Whole Slide Images (WSIs) and stored in SVS
format. These are high resolution images, of the order of 109 pixels, allowing up to 40X magnification
factor. This paper proposes an image segmentation and analysis technique for segmenting tumor and
non-tumor regions in histopathological WSIs of osteosarcoma datasets. Our approach is a combina-
tion of pixel-based and object-based methods which utilize tumor properties such as nuclei cluster,
density, and circularity to classify tumor regions as viable and non-viable. A K-Means clustering
technique is used for tumor isolation using color normalization, followed by multi-threshold Otsu
segmentation technique to further classify tumor region as viable and non-viable. Then a Flood-fill
algorithm is applied to cluster similar pixels into cellular objects and compute cluster data for fur-
ther analysis of regions under study. To the best of our knowledge this is the first comprehensive
solution that is able to produce such a classification for Osteosarcoma cancer. The results are very
conclusive in identifying viable and non-viable tumor regions. In our experiments, the accuracy of
the discussed approach is 100% in viable tumor and coagulative necrosis identification while it is
around 90% for fibrosis and acellular/hypocellular tumor osteoid, for all the sampled datasets used.
We expect the developed software to lead to a significant increase in accuracy and decrease in inter-
observer variability in assessment of necrosis by the pathologists and a reduction in the time spent
by the pathologists in such assessments.
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1. Introduction

Pathology Informatics, one of the fastest growing fields in medical informatics, deals with
mining information from medical pathology data and images. It involves the use of compu-
tational methods and analytical processes to make informed decisions that serve as assistive
tools in clinical diagnosis. Due to the complexity of medical data and given the expert knowl-
edge required for such analyses, it is often difficult to replicate the work of pathologists and
physicians.1 Though there is substantial literature published in the area of tumor research2,3
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the main challenge in the field is that all the methods are tumor specific which makes the
development of one common method, that is applicable for all kinds of tumor, an arduous
task. This necessitates the creation of ad hoc methods tied to each requirement, that consider
signature of each tumor sample and incorporate tumor specific information such as the tumor
spread, contextual information etc. Each tumor detection method utilizes specific information
about the tumor and therefore one tumor identification approach may not be applicable for
another. Hence it becomes a challenge to apply existing methods that work well for other
types of tumors for Osteosarcoma detection, the tumor that is used in this study.

Fig. 1. WSI with different regions enlarged and their location in the image with figure 1a and 1b representing
color and shape variations in coagulative necrosis regions for the same WSI. The numbered boxes represent
the locations of histologically distinct regions in the image.

Osteosarcoma is the most common type of bone cancer that occurs in adolescents in
the age of 10 to 14 years. The tumor usually arises in the long bones of the extremities in
the metaphyses next to the growth plates.4 What makes osteosarcoma analysis inherently
challenging is that there is a high degree of histologic variability within the tumor (Figure
1) which is accentuated after therapy. In order to accurately identify tumor occurrence and
estimate the treatment response, it is necessary to consider histologically distinct regions
that include dense clusters of nuclei, fibrous tissues, blood cells, calcified bone segments,
marrow cells, adipocytes, osteoblasts, osteoclasts, haemorrhagic tumor, cartilage, precursors,
growth plates and osteoid (tumor osteoid and reactive osteoid) with and without cellular
material. Each of these regions have different characteristic features that differ in color, shape,
size, density, texture and area of occurrence. They also have significant differences in their
biological features such as background stroma, presence or absence of certain cellular material,
neighboring regions etc. There are also multiple color variations within the same dataset
representing the same type of regions (Figure 1a and 1b), which makes segmentation based
only on color ineffective. Due to the variable properties of the images, there is no one method
that with certainty, can accurately segment regions and classify them. The literature available
for osteosarcoma data image analysis/digital pathology is minimal which makes it critical to
come up with methods that are applicable for this type of tumor analysis.
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The goal of this paper is to present an approach to segment H&E5 stained images into viable
tumor and non-viable tumor regions using a combination of techniques (color segmentation,
Otsu thresholding, and Flood-fill). It employs pixel-based and object-based segmentation by
using color, shape and density parameters. The first step locates tumor and non-tumor regions
and subsequent steps distinguish tumor into viable and non-viable regions. Color quantization
in the approach accounts for variance in color distribution while shape properties such as area
and circularity measures are utilized to accurately locate tumor. A further analysis performed
on computed cluster data on resulting images characterize different regions in the image. The
approach is shown to be robust and has a high accuracy overall in the datasets considered.

1.1. Background and Setup

We have assembled an investigative team of clinical scientists at University of Texas South-
western Medical Center, Dallas and computer scientists at University of Texas at Dallas.
Archival samples for 50 patients treated at Children’s Medical Center, Dallas, between 1995
and 2015, have been identified. The treatment effect for each patient is estimated after surgical
resection, by physically cutting the region of interest from the resected bone into pieces. These
pieces are de-calcified, treated with H&E stain and converted to slides to be analyzed under
microscope. Each patient case is represented by a single H&E stained slide at the time of
biopsy when available and 8-50 H&E stained slides per case at time of resection when necrosis
is determined. Each slide consists of 1-2cm X 1-2cm sections of the tumor in its widest coronal
plane. Slides are scanned using an Aperio Scanscope at a magnification of upto 40X and stored
in SVS format.6 Each SVS WSI has a size between 150MB and 1.5GB and spans an order of
109 pixels. The experimental dataset consists of a subset of images from the above available
patient datasets, manually annotated by pathologists.

1.2. Related Work

The Tumor identification/isolation problem has been well studied by researchers in the field
of digital pathology7–11 . The most common methods include image segmentation (region
classification), image analysis (pattern analysis), regions of interest(ROI) identification, sta-
tistical analysis (such as number of clusters, mean size of groups) etc.7,8 The methods used
in all the studies include color based (pixel level), shape based (object level) and contextual
information based methods.8 Normally, pixel level methods, that make use of pixel level pro-
cessing, form some of the basic approaches because they are the simplest but they are not the
most efficient. Researchers have tried to analyze the pathological images based on quantitative
metrics representing the spatial structure of histopathology imagery and include identifying
structures such as nuclei, glands and lymphocytes etc. These spatial feature utilization12 has
become the backbone of histopathology image analysis techniques, as these are the prominent
metrics that can yield maximum information. More advanced than the pixel based methods
are the object based methods that make use of region growing and object identification uti-
lizing shape properties. These methods provide better segmentation results than their pixel
counterparts2,13 however they are expensive in terms of the computational resources they use.
Multi-level thresholding approach using Otsu segmentation promises good accuracy but when
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there is a lot of noise, this method alone may not fare well. Pattern Recognition Image Anal-
ysis(PRIA) describes a pattern recognition method based on a genetic algorithm that evolves
over multiple iterations and compares the results with GeNIE,14 a bio-image analysis tool from
Aperio and manual segmentation by pathologists. A recent work on Lung cancer11 identifies
9879 image features and uses regularized classifiers to estimate patient prognosis.

1.3. Challenges

A majority of pathological images are in proprietary format and there is no common standard
for these images, which makes it difficult for researchers collaborating towards common goals
to share information. Openslide15 and VIPS16 are image processing libraries that help to
narrow down the gap by a small margin, however, the main problem of handling different
imaging formats remains the same.

Pathology is a relatively subjective field dependent on the opinions of trained pathologists
resulting in discrepancy in the accuracy of different image analysis approaches available for
pathological images. A study on renal cell carcinoma10 performed analysis on pathologists
and found a high degree of subjectivity in their evaluation. Therefore, a standard objective
procedure is recommended, which is important not only from a clinical standpoint but also
for developing quality research application that will be reliable and independent of varying
views of pathologists.7 The size of images generated in these studies is large and as a result
the algorithms for smaller images may not scale up due to memory issues.17 Hence, there
is a need for a standard approach that will process images one tile at a time and at the
same time can scale up without loss of accuracy. Most of the tools that are developed by
researchers in academia cater to a subset of problems. ImageJ18 has many inbuilt image
processing algorithms, however, is limited in its use to process proprietary formats and large
files. PRIA by Webster et.al1 is an advanced method, but it fails to perform well in identifying
necrosis, which is one of the main tasks in this study. CellProfiler,19 a tool for high throughput
image analysis is good at identifying cellular objects and calculating their properties. However,
the results of our trials with CellProfiler are inconclusive in identifying cellular objects in
Osteosarcoma. Object based methods2,13 work well on images with well-defined shapes but
need pre-configured training sets. Machine learning approaches such as Bayesian classifier,
Support Vector Machines9 etc. are effective but would need a large annotated training data
and the training phase is very time consuming.7 Some of the related works9–11 in lung and
breast cancer focus on identifying properties and features of nuclei. Necrotic regions in this
study do not necessarily have nuclei and hence the above works address only a part of the
problem. The presence of a high degree of variability in the shapes, in Osteosarcoma datasets,
makes the above methods unlikely to perform well. Another issue with WSI images is the
color variance between different features,9 which causes active tumor cells to have different
color signatures, and thus segmentation based only on color is less accurate.

Given these challenges, in the next few sections we describe our approach explaining the
algorithm and our results.
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2. The Approach

We illustrate in Figure 2, the complete procedure, which includes K-means color segmentation,
multi-level Otsu segmentation, Flood-fill clustering and statistical analysis. Based on inputs
from pathologists, we define the different tumor regions with the following properties which
are then quantified in the segmentation and classification approach.

(1) Viable Tumor: Nuclei densely aggregated together
(2) Non-Viable Tumor: Cells and tissues in the stage of recovery or dead

(a) Coagulative Necrosis: disintegrated nuclei but with less color density than viable
tumor.

(b) Fibrosis: Fibrous collagen (protein) produced by fibroblasts (benign cells).
(c) Acellular/Hypocellular Tumor Osteoid (subsequently designated as Osteoid in this

paper): Eosinophilic/pink extracellular protein matrix produced by tumor cells.
The viable tumor and coagulative necrosis regions resemble each other in terms of high color
density, closer to blue while fibrosis and osteoid have brighter color shade, closer to pink. The
above regions are grouped together into two intermediary classes Ψ1 and Ψ2 based on high
intra-class similarities, as follows:

(1) Ψ1 = {V iable tumor,Coagulative necrosis}
(2) Ψ2 = {Fibrosis, Osteoid}

The images in Ψ1 are analyzed in terms of shape and density properties to classify them as
viable tumor and non-viable tumor, while those in Ψ2 are by default classified as non-viable
tumor.

Fig. 2. Algorithm pipeline

2.1. The Algorithm Pipeline

The following is the general algorithm pipeline.
Input: Unprocessed SVS image
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Output: Color segmented image and mapped regions identified as tumor (viable and non-
viable) and non-tumor
Steps
For each SVS image given as input, at the eye fit (scaling factor 1X) zoom level, do the
following:

(1) Run K-means color segmentation with K=3.
(2) For each of the tumor regions identified in step 1, increase the scaling factor to 5X.
(3) On a window size of 512 * 512, on the original 5X scaled images, do the following:

(a) Generate red-blue segmentation using 2-level Otsu thresholding.
(b) Compute the percentage of red pixels and blue pixels in each image.
(c) Images with higher percentage of blue pixels fall into the Ψ1 class
(d) Images with higher percentage of red pixels fall into the Ψ2 class
(e) Create a tumor map of the pixel information by including pixel location, color

values and class label
(4) For each entry in the tumor map,

(a) Run Flood-fill algorithm to identify boundaries and group pixels in the cluster.
(b) Remove clusters that are smaller than minimum cluster size and larger than max-

imum cluster size to remove false positives.
(c) Output the remaining pixels in the original image along with cluster-mapped

pixels.
(5) Run data analysis and classify images as viable and non-viable tumor based on the

cluster data output.

2.2. Color Segmentation

At eye-fit level(scaling factor 1X), a 3-means color segmentation process is used to distinguish
the given image into tumor and non-tumor image. Since all the WSIs are H&E stained, the
pixels are made up of variants of Red and Blue channels. Hence it is imperative that more
focus is given to these two channels. Given an Image I, of width Iw and height Ih, made
up of Iw ∗ Ih pixels, each pixel P i is represented by {P i

r , P
i
g, P

i
b}, where P i

r , P
i
g and P i

b denote
the red, blue and green channel values of ith pixel. Let the set C ε (Cw, Cp, Cb) represent the
cluster centers of white, pink and blue regions. These color values are taken from the empirical
analysis of the stained images. Each P i in the image is assigned to one of the cluster centers
Ck by calculating distances between the pixel and the centroids. The distance is given by
subtracting the color channel differences between the pixel and centroid. If φ(P i) represents
the cluster value for pixel i, then

φ(P i) = arg min
Cj

δ(P i, Cj) (1)

where,

δ(P i, Cj) =
√

(P i
r − P k

r )2 + (P i
g − P k

g )2 + (P i
b − P k

b )2 (2)

where P k
r , P

k
g , P

k
b represent RGB color channel values of the pixel, of kth cluster centroid. The

centroids are initialized with random values and each pixel P i in I is classified. The pixel
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values of centroids are then updated as follows:

P k
r =

1

Nk

∑
j

P j
r ; P k

g =
1

Nk

∑
j

P j
g ; P k

b =
1

Nk

∑
j

P j
b ; (3)

Where Nk is the number of pixels classified under kth centroid. The algorithm is run for Γ

iterations until there are no more changes to the clusters. The clusters represented by centroids
Cb and Cp are regions of potential tumor whereas Cw represents non-tumor. The blue and pink
clusters are further investigated at a higher level of magnification for detailed classification.
After K-means, the data is passed on to the next step, with the following values populated for
each pixel P i. Map M contains { mp1

,mp2
...} and each mpi

=(pixel-location, color value, label)

2.3. Otsu multi-level threshold segmentation

A 2-level threshold segmentation is used in the next step. A window of 512 x 512 is considered
and the color image is converted to 24 bit grayscale image, with more weight to blue channel.
This is due to the fact that tumor regions have more blue channel values than non-tumor
regions. The gray scale values for two level threshold are represented as [1,2,...t] and [t+1,....L]
respectively and the weighted class variance is calculated as

σ2w(t) = q1(t)σ
2
1(t) + q2(t)σ

2
2(t) (4)

where

q1(t) =

t∑
i=1

P (i); q2(t) =

L∑
i=t+1

P (i) (5)

are the class probabilities and the intra-class variance is given by

µ1(t) =

t∑
i=1

i ∗ P (i)

q1(t)
(6)

Now the image contains two classes of pixels following a bi-modal histogram. We calculate
the optimum threshold separating the two classes so that their combined spread (intra-class
variance) is minimal. Otsu thresholding creates a red-blue color map where red signifies the
non-viable tumor pixel and blue is the viable tumor or coagulative necrosis pixel. The data
from this stage is exported by updating the values in map M as mpi

=(pixel, red/blue value,
original color value, label)

2.4. Calculating clusters

This stage calculates blue clusters and their properties. We run Flood-fill algorithm to identify
boundaries and compute clusters. Viable tumor and coagulative necrosis always are in the blue
region and contain cellular structures within them of non-uniform circularity. Along with each
cluster, the size of the cluster in terms of area a, circularity c, and average color of cluster
are calculated. Clusters that are less than minimum cluster size (50 pixels) and greater than
maximum cluster size (300 pixels) are discarded as they represent false positives. The output
of this stage is a map M ′ (Cluster label, Start Point, Centroid, Circularity, Area, List of Points,
Color) and an image of clusters with red borders.
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3. Results

The application was created using Openslide-Java for processing SVS images, ImageJ and
Java Advanced Imaging for basic image processing tasks and C# .NET to perform Otsu
segmentation and Flood-fill. The dataset included 120 images of 1160 x 640 resolution and
all data samples were manually analyzed and classified by pathologists at UT Southwestern.
The output of the application was compared with the classified images for verification and
was validated by the team at UT Southwestern.

The choice of parameters such as window size in Otsu step (512*512), minimum
and maximum cluster sizes (50 pixels and 300 pixels) etc. are selected based on empir-
ical values for which the accuracy is maximized. Each figure (Figure 3 - Figure 6) con-
sists of an original image I from the dataset, shown in (a), the output of Otsu method
applied on I, (b) and clustering of cells by flood fill method,(c). Each cluster inside
the red boundary in the images is defined in memory as a map data structure, Clus-
ter(Centroid,OriginalColor,Area,Perimeter,Circularity).

3.1. Viable Tumor

Fig. 3. Region: Viable tumor. (a) original image for viable tumor, (b) Otsu output showing more blue color,
(c) Cell clustering using flood fill showing computed clusters.

Figure 3(a) shows that viable tumor has dense nuclei with more blue color. Otsu segmen-
tation captures the nuclei with high accuracy represented by blue regions, as seen in 3(b). The
percentage of blue pixels higher than the percentage of red pixels is a significant indicator for
classifying this region into class Ψ1. Clustered cellular information from Flood-fill 3(c) shows
that there are more cells in the viable tumor region than the others. (see Figure 8(a)).

3.2. Coagulative Necrosis

Figure 4(a) shows coagulative necrosis containing cells with disintegrated nuclear matter,
which makes the image appear brighter than viable tumor. Otsu segmentation step 4(b) yields
higher percentage of blue pixels than red pixels, which is a key parameter in deciding regions
belonging to class Ψ1. Cluster properties in 4(c) show that the cell clusters are less dense and
are distant from each other.
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Fig. 4. Region: Coagulative necrosis. (a) original image for coagulative necrosis. (b) output of Otsu showing
more blue than red, (c) Cell clustering using flood fill similar to viable tumor

Fig. 5. Region: Fibrosis. (a) original image for fibrosis, (b) shows Otsu output for Fibrosis where there is a
higher percentage of red pixels than blue, (c) cell clustering using flood fill, showing presence of fewer cells

3.3. Fibrosis

Figure 5(a) shows fibrosis region represented by strand like structures and absence of cells and
nuclei. Due to this characterstic, Otsu in 5(b) produces higher percentage of red than blue
pixels. This result distinguishes fibrosis from images in class Ψ1. Flood-fill on this output, seen
in 5(c), produces lesser number of clusters compared to viable tumor and coagulative necrosis.

3.4. Osteoid

Fig. 6. Region: Osteoid. (a) original image for osteoid, (b) Otsu output for osteoid characterized by higher
percentage of red than blue pixels. (c) Cell clustering flood fill output marked by absence of cells.

Figure 6(a) shows osteoid from the dataset, characterized by pink regions, background
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stroma and absence of cells and nuclei similar to fibrosis. Running Otsu on this image pro-
duces 6(b), with high percentage of red pixels due to absence of cells. This result makes
osteoid to be grouped in Ψ2 distinguishing them from images in class Ψ1. Since osteoid is an
extracellular protein matrix, it remains after tumor cells have undergone necrosis. However,
there maybe interspersed cells found in the matrix. Flood-fill on this output, shown in 6(c),
captures scattered cells that are less dense, unlike viable tumor and coagulative necrosis.

3.5. Data Interpretation

Fig. 7. Region wise average red and blue pixel count

A plot of average pixel count for classification regions shows that viable tumor and coagu-
lative necrosis regions have more blue pixels, while fibrosis and osteoid regions have more red
pixels. This result from Otsu step divides the image into prominent blue and red regions (see
Figure 7). The regions that get classified under Ψ1 have more cells than the regions under Ψ2,
and therefore have more blue pixels than red. Thus, images with viable tumor and coagulative
necrosis regions can be classified into Ψ1, while fibrosis and osteoid can be classified into Ψ2.

A further analysis on average cell counts shows that viable tumor has 1702 cell clusters,
while coagulative necrosis has 850 cells (see Figure 8(a)). This further distinguishes images
in Ψ1 into viable tumor and coagulative necrosis more accurately. We calculated the average
density of cells in a 32x32 window as shown in Figure 8(b). It is observed that viable tumor
has a cellular density of 2.4 while coagulative necrosis has 1.17. This important characteristic
differentiates viable tumor from coagulative necrosis. The findings conclude that viable tumor
is more dense and has closely aggregated cells than coagulative necrosis, the result of which
has been used in classification.

It can be seen that fibrosis and osteoid regions have low cell clusters and high background
stroma, hence concurring with the previous findings that these segmented images have less
blue and more red pixels. Thus, the images in Ψ2, that were identified as fibrosis and osteoid,
have been categorized as non-viable tumor. Furthermore, in class Ψ1, the cellular density
distinguishes viable tumor from coagulative necrosis, which can be used to classify coagulative
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necrosis under non-viable tumor.
The accuracy of the method has been measured and is found in Table 1.

Fig. 8. (a) Region wise cellular count.(b) Region wise average cellular density count per 32x32 window.

Table 1. Quantitative metric comparison of classification regions

Region Type Quantitative Metrics (Average)

red pixels blue pixels cell clusters cell density Classification
count count (32x32 window) accuracy(%)

Viable Tumor 94976 231039 1702 2.4 100
Coagulative Necrosis 78483 195860 850 1.17 100

Osteoid 163655 69282 388 0.53 93
Fibrosis 140026 56313 479 0.69 89

4. Limitations and Future Improvements

The approach presented in this paper is limited to Osteosarcoma tumor identification. The
current method works well in the given sampled datasets. We propose to extend it to all images
in the dataset by incorporating contextual information that yield additional data. RGB color
channels used in the experiments are affected by color variance in images and hence we would
replace them with LAB colorspace. We plan to identify more relevant features from the images
and subsequently use machine learning algorithms on them to improve classification accuracy.
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